
TDDE05: Lab 0: Introduction to ROS

Cyrille Berger

January 25, 2021

Contents

1 Introduction 1

2 Running 2
2.1 On Campus . 2
2.2 thinlinc . 2

3 ROS 2
3.1 middleware . 2
3.2 catkin . 2

4 Simulator 2

5 Programming a robot 3
5.1 Get the base code . 3
5.2 Start ROS and the simulator . 4
5.3 RViz . 4
5.4 Get started with the command line . 5

5.4.1 rostopic . 5
5.5 Create a package . 7
5.6 Saving rviz configuration . 7
5.7 Basic Husky Controller (in Python) . 7
5.8 Get started with GNU Screen . 9
5.9 Creating user interface with ROS . 11
5.10 Demonstration . 11

1 Introduction

“The Robot Operating System (ROS) is a flexible framework for writing robot software. It
is a collection of tools, libraries, and conventions that aim to simplify the task of creating
complex and robust robot behavior across a wide variety of robotic platforms” [2]. It is
commonly use by many robots in research and industry. ROS can transparently interract
with real hardware or with a simulator.

The objective of this lab is to facilate first contact to the ROS framework.

1

2 Running

2.1 On Campus

ROS is already installed on IDA computers, you can find it in the directories /opt/ros/melodic,
/usr and /courses/TDDE05/software.

2.2 thinlinc

Running on personnal laptops is currently not supported, however it is possible to use
thinlinc to access remotely IDA’s computers. To use thinlinc, follow the installation in-
struction at http://www.cendio.com/thinlinc/download and connect to the IDA
server: thinlinc.edu.liu.se.

3 ROS

ROS is a framework composed of a communication middleware and a set of modules
providing different functionnalities for robots.

3.1 middleware

With ROS the various algorithms, interfaces to hardware and simulators all run in
different processes. ROS include communication libraries for various programming
languages: C++ (roscpp http://wiki.ros.org/roscpp) or Python (rospy http:

//wiki.ros.org/rospy). There are libraries for more programming languages, but
they are not as well supported and it is recommended that you stick to C++ and Python
for this course.

ROS programs mainly communicate through the use of topic. ROS topics follow a
multi-publishers/multi-subscribers pattern: ROS programs subscribe to individual top-
ics and they will then receive the messages that are published by other programs on the
topic. Topics are associated to a specific type of a ROS message (examples of standard
messages can be found at http://docs.ros.org/kinetic/api/std_msgs/html/
index-msg.html, it is possible to create custom messages to suit your needs).

In addition to topics, ROS programs can offer service calls, which is the ROS imple-
mentation of Remote Procedure Calls (RPC).

3.2 catkin

ROS also aim to provide a standard method for developing and distributing packages
using a tool called catkin which relies on the cmake build system.

4 Simulator

This year we use simple simulator, a very basic 2D simulator, which can run well in
thinlinc.

2

http://www.cendio.com/thinlinc/download
http://wiki.ros.org/roscpp
http://wiki.ros.org/rospy
http://wiki.ros.org/rospy
http://docs.ros.org/kinetic/api/std_msgs/html/index-msg.html
http://docs.ros.org/kinetic/api/std_msgs/html/index-msg.html

5 Programming a robot

5.1 Get the base code

1. First you will need to add the following to your .bashrc file:

1 alias start-tdde05=". /courses/TDDE05/software/bin/start-tdde05.sh"

In every terminal, before issuing a ROS command, you will need to run:

1 start-tdde05

2. Then create a ROS workspace for your project:

1 mkdir -p ~/TDDE05/catkin_ws/src

2 cd ~/TDDE05/catkin_ws/

3 catkin init

You need to use ~/TDDE05/catkin_ws/ as a directory for the start-tdde05
script to work properly!

3. Then you need to create a ~/TDDE05/.ros_port file. This file will be used to
set the port number used for communication by ROS. When running on thinlinc,
the port number need to be different for each user. In the following command,
replace XX with your group number:

1 echo "112XX" > ~/TDDE05/.ros_port

2 start-tdde5

4. Then get the code of your project:

1 cd ~/TDDE05/catkin_ws/src

2 mkdir air_labs

3 cd air_labs

4 git init

Once you have gotten access to your gitlab repository (replace XX with your group
number and YY with the correct year number), the repositories might not be
created yet once you start the labs:

1 git remote add origin git@gitlab.liu.se:tdde05-20YY/air-labs-XX.git

2 git push -u origin master

Next time you want to access the code from a new account:

3

1 cd

2 git clone git@gitlab.liu.se:tdde05-20YY/air-labs-XX.git air_labs

5. To build the project (do not forget start-tdde05 if you are using a new termi-
nal):

1 cd ~/TDDE05/catkin_ws

2 catkin build

You can run the catkin build command from any directory under \~/TDDE05/catkin_ws.

