
TDDE05: Lab 0: Introduction to ROS and Morse

Cyrille Berger

February 2, 2018

Contents

1 Introduction 1

2 Running 2
2.1 On Campus . 2
2.2 thinlinc . 2

3 ROS 2
3.1 middleware . 2
3.2 catkin . 2

4 Morse 2

5 Programming a robot 3
5.1 Get the base code . 3
5.2 Start ROS and the simulator . 3
5.3 Get started with the command line . 4

5.3.1 rostopic . 4
5.4 Create a package . 5
5.5 Get started with C++ . 5
5.6 Creating user interface with ROS . 10
5.7 Get started with Python . 10

1 Introduction

“The Robot Operating System (ROS) is a flexible framework for writing robot software. It
is a collection of tools, libraries, and conventions that aim to simplify the task of creating
complex and robust robot behavior across a wide variety of robotic platforms” [2]. It is
commonly use by many robots in research and industry. ROS can transparently interract
with real hardware or with a simulator.

“MORSE is a generic simulator for academic robotics. It focuses on realistic 3D simula-
tion of small to large environments, indoor or outdoor, with one to tenths of autonomous
robots” [1].

The objective of this lab is to facilate first contact to ROS framework and MORSE
simulator.

1

2 Running

2.1 On Campus

ROS and MORSE are already installed on IDA computers, you can find them in the
directory /home/TDDE05/software.

2.2 thinlinc

Running on personnal laptops is currently not supported, however it is possible to use
thinlinc to access remotely IDA’s computers. To use thinlinc, follow the installation in-
struction at http://www.cendio.com/thinlinc/download and connect to the IDA
server: thinlinc-und.ida.liu.se.

3 ROS

ROS is a framework composed of a communication middleware and a set of modules
providing different functionnalities for robots.

3.1 middleware

With ROS the various algorithms, interfaces to hardware and simulators all run in
different processes. ROS include communication libraries for various programming
languages: C++ (roscpp http://wiki.ros.org/roscpp) or Python (rospy http:

//wiki.ros.org/rospy). There are libraries for more programming languages, but
they are not as well supported and it is recommended that you stick to C++ and Python
for this course.

ROS programs mainly communicate through the use of topic. ROS topics follow a
multi-publishers/multi-subscribers pattern: ROS programs subscribe to individual top-
ics and they will then receive the messages that are published by other programs on the
topic. Topics are associated to a specific type of a ROS message (examples of standard
messages can be found at http://docs.ros.org/kinetic/api/std_msgs/html/
index-msg.html, it is possible to create custom messages to suit your needs).

In addition to topics, ROS programs can offer service calls, which is the ROS imple-
mentation of Remote Procedure Calls (RPC).

3.2 catkin

ROS also aim to provide a standard method for developing and distributing packages
using a tool called catkin which relies on the cmake build system.

4 Morse

MORSE is a simulator based on the blender game engine. World and robots can be
designed using the blender user interface. MORSE allow to control simulation from the
command line, through python script and provide an interface with ROS. With MORSE

2

http://www.cendio.com/thinlinc/download
http://wiki.ros.org/roscpp
http://wiki.ros.org/rospy
http://wiki.ros.org/rospy
http://docs.ros.org/kinetic/api/std_msgs/html/index-msg.html
http://docs.ros.org/kinetic/api/std_msgs/html/index-msg.html

you can define a robot, with actuators (such as a robotic arm) and many different sensors
(IMU, camera, lidar...).

5 Programming a robot

5.1 Get the base code

1. First you will need to add TDDE05 module files:

1 module add /home/TDDE05/modulefiles/tdde05

2 module initadd /home/TDDE05/modulefiles/tdde05

In every terminal, before issuing a ROS command, you will need to run:1 load_ros

2. Then create a ROS workspace for your project:

1 mkdir -p ~/TDDE05/catkin_ws/src

2 cd ~/TDDE05/catkin_ws/

3 catkin init

3. Then get the code of your project:

1 cd ~/TDDE05/catkin_ws/src

2 mkdir air_labs

3 cd air_labs

4 git init

Once you have gotten access to your gitlab repository (replace XX with your group
number):

1 git remote add origin git@gitlab.ida.liu.se:tdde05-2018/air-labs-XX.git

2 git push -u origin master

Next time you want to access the code from a new account:

1 cd

2 git clone git@gitlab.ida.liu.se:tdde05-2018/air-labs-XX.git air_labs

4. To build the project (do not forget load_ros if you are using a new terminal):

1 cd ~/TDDE05/catkin_ws

2 catkin build

You can run the catkin build command from any directory under \~/TDDE05/catkin_ws.

