
TDDE05: Lab 1: Control and State Machines

Cyrille Berger

January 26, 2021

The goal of this lab is to implement the position control subsystem for your robot.
The robot can have the following control mode:

• Idle: the robot should keep a null velocity

• Velocity: the robot should keep a specific velocity (linear and angular)

• Position: the robot should reach and stop at a specific location

• Waypoints: the robot is given a set of waypoints (a path) to follow

• Positions queue: the robot keep a queue of positions and when it reaches a position
it starts moving toward the next position

The simulated robot takes as input velocity commands, on the topic /husky0/velocity_cmd.
This should be the output of your control subsystem.

1 Get the code for lab1

Get the skeleton code for lab1 from gitlab:

1 cd ~/TDDE05/catkin_ws/src/air_labs/

2 git pull --allow-unrelated-histories \

3 https://gitlab.ida.liu.se/tdde05/air_labs.git master

WARNING: If you copy paste the git pull command and it paste on a single line,
you need to remove the \ from the line.

WARNING: if you try to build at this point, you are very likely to get an error, you
need to implement the PID controller before you can compile.

You also won’t be able to build the second lab, run this to only build lab1:

1 cd ~/TDDE05/catkin_ws/

2 catkin build air_lab1
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Figure 1: March Studio’s welcome screen

2 March

March is the Modeled Architecture. It is a state chart framework which allow to define
state machines that integrate with ROS. State machine are designed using March Studio,
which can be launched with the following command:

1 march_studio

It should show a window like in figure 1. This window contains buttons for the dif-
ferent type of project supported by March. You are mostly concerned with the machine,
component and processing component.

To get the ROS modules, you need to add the search path to the studio, go in
settings, in paths tab, add:

• /courses/TDDE05/software/catkin_ws/src/lrs_march/march

• /courses/TDDE05/software/catkin_ws/build/lrs_march/march

In this lab, however, you are already provided a base state machine: air_labs/

air_lab1/machines/husky_control.mhl. If you open that file you will see a win-
dow similar to figure 2. On the left of the window, you will see the toolbox used to
create connection, states, nodes, connectors... On the right the actual machine.

On figure 3, you can see an overview of the state machine you were given. In the
top left corner is a group that decompose a nav_msgs/Odometry messages so that we
can use its components in the state machine. In the bottom left corner is the group that
control which control mode is currently used (idle, velocity, waypoints...). On the right
is the velocity control group.

3 Left/Right wheel velocity PID

3.1 PID

The first step of the lab is to add a PID controller to control the velocity of your robot.
To simulate the effect of the robot sliding on the ground, the simulator add noise to the
velocity of the robot, the simple controller of the first lab is not good enough. The gold
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Figure 2: Husky control machine opened in March Studio
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Figure 3: Overview of the control machine

standard in control to solve this problem is the PID (proportional–integral–derivative)
controller, see figure 4.

u(t) = u(t) = Kpe(t) + Ki

∫ t

0

e(τ) dτ+ Kd
de(t)

d t
(1)

where Kp, Ki and Kd are non negative constant corresponding to the proportional,
integral and derivative components of the controller.

• the proportional term correspond to the current error

• the integral term takes into account past errors

• the derivative term correspond to the prediction of future errors

Plant /
Process

Figure 4: PID controller (source: wikipedia)
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Figure 5: Velocity control

In a discrete time system:

e(t) = et

∫ t

0

e(τ) dτ=
t
∑

τ=0

et ·δτ
de(t)

d t
=

et − et−1

δt
(2)

Where δt is the time interval between t and t − 1.

3.2 PID for Husky velocity

Commonly a velocity controller takes a velocity as input and output an effort or power
level. In case of the Husky, the input correspond to the velocity that we want the robot
to have while the output correspond to the energy level applied to the left and right
wheels. e(t) therefore correspond to the error between the target wheel velocity and
the odometer wheel velocity. While u(t) is the update to the energy that is then given
to the robot, so that:

In the state machine that you were provided with, you will now need to add the PID
controller to the velocity control, see figure 5. You are provided with the input to the
PID controller (the odometry and the desired velocity), you can see the connector on
the left in figure 5.

The velocity control is a group with a single state, that state should transition to itself
every time a new odometry message is received, as it is shown through the connection
of the odometry to the transition. The state, named controller is actually implemented
as a processing state, which means it contains a flow chart that is executed every time
the state is activated.