6. You are now ready to start programming your robot!

5.2 Start ROS and the simulator

In two different terminals:

• Start the ROS middleware:

1 start-tdde05

2 roscore

• Start the simple simulator:

1 start-tdde05

2 rosrun air_simple_sim simple_sim.py __ns:=/husky0

5.3 RViz

To be able to see what is happening in the simulated world, we can use a tool called
rviz:

1 start-tdde05

2 rviz

When it opens it shows a window like in figure 1. rviz can be used to display the
location of a robot and all the sensor data. For now, we will use it to display the location
of the robot:

• Press on the button Add, at the bottom of the Displays panel

• It should show a dialog with a tab called By display type (see figure 2)

• Select the item TF (circled in red in figure 2)

• Click on Ok

4

Figure 1: RViz empty window

Figure 2: RViz Add dialog

• In the Displays panel, make sure that Fixed Frame is set to odom

The rviz window should look like on figure 3. There are currently two frames, odom
corresponding to the origin of the world and husky0/base_footprint corresponding
to the location of the robot.

5.4 Get started with the command line

5.4.1 rostopic

rostopic is a command line tool for interracting with topics. It can be used to get infor-
mation about a topic, such as the type, publishers and subscribers:

1 rostopic info /husky0/odometry

rostopic can be used to read what is a published on a topic. The following command
can be used to display what the observation of the wheel velocity:

5

Figure 3: RViz with TF

1 rostopic echo /husky0/odometry

rostopic can be used to publish data on a topic:

1 rostopic pub [topicname] [topictype] [value in yaml]

For example to command some velocity to your robot, first you can check the topic
type with. You can use tab completion to help with finding topicname, tyopictype and
formatting the yaml value.

1 rostopic info /husky0/wheel_velocity_cmd

The sensor_msgs/JointState (http://docs.ros.org/api/sensor_msgs/html/
msg/JointState.html) message has the following structure:

1 Header header

2

3 string[] name

4 float64[] position

5 float64[] velocity

6 float64[] effort

The YAML format use a key/value structure, and you do not need to specify all the
field for your message, the following command will make your robot move in straight
line with the maximum velocity of 1.0m/s.

1 rostopic pub /husky0/wheel_cmd sensor_msgs/JointState "name: ['left', 'right']

2 effort: [1, 1]"

It essentially tells the robot to apply full power on the left and right wheels.
You can check the velocity of your robot with:

1 rostopic echo /husky0/odometry

6

http://docs.ros.org/api/sensor_msgs/html/msg/JointState.html
http://docs.ros.org/api/sensor_msgs/html/msg/JointState.html

You can check the velocity of the wheels of your robot with:

1 rostopic echo /husky0/wheel_velocities

5.5 Create a package

We will use the command catkin_create_pkg to create a new package for the tool that
we are going to write in this lab.

1 start-tdde05

2 cd ~/TDDE05/catkin_ws/src/air_labs

3 catkin_create_pkg air_lab0 rospy

This will create a package called air_lab0 which depends on rospy. In practice, it
creates a directory called air_lab0 containing two files:

Then after creating a package, even if it is only python, you need to build it at least
once and reload the environment:

1 catkin build

2 start-tdde05

1. package.xml: meta information about your package: authors, license and more
importantly ROS packages dependencies

2. CMakeLists.txt: this is the file used by the build system to compile your ROS pro-
grams. This file contains a lot of documentation on how to use it.

5.6 Saving rviz configuration

You can now save the rviz configuration in your air_lab0 package. Go in the menu
File and save your configuration in
~/TDDE05/catkin_ws/src/air_labs/air_lab0/rviz/labs.rviz.

You can use to start rviz with your configuration file:

1 rviz -d `rospack find air_lab0`/rviz/labs.rviz

5.7 Basic Husky Controller (in Python)

In this part, you will write a basic controller that takes a string as input and send some
simple effort to the simulator.

We will listen on a topic called /husky0/text_command using a std_msgs/String
message. You can use the following command to see the structure of the message:

1 rosmsg info std_msgs/String

7

1 cd ~/TDDE05/catkin_ws/src/air_labs/air_lab0/src

2 touch simple_text_controller.py

3 chmod u+x simple_text_controller.py

Then in your favorite text editor:

1 #!/usr/bin/env python

2

3 import math

4

5 # rosoy is the main API for ROS

6 import rospy

7

8 # import library with ros messages

9 import sensor_msgs.msg

10 import std_msgs.msg

11

12 #

13 # Class that contains the logic for our simple controller:

14 # - listen to the "text_cmd" topic, accept

15 # "forward", "backward", "left", "right" and "stop"

16 # as valid commands.

17 # - publish a wheel command on the "wheel_cmd" topic

18 #

19 class simple_text_controller:

20 def __init__(self):

21 # Subscribe to the "text_cmd" topic which has

22 # "std_msgs/String" as message type.

23 # It will call "self.command_callback" every

24 # time a new message arrive

25 self.command_sub = rospy.Subscriber("text_cmd",

26 std_msgs.msg.String, self.command_callback)

27

28 # Publisher to the "wheel_cmd" topic which has

29 # "sensor_msgs/JointState" as message type.