5. You are now ready to start programming your robot!

5.2 Start ROS and the simulator

In two different terminals:

• Start the ROS middleware:
1 load_ros

2 roscore

3

Figure 1: MORSE Simulator with a Husky robot

• Start the morse simulator with the environment used for the labs:
1 load_ros

2 roscd air_morse/worlds

3 morse run lab_0123_world.py

The simulator should show a window as displayed on figure 1.

5.3 Get started with the command line

5.3.1 rostopic

rostopic is a command line tool for interracting with topics. It can be used to get infor-
mation about a topic, such as the type, publishers and subscribers:

1 rostopic info /husky0/odometry

rostopic can be used to read what is a published on a topic. The following command
can be used to display what the observation of the wheel velocity:

1 rostopic echo /husky0/odometry

rostopic can be used to publish data on a topic:
1 rostopic pub [topicname] [topictype] [value in yaml]

For example to command some velocity to your robot, first you can check the topic
type with. You can use tab completion to help with finding topicname, tyopictype and
formatting the yaml value.

1 rostopic info /husky0/wheel_velocity_cmd

The sensor_msgs/JointState (http://docs.ros.org/api/sensor_msgs/html/
msg/JointState.html) message has the following structure:

1 Header header

2
3 string[] name

4 float64[] position

5 float64[] velocity

6 float64[] effort

The YAML format use a key/value structure, and you do not need to specify all the
field for your message, the following command will make your robot move in straight
line with the maximum velocity of 1.0m/s.

1 rostopic pub /husky0/wheel_cmd sensor_msgs/JointState "name: ['left', 'right']

2 effort: [1, 1]"

It essentially tells the robot to apply full power on the left and right wheels.

4

http://docs.ros.org/api/sensor_msgs/html/msg/JointState.html
http://docs.ros.org/api/sensor_msgs/html/msg/JointState.html

You can check the velocity of your robot with:
1 rostopic echo /husky0/odometry

You can check the velocity of the wheels of your robot with:
1 rostopic echo /husky0/wheel_velocities

5.4 Create a package

We will use the command catkin_create_pkg to create a new package for the tool that
we are going to write in this lab.

1 load_ros

2 cd ~/TDDE05/catkin_ws/src/air_labs

3 catkin_create_pkg air_lab0 roscpp rospy message_generation std_msgs

This will create a package called air_lab0 which depends on roscpp and rospy. In
practice, it creates a directory called air_lab0 containing two files:

1. package.xml: meta information about your package: authors, license and more
importantly ROS packages dependencies

2. CMakeLists.txt: this is the file used by the build system to compile your ROS pro-
grams. This file contains a lot of documentation on how to use it.

5.5 Get started with C++

The goal of this lab is to create a small C++ program that implement a very basic control
system and it takes as input a target velocity command, the actual velocity of the robot
and try to adjust the commanded velocity of the robot.

1 cd ~/TDDE05/catkin_ws/src/air_labs/air_lab0/src

2 touch simple_controller.cpp

Then you can open simple_controller.cpp in your favorite text editor.
First we need to include a few headers:

1 // Include for ROS framework

2 #include <ros/node_handle.h>

3 #include <ros/publisher.h>

4 #include <ros/subscriber.h>

5
6 // Include for the messages used in this script

7 #include <nav_msgs/Odometry.h>

8 #include <geometry_msgs/Twist.h>

9 #include <sensor_msgs/JointState.h>

Then we will define a class for our simple controller:

5

10 /**

11 * Class that will contains the logic for our simple controller.