3.3 In practice

For this part of the lab you will need to use two PID loops, one for controlling the power
given to the left wheel and the other one for the right wheel. The PID controller is
already implemented as part of the standard distribution of March, it can be found in
the march_control library. It has a single output, which is the update u(t) in figure 4.
It takes four inputs:

• control (std_msgs/float64) a number which correspond to the target ve-
locity (r(t) in figure 4)

• observation (std_msgs/float64) a number which correspond to the odom-
etry value (y(t) in figure 4)
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Figure 6: Velocity control with three new nodes.

• current_time (std_msgs/float64) expressed in seconds

• initial_previous_time (std_msgs/float64)which correspond to the time
when starting to run your state machine

To add a PID node to your controller, you need to create a new processing node, using
the processing node creation tool from the toolbox:

• Click on icon to activate the processing node creation tool.

• Then click within the controller state to create a new node. You will need four of
them, so click four times.

• Press Escape to deselect the tool

If you created too many nodes, you can select them and press delete or in the menu
Edit, Delete to remove the superfluous nodes. It should look like on figure 6.

Then you need to assign the type for each of those new nodes, two of them should be
march_control/pid, one march_ros/current_time and one air_lab1_march/linear_angular_to_left_right_velocities.
To assign the type of a node, you should click on the node and then in the property panel
on the left, you can choose the library and the type for each node. Once you have se-
lected the type, you will also be able to set the parameters for each node, for a pid you
can choose Kp, Ki and Kd . By default, they are set to 0.0, if you set Kp = 1.0, the PID
controller will behave the same way as the lab0 controller. You need to set imin to −1.0
and imax to 1.0, those are the values use to bound the integration term, as it can get
saturated, in particular, if commanding a too high velocity.

You will need to connect the control and observation to the desired velocity and the

odometry, using the connection tool . You will then need to connect the output of
the march_ros/current_time node to the current_time connector of the two PID
nodes. And finally connect the output of initial time to the initial_previous_time
connector of the two PID nodes.

It should then look like on figure 7.

3.4 Velocity mode

At this point, you now have a velocity controller, but the only input it ever get is a velocity
of 0. For handling the mode, we will use multiple states within a super state. Each state
correspond to one of our control mode (idle, velocity...). The super state has already
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Figure 7: Velocity control with PID nodes.

been created for you and can be seen of figure 8, it contains a idle mode and a super
state for position control modes, that you can ignore for now.

Before creating a state, we should think about what will be done. In this case, we will
set the velocity of our controller using the geometry_msgs/Twist, which we will need
to decompose into linear velocity along x and angular velocity along z. This is several
operations that needs to be executed once, it is therefore required to use a processing
state rather than a simple state.

You can create a processing state using the processing state creation tool . Once
you have done, that you can use the connection creation tool to create a transition from
idle state to velocity control state. This transition should be triggered when an external
event to_vel_control is triggered, we therefore need to create an external event

connector with the external input event creation tool . Rename the newly created
event by clicking on untitled and write to_vel_control instead.

Then you need to connect this newly created event so that when it is triggered, it
first reset the super state and then switch from idle state to vel_control state. Using the
connection tool, you can click on the event connector to create a new connection and
then click on the middle connector of a transition connection.

You should now have something that looks like on figure 9.
There is a potential problem, events and transitions are executed in creation order, so

if you connected to_vel_control to the transition from idle to vel_control state, then
this will be considered before the reset of the super state, which means your system will
end up in the idle state. To solve that problem, you can set the priority of the event, by
clicking on the middle of an event connection, a higher priority means that the event is
executed first, so set the priority to the event reseting the super state to a higher value
than the one connecting idle to vel_control.

The next step is to set the commanded velocity. You will need to create a data
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Figure 8: Control modes super state.

Figure 9: Control modes with idle mode and vel_control mode.

input connector using the external input data creation tool . You can set the name to
cmd_vel. You will need to set the type to ros_geometry_msgs/twist (this will be
automatically mapped to a geometry_msgs/Twist message in ROS).

Then in your processing state you should create processing nodes and use ros_geometry_msgs_tools
library to disassemble the message to be able to extract the linear and angular compo-
nents. Those components can then be connected to the PID controllers. Also, you will
need to update the velocity every time a new message is received on the cmd_vel topic,
therefore you should create a transition on the vel_control state that reset it, every time
a message is received.

3.5 Run the controller

First you will need to build it:

1 start-tdde05

2 cd ~/TDDE05/catkin_ws
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Figure 10: The vel_control state is finished and ready to run.