30 self.effort_pub = rospy.Publisher("wheel_cmd",

31 sensor_msgs.msg.JointState, queue_size = 1)

32

33 # Callback called everytime a new command message

34 # is received

35 def command_callback(self, command_msg):

36 # Compute the effort depending on the received

37 # command.

38 if command_msg.data == "forward":

39 left_effort = 0.5

8

40 right_effort = 0.5

41 elif command_msg.data == "left":

42 left_effort = -0.5

43 right_effort = 0.5

44 # TODO backward and right

45 else:

46 # anything else

47 left_effort = 0.0

48 right_effort = 0.0

49

50 # Fill the effort_msg with the command values

51 effort_msg = sensor_msgs.msg.JointState()

52 effort_msg.name = ["left", "right"]

53 effort_msg.effort = [left_effort, right_effort]

54 self.effort_pub.publish(effort_msg)

55

56 if __name__ == '__main__':

57 # Initialise the ROS sub system

58 rospy.init_node('simple_text_controller', anonymous=False)

59 # Create an instance of our controller

60 ec = simple_text_controller()

61 # Start listening to messages and loop forever

62 rospy.spin()

Expand with command for turning right and going backward.
You can run it with, in a new terminal:

1 start-tdde05

2 rosrun air_lab0 simple_text_controller.py __ns:=/husky0

To send command to it, in a new terminal:

1 start-tdde05

2 rostopic pub /husky0/text_cmd std_msgs/String "data: 'forward'"

5.8 Get started with GNU Screen

It can be annoying to have so many windows and terminals open, a solution is to use
GNU Screen, which allows to start all the processes in a single terminal window.

The easiest way to use it is to create a screen configuration file:

1. In the air_lab0 project:

1 roscd air_lab0

2 mkdir screen

9

https://www.gnu.org/software/screen/

2. Then in that directory you can create a file called labs, with the following content
(replace the ... accordingly):

1 # Configuration

2 deflogin on

3 autodetach on

4

5 caption always

6

7 bindkey ^w screen

8 bindkey ^p prev

9 bindkey ^n next

10 bindkey ^x quit

11 bind q quit

12 bindkey ^l windowlist

13 bindkey ^e copy

14

15 # Pre-defined tabs

16

17 screen 0

18 title "roscore"

19 stuff "start-tdde05\015"

20 stuff "roscore\015"

21

22 screen 1

23 title "simple sim - no obstacles"

24 stuff "start-tdde05; rosrun air_simple_sim simple_sim.py __ns:=/husky0\015"

25

26 screen 2

27 title "rviz"

28 stuff "start-tdde05; rviz -d `rospack find air_lab0`/rviz/labs.rviz\015"

29

30 screen 3

31 title "simple_text_controller"

32 stuff "start-tdde05; rosrun air_lab0 simple_...oller.py __ns:=/husky0\015"

3. Then to start it:

1 rosscreen air_lab0 labs

The following shortkeys can be used:

• ctrl+w to create a new command tab

• ctrl+p to navigate to the previous tab

• ctrl+n to navigate to the next tab

10

• ctrl+x to quit

• ctrl+l to show the list of tabs

• ctrl+e to scroll in the log, using up/down arrow (page up/down works as well),
press ESC to stop scrolling

In the screen configuration file:

• screen ## indicates a new tab with number ##

• title indicates the name of the tab (as shown in the list of tabs)

• stuff indicates the command that is run in the tab, the \015 at the end indicates
whether the command is ran when starting the screen or if you have to start it
manually

5.9 Creating user interface with ROS

There is the possibility in ROS to build user interface with a program called rqt, which
can be used for visualisation and for giving commands.

For this lab we are going to use it to send commands to the text controller and
monitor some topics. In a terminal, you can launch:

1 rqt

This should show an empty application with a menu:

• in the menu, select Plugins, Robot topics, Message publisher and Topic Monitor

• in the Message Publisher panel, add the /husky0/text_cmd topic five times
and then set the message in the expression column to forward, backward,
left, right and stop respectively.

• Use the Topic Monitor panel to monitor the odometry and wheel command
topics.

This should show an interface similar to figure 4. In the editor line you can type the
name of the topic where you want to publish a velocity.

Add the rqt command to your screen file.

5.10 Demonstration

• Show your screen file

• Show in rviz how your robot respond to the forward, backward, left, right
and stop command using rqt.

11

Figure 4: rqt with a Message Publisher and Topic Monitor panel.

References

[1] Modular openrobots simulation engine (morse). http://morse.openrobots.

org/.

[2] Robot operating system (ros). http://www.ros.org/.

12

http://morse.openrobots.org/
http://morse.openrobots.org/
http://www.ros.org/

	Introduction
	Running
	On Campus
	thinlinc

	ROS
	middleware
	catkin

	Simulator
	Programming a robot
	Get the base code
	Start ROS and the simulator
	RViz
	Get started with the command line
	rostopic

	Create a package
	Saving rviz configuration
	Basic Husky Controller (in Python)
	Get started with GNU Screen
	Creating user interface with ROS
	Demonstration