12 */

13 class SimpleController

14 {

15 public:

16 SimpleController(const ros::NodeHandle& _nodeHandle);

17 public:

18 /**

19 * This callback is called when a new odometry message is

20 * received on the odometry topic

21 */

22 void odometryCallback(const nav_msgs::OdometryPtr& _odometry);

23 /**

24 * This callback is called when a new twist message is

25 * received on the desired velocity topic

26 */

27 void desiredVelocityCallback(const geometry_msgs::TwistPtr& _twist);

28 private:

29 /**

30 * Function used to compute the controlled velocity and

31 * publish it.

32 */

33 void publishControlledVelocity();

34 /**

35 * Member used to keep a copy of the last messages received.

36 */

37 geometry_msgs::TwistPtr m_lastDesiredVelocityMsg;

38 nav_msgs::OdometryPtr m_lastOdometryMsg;

39 /**

40 * ROS's node handle, subscriber and publisher object. See

41 * later for an explanation.

42 */

43 ros::NodeHandle m_nodeHandle;

44 ros::Subscriber m_odometrySub, m_desiredVelocitySub;

45 ros::Publisher m_wheelCmdPub;

46 };

Then we will add the main function:
47 int main(int argc, char** argv)

48 {

Then we will initiliase ROS.
The ros::init() function needs to see argc and argv so that it can perform any ROS

arguments and name remapping that were provided at the command line. For pro-
grammatic remappings you can use a different version of init() which takes remappings
directly, but for most command-line programs, passing argc and argv is the easiest way
to do it. The third argument to init() is the name of the node.

6

You must call one of the versions of ros::init() before using any other part of the ROS
system.

49 ros::init(argc, argv, "simple_controller");

NodeHandle is the main access point to communications with the ROS system. The
first NodeHandle constructed will fully initialize this node, and the last NodeHandle
destructed will close down the node.

50 ros::NodeHandle n;

51
52 /**

53 * Create an instance of our simple controller.

54 */

55 SimpleController sc(n);

56
57 /**

58 * Start listening for messages and loop for ever.

59 */

60 ros::spin();

61 return 0;

62 }

63
64 SimpleController::SimpleController(const ros::NodeHandle& _nodeHandle)

65 : m_nodeHandle(_nodeHandle)

66 {

The subscribe() call is how you tell ROS that you want to receive messages on a
given topic. This invokes a call to the ROS master node, which keeps a registry of who
is publishing and who is subscribing. Messages are passed to a callback function, here
called odometryCallback. subscribe() returns a Subscriber object that you must hold on
to until you want to unsubscribe. When all copies of the Subscriber object go out of
scope, this callback will automatically be unsubscribed from this topic.

The second parameter to the subscribe() function is the size of the message queue.
If messages are arriving faster than they are being processed, this is the number of
messages that will be buffered up before beginning to throw away the oldest ones.

67 m_odometrySub = m_nodeHandle.subscribe(

68 "odometry", 1, &SimpleController::odometryCallback, this);

69 m_desiredVelocitySub = m_nodeHandle.subscribe(

70 "desired_velocity", 1, &SimpleController::desiredVelocityCallback, this);

The advertise() function is how you tell ROS that you want to publish on a given
topic name. This invokes a call to the ROS master node, which keeps a registry of who
is publishing and who is subscribing. After this advertise() call is made, the master node
will notify anyone who is trying to subscribe to this topic name, and they will in turn ne-
gotiate a peer-to-peer connection with this node. advertise() returns a Publisher object
which allows you to publish messages on that topic through a call to publish(). Once
all copies of the returned Publisher object are destroyed, the topic will be automatically
unadvertised.