3 catkin build

Then in packages.xml add:

1 <run_depend>nodelet</run_depend>

Then this will actually build the controller as a ROS nodelet, to launch it you can
use the following command:

1 rosrun nodelet nodelet standalone air_lab1/husky_control_node \

2 __ns:=/husky0

In case of error, try to run start-tdde05 in the terminal.
When the state machine is converted into a ROS node, it will create topic for events

and data automatically. To switch between different control modes, you can send a
message on the corresponding topic, for instance, to switch to idle:

1 rostopic pub /husky0/to_idle std_msgs/Empty {}

And then to switch to velocity control:

1 rostopic pub /husky0/to_vel_control std_msgs/Empty {}

3.6 Integration with rqt

You should add /husky0/to_idle and /husky0/to_vel_control in your rqt in-
terface.

In rqt, you can add a robot steering panel, like shown on Figure 11. To do that in
the Plugins menu, Robot Tools select Robot Steering. In the Robot Steering

panel, set the topic to /husky0/cmd_vel. You should now be able to control your
robot.

3.7 Troubleshooting

If the robot does not move:
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Figure 11: rqt with a Message Publisher and Robot Steering panel.

Figure 12: On the left, parameters panel and on the right parameters panel with all
parameters

• Check your transitions

• Check the parameters of PID

• To help you debug, use the std_msgs/print operation to print values on the
standard console

3.8 Calibrate the PID loops

Then you will need to calibrate the PID loops. We will use the evaluate_controller.py
and autotune.py scripts provided in air_lab1/src.

To help with the process, you can defined parameters that are read from the com-
mand line. To create a parameter, make sure nothing is selected (press ESC). You should
then see the parameters panel like on figure 12, using the plus icon you can create three
parameters Kp, Kd and Ki (create them as float64).

Then click on the left pid node and you should see a panel similar to figure 13,
you can assign the gloabal parameters you have created. Do the same for the right pid
as well. There is no reason to use different parameters for left and right.

Figure 13: Parameters set on the activity
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1 rosrun nodelet nodelet standalone air_lab1/husky_control_node \

2 __ns:=/husky0 _Kp:=1.0 _Ki:=0.1 _Kd:=0.01

3.8.1 Plotting the error

We can plot the error using evaluate_controller.py and rqt. You should inspect
the source code of evaluate_controller.py, if you try to run it, it will show an
error:

1 rosrun air_lab1 evaluate_controller.py __ns:=/husky0

It is missing the message air_lab1/ControllerEvaluationStat. We will need
to create it:

1 cd ~/TDDE05/catkin_ws/src/air_labs/air_lab1/

2 mkdir msg

3 cd msg

4 touch ControllerEvaluationStat.msg

Then in your favorite editor, in ControllerEvaluationStat.msg:

1 int32 samples # Number of samples used for computing

2 # the error

3 float64 last_error # Last error

4 float64 average_error # Average error

Then in CMakeLists.txt, find the section with add_message_files and add:

1 add_message_files(

2 FILES

3 ControllerEvaluationStat.msg

4 )

5 generate_messages(DEPENDENCIES std_msgs )

Look for the line with find_package(catkin and after COMPONENTS add message_generation
and std_msgs, which are two packages needed for compiling the message.

This should show an empty application with a menu:
Then to generate the code for the message, you need to build the module:

1 catkin build air_lab1

2 start-tdde05

The command start-tdde05 ensure that the definition of your new messages is
properly loaded in the environment.

Now you should be able to run the controller evaluator:
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Figure 14: rqt plotting the error.

1 rosrun air_lab1 evaluate_controller.py __ns:=/husky0

3.8.2 Plotting the error

In rqt, add a Plot panel (in ROS noetic, the Plot panel is a bit buggy, and moving it
around may crashes rqt). In the Plot panel, in Topicwrite /husky0/evaluation_stat/last_error
and click +, this will subscribe to /husky0/evaluation_stat and plot the last_error
field. You should also plot the average_error field. If you click on the second to last
icon (some kind of plot figure with an arrow), you can set the value for the x axis to
le f t = 0 and ri ght = 100 and for the y axis to bot tom = −1.0 and top = 1.0. This
should show the last 100s of error. The resulting rqt window is shown on Figure 14.

Try to see the effect of different values of _Kp, _Ki and _Kd. You can alternate
between a velocity of 0 and 0.5 in rqt.

3.8.3 Autotuning

You can use the autotune.py to tune the PID parameters of your controller:

1 rosrun air_lab1 autotune.py __ns:=/husky0

Make sure that no other instance of your state machine is running and that evaluate_controller.py
is running.

autotune.py use a brute force approach to callibration, it tries different values and
check which values have the lowest error on a curve segment followed by controlling a
null velocity.