The second parameter to advertise() is the size of the message queue used for pub-
lishing messages. If messages are published more quickly than we can send them, the

7

number here specifies how many messages to buffer up before throwing some away.
71 m_wheelCmdPub

72 = m_nodeHandle.advertise<sensor_msgs::JointState>(

73 "wheel_cmd", 1);

74 }

75 void SimpleController::odometryCallback(

76 const nav_msgs::OdometryPtr& _odometry)

77 {

78 // Keep a copy of the message and publish an update of the

79 // controlled velocity

80 m_lastOdometryMsg = _odometry;

81 publishControlledVelocity();

82 }

83
84 void SimpleController::desiredVelocityCallback(

85 const geometry_msgs::TwistPtr& _twist)

86 {

87 // Keep a copy of the message and publish an update of the

88 // controlled velocity

89 m_lastDesiredVelocityMsg = _twist;

90 publishControlledVelocity();

91 }

92
93 void SimpleController::publishControlledVelocity()

94 {

95 if(m_lastDesiredVelocityMsg and m_lastOdometryMsg)

96 {

97 sensor_msgs::JointState cmd;

98 // This is now up to you, to compute the cmd velocity

99 // You can use a simple algorithm and increment the effort until the velocity reach its target

100 cmd.name = {"left", "right"};

101 cmd.effort = {0.0, 0.0};

102 m_wheelCmdPub.publish(cmd);

103 }

104 }

Then we need to create an executable, open the file CMakeLists.txt, after the line ##
Build ## add the following:

1 # Tell to create a simple_controller executable

2 add_executable(simple_controller src/simple_controller.cpp)

3 # Tell to link it to roscpp

4 target_link_libraries(simple_controller

5 ${catkin_LIBRARIES}

6)

Then in a terminal, you can build your new ROS program:

1 cd ~/TDDE05/catkin_ws/src/air_lab0/

2 catkin build air_lab0

8

Then in a terminal, you can run your new ROS program:
1 rosrun air_lab0 simple_controller

At this point, the topics of your new ROS program are not connected to the robot,
and your new program should not work, to see what are the potential problem, you can
run the command roswtf, this should output:

1 WARNING The following node subscriptions are unconnected:

2 * /simple_controller:

3 * /odometry

4 * /desired_velocity

You can run the command rosnode info simple_controller to get some information
about your ROS node, you should see the list of published and subscribed topics as well
as services. You can do the same for the simulator with rosnode info morse, you will then
notice that the topics for the robot start with /husky0, this is called a namespace. We
can start the simple controller with a namespace, using the __ns:=/husky0 argument:

1 rosrun air_lab0 simple_controller __ns:=/husky0

Now to access the information about your node, you need to run rosnode info /husky0/simple_controller.
This allow to run multiple simple_controller with the same roscore. Now you can also
notice that the topics are prefixed with /husky0 which means that the odometry topics
are now connected, as you can see with roswtf.
/husky0/desired_velocity is also not connected, but this is our input, we will not fix

that for now. However, on the simulator we should see that the velocity_cmd topic is not
connected (if you do not see that, make sure no rostopic pub command is running). We
need to connect /husky0/controlled_velocity which is the output of the simple controller
to velocity_cmd which is what the simulator expect. We can either solve this by changing
the name of the topic in the code, or by remapping the topic. We are going to use the
later to demonstrate how we can adapt different modules to our hardware.

To remap a topic we can simply add on the command line controlled_velocity:=velocity_cmd
and this will change the name of the topic output by our simple controller:

1 rosrun air_lab0 simple_controller __ns:=/husky0

2 controlled_velocity:=velocity_cmd

You can check the new name of the topic with rosnode info /husky0/simple_controller
and that roswtf does not show any warning about /husky0/velocity_cmd anymore.

You can now send command to your controller with:

1 rostopic pub /husky0/desired_velocity geometry_msgs/Twist

2 "{ linear: [0.1, 0, 0], angular: [0.0, 0, 0.1] }"

Since typing all those command lines all the time is not so convenient, we can use
launch files to define how to launch our ros program.

1 cd ~/TDDE05/catkin_ws/src/air_labs/air_lab0/

2 mkdir launch

3 cd launch

4 touch simple_controller.launch

Then in your favorite text editor

9

Figure 2: RQT’s robot steering

1 <launch>

2 <!-- Launch a node of type simple_controller from the package

3 air_lab0 give it the name "husky_simple_controller" -->

4 <node name="husky_simple_controller" pkg="air_lab0"

5 type="simple_controller">

6 <remap from="controlled_velocity" to="velocity_cmd" />

7 </node>

8 </launch>

Then we can run it using roslaunch roslaunch:
1 roslaunch air_lab0 simple_controller.launch __ns:=/husky0

It is possible to define the namespace in the launch file, but this would bind the
launch file to use with husky0 for sake of generality, it is better to pass the namespace
on the command line.

5.6 Creating user interface with ROS

Since inputing the velocity in the terminal with the rospub command is not convenient,
there is the possibility in ROS to build user interface with a program called rqt, which
can be used for visualisation and for giving commands.

For this lab we are going to use it to send velocity commands, in a terminal, you can
launch:

1 rqt

This should show an empty application with a menu, in the menu, select Plugins,
Robot tool, Robot steering. This should show an interface similar to figure 2. In the
editor line you can type the name of the topic where you want to publish a velocity.

5.7 Get started with Python

In this section, we are going to look at how to use python to write scripts for ROS. We
are goint to write a small script that estimate how well our controller manage to keep
the commanded velocity.

We will publish the performance of our controller in a topic, in a new message. To
create a message:

10

1 cd ~/TDDE05/catkin_ws/src/air_labs/air_lab0/

2 mkdir msg

3 cd msg

4 touch ControllerEvaluationStat.msg

Then in your favorite editor:
1 int32 samples # Number of samples used for computing

2 # the error

3 float64 last_error # Last error

4 float64 average_error # Average error

Then in CMakeLists.txt, find the section with add_message_files and add:

1 add_message_files(

2 FILES

3 ControllerEvaluationStat.msg

4)

5 generate_messages(DEPENDENCIES std_msgs)

Then to generate the code for the message, you need to build the module:

1 cd ~/TDDE05/catkin_ws/src/air_labs/air_lab0/

2 catkin build air_lab0

1 cd ~/TDDE05/catkin_ws/src/air_labs/air_lab0/src

2 touch evaluate_controller.py

3 chmod u+x evaluate_controller.py

Then in your favorite text editor:

11

1 #!/usr/bin/env python

2
3 import rospy

4 import nav_msgs.msg

5 import geometry_msgs.msg

6 import air_lab0.msg

7 import math

8
9 # C++ API is very similar to the Python API and therefore the

10 # explanation for C++ apply to Python as well.

11
12 class evaluate_controller:

13 def __init__(self):

14 self.odometry_sub = rospy.Subscriber("odometry",

15 nav_msgs.msg.Odometry, self.odometry_callback)

16 self.velocity_sub = rospy.Subscriber("desired_velocity",

17 geometry_msgs.msg.Twist,

18 self.desired_velocity_callback)

19
20 self.stat_pub = rospy.Publisher("evaluation_stat",

21 air_lab0.msg.ControllerEvaluationStat)

22
23 self.last_desired_velocity = None

24 self.samples = 0.0

25 self.average_error = 0.0

26 def odometry_callback(self, odometry):

27 if(self.last_desired_velocity):

28 # Use a root square error

29 last_error = ?

30 self.average_error = ?

31 self.samples += 1.0

32 msg = air_lab0.msg.ControllerEvaluationStat()

33 msg.last_error = ?

34 msg.average_error = ?

35 msg.samples = int(self.samples)

36 self.stat_pub.publish(msg)

37
38 def desired_velocity_callback(self, velocity):

39 self.last_desired_velocity = velocity

40
41 if __name__ == '__main__':

42 rospy.init_node('evaluate_controller', anonymous=False)

43 ec = evaluate_controller()

44 rospy.spin()

12

References

[1] Modular openrobots simulation engine (morse). http://morse.openrobots.

org/.

[2] Robot operating system (ros). http://www.ros.org/.

13

http://morse.openrobots.org/
http://morse.openrobots.org/
http://www.ros.org/

	Introduction
	Running
	On Campus
	thinlinc

	ROS
	middleware
	catkin

	Morse
	Programming a robot
	Get the base code
	Start ROS and the simulator
	Get started with the command line
	rostopic

	Create a package
	Get started with C++
	Creating user interface with ROS
	Get started with Python