Do note that the results given by autotune.py are unstable, and the values you get
back from it can vary from run to run (you might even get null values for Ki and Kd).
An interesting project can be to test better method for autotuning.
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Figure 15: autotune output.

3.9 Launch files

Since typing all those command lines all the time is not so convenient, we can use launch
files to define how to launch our ros program.

1 cd ~/TDDE05/catkin_ws/src/air_labs/air_lab0/

2 mkdir launch

3 cd launch

4 touch start_everything.launch

Then in your favorite text editor:

1 <launch>

2 <!-- Launch a node of type nodelet from the package

3 air_lab0 give it the name "HuskyControlNodelet" -->

4 <node pkg="nodelet" type="nodelet" name="HuskyControlNodelet"

5 args="standalone air_lab1/husky_control_node" >

6 <param name="Kp" value="1.0" />

7 </node>

8 </launch>

This tell ros that we want to launch a node of type nodelet (type) from the pack-
age nodelet (pkg) with arguments standalone air_lab1/husky_control_node.
And we can also the parameters, we have shown an example for Kp, you should add Ki

and Kd.
Then we can run it using roslaunch roslaunch:

1 roslaunch air_lab0 start_everything.launch __ns:=/husky0

It is possible to define the namespace in the launch file, but this would bind the
launch file to use with husky0 for sake of generality, it is better to pass the namespace
on the command line.
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Figure 16: Position controllers

4 Position controllers

In the remainder of the lab, we are going to implement two control modes related to
moving the robot toward a position. From the book Introduction to Autonomous Mobile
Robots, you should read section 3.6, we call it reach point for this lab.

Since the reach point is going to be used by the two different modes, and it should
only be active when in those control modes, then we will have a super state in the control
mode with two parallel states, one for selecting the control mode and one for running
the reach point controller.

The reach point controller contains two states, one idle that output a null velocity
and the reach point state that will adjust the velocity of the robot until it reach the
destination. The reach point controller takes the following inputs:

• pose which is the destination point (which you will connect to your control modes)

• position which is the current position of the robot (the position comes from the
odometry message)

• max_velocity which is the maximum velocity the robot should drive to reach its
destination (this velocity is set on a topic)

The reach point controller has three parameters that you need to set:

• kρ (Krho) which determine how fast the robot should move toward the goal

• kα (Kalpha) which determine how much the robot should aim toward the goal

• kβ (Kbeta) which determine how much the robot should face the target orientation

kρ > 0; kβ < 0; kα − kρ > 0 (3)
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5 Position control

For this mode, you will just need to represent it with a regular state:

• create a data input connector named cmd_position of type
ros_geometry_msgs/pose_stamped

• create a state set it to march_std_lib/pass_through (create the state in
the mode group of position control modes)

• create an event input connector named to_position_control

• You need to connect that event to:

– the reset transition of control mode

– the transition from idle to position control modes

– the transition from idle to your new state

The output of march_std_lib/pass_through will be used as input to the reach
point controller’s pose.

5.1 Rviz

You can use rviz to easily select the destination point, launch rviz:

1 rviz

In the panelsmenu, make sure tool properties is checked. In the tool properties

panel, set 2D nav goal to /husky0/cmd_position.

5.2 Troubleshooting

• Check your transtions

• Check the parameters of reach point

• Check that you are setting a maximum velocity

6 Waypoints control

Next step is to create a trajectory control mode:

• create a data input connector named waypoints of type
ros_nav_msgs/Path

• create an event input connector named to_waypoints
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Figure 17: Suggestion of waypoint control mode

In the position control modes group, you will need to create a new super state in which
you will receive the waypoints from the connector and dequeue a waypoint everytime
the previous point has been reached. You can use an event from the position controller to
detect when the current waypoint has been reached (for instance when its idle mode is
reached). You can use march_std_lib/list_pop to remove the first element from a
list and output it. march_std_lib/list_pop input a list, and output the first element
and that list without the first element. A suggestion of how it could look is shown on
figure 17.

To test your mode, you can use the following command:

1 rostopic pub /husky0/waypoints nav_msgs/Path

2 "{ poses: [ { pose: { position: {: 0, y: -2 } } },

3 { pose: { position: {x: 0, y: 2 } } } ] }"

7 Launch file

You should create a launch file for your robot, in which you start the state machine. You
will add other nodes to that launch file in the next labs.

7.1 Demonstration

• Show your launch file

• Show in rviz how your robot respond to the different command mode: velocity control,
position control, waypoint control and idle.
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