
TDDE05: Lab 2: Navigation

Cyrille Berger

February 6, 2017

The goal of this lab is to build a map of the environment and to use the map to
generate path plan for your robot.

1 Get the code for lab2

Get the skeleton code for lab1 from gitlab:

1 cd ~/TDDE05/catkin_ws/src/air_labs/

2 git pull git@gitlab.ida.liu.se:tdde05/air_labs.git master

WARNING: if you try to build at this point, you are very likely to get an error, you
need to define some messages and services first.

2 TF

TF1 is a package that allow to handle multiple coordinate frames over time, and their
relationship. There is usually a root frame, corresponding to the origin of the world. In
our labs, it is called odom (it can be sometime called world or map). All other frames
need to express a transformation to odom, directly or indirectly.

On a robot, you usually have multiple frames:

• husky0/base_footprint corresponding to the center of all the contact points
of the robot with the ground

• husky0/base_link corresponding to the center of gravity of the robot

• And one frame for each sensor:

– husky0/velodyne corresponding to the velodyne laser

– husky0/imu corresponding to the IMU sensor

– ...

In ROS, the transformations are broadcasted on the /tf topic.
The morse simulator publishes the transformation from husky0/base_link to the

sensor frames. It also publishes a transformation from husky0/base_footprint to
odom. However, by default no transformation between husky0/base_link and
husky0/base_footprint is published.

1http://wiki.ros.org/tf

1



The TF tree can be shown using:
1 rosrun rqt_tf_tree rqt_tf_tree

It can also be shown as a plugin in rqt.
We need to publish the missing transformation ourself, we can use ROS’s static_transform_publisher

to continuously publish a frame:
1 rosrun tf static_transform_publisher x y z qx qy qz qw

2 source_frame target_frame hz

Where x, y and z correspond to the translation (in this case the base_link is
0.09947m above the base_footprint). qx, qy, qz and qw correspond to the rota-
tion (as a quaternion, in this case there is no rotation so 0001). source_frame and
target_frame are the name of the frames for which we want to publish a transforma-
tion. hz is the frequency of publication (100Hz is a good choice)

Figure 1: TF shown in RViz

You can also display TF in rviz (see figure 1). You simply need to add a TF display
and in the global options, you need to set the Fixed frame to odom.

If you want to access TF information from your code, in C++, you can use a
tf::TransformListener. This class will listen on /tf topic and allows you to lookup
for transformation between two frames:

2



1 // Declare this as a class member! It needs to stay alive while

2 // your program is running

3 tf::TransformListener m_tfListener;

4
5 // In one of your callback or elsewhere:

6 // We want to know the transformation from source_frame_id to

7 // destination_frame_id at time time_stamp

8
9 tf::StampedTransform transform;

10 try

11 {

12 // Define a 1s timeout

13 ros::Duration timeout(1.0);

14 // First, lets wait a bit to make synchronize our TF tree and

15 // make sure we have received the transform

16 m_tfListener.waitForTransform(destination_frame_id,

17 source_frame_id, time_stamp,

18 timeout);

19 // Then lets get the transformation

20 m_tfListener.lookupTransform(destination_frame_id,

21 source_frame_id, time_stamp,

22 transform);

23 } catch(tf::TransformException& ex)

24 {

25 ROS_ERROR_STREAM( "Failed to get the transformation: "

26 << ex.what() << ", quitting callback");

27 return;

28 }

You can transform the coordinate of a point using:
1 tf::Vector3 v = transform * tf::Vector3(x, y, z);

For python usage, you can see an example in air_lab2/src/move_to_point.py.

3 Point cloud message

The robot is equipped with a simulated Velodyne sensor, which generates point clouds
outputted on the /husky0/velodyne topic using the sensor_msgs/PointCloud22

message. That message is essentially a binary blob which can contains a list of objects
with attributes. The attributes are described in the fields field of type sensor_msgs/
PointField. During this lab, the simulator generates a point cloud with three fields x,
y and z of type float32 corresponding to the Cartesian coordinates of the points.

To access the data in the binary blob, ROS provides a set of convenient classes, in
the sensor_msgs/point_cloud2_iterator.h header. For this lab, we are mostly
interested in the sensor_msgs::PointCloud2ConstIterator class which allows to
access the value of one field in the message:

2http://docs.ros.org/api/sensor_msgs/html/msg/PointCloud2.html

3



1 sensor_msgs::PointCloud2ConstIterator<float> it(message, "fieldname");

2
3 while(it != it.end())

4 {

5 ROS_INFO_STREAM("Value is " << *it);

6 ++it;

7 }

sensor_msgs::PointCloud2ConstIterator gives access to a single field, you
therefore need to create one of those iterator per field (x, y and z) you want to access
and increment them synchronously.

Figure 2: Points cloud shown in RViz

You can use RViz to visualize the point clouds like in figure 2. You can add a
PointCloud2 display and set the topic to /husky0/velodyne. You can increase the
value for Decay Time to see multiple frames at the same time. And size (m) to view
bigger points.

4 General architecture

The general architecture of the motion planning system that we will develop in this lab
is presented in figure 3.

In this lab you will develop two new ROS nodes and use the state machine node you
have developed during lab1:

• pc_to_dem a node that takes a point cloud from a sensor and build a digital
elevation map (DEM). This node will also provide a service that return the map.

• motion_planner a node that provide as a service a motion plan from a point
of origin to a specified destination. This node will use the DEM to compute the
motion plan.

We provide you with two programs that will help you developing the functionalities
for this lab, to get it into your project, run:

4



Fusion /
Symbol extraction

Local / Global
Maps

Sensor

velodyne/morse point cloud callback

get map service
pc_to_dem

Motion
Planner

Actuators

husky/morse

Path
Execution

husky_control (lab1)
state machine

sensor_msgs/PointCloud2

/husky0/velodyne

air_labs2/GetFloatGrid

map_request

Plan to Control

move_to_point.py

map_requestnavs_msgs/GetPlan

get plan service
motion_planner

destination_callback

/husky0/waypointsnav_msgs/Path

geometry_msgs/Twist

/husky0/veloctity_cmd

geometry_msgs/PoseStamped

/husky0/destination

std_msgs/Empty

/husky0/to_waypoint_control

S
e
ns

e-Thin
k-Act-

Figure 3: Architecture of the motion planning system, from sensing, to building a map,
to planning, to execution

• dem_to_display a program that will transform the DEM that you build into a
message of type nav_msgs/OccupancyGrid which can be display in Rviz.

• move_to_point.py a program that will conveniently trigger the computation of
a motion plan every time you select a destination in Rviz. It takes as input topic
a destination of type geometry_msgs.msg.PoseStamped and it will call the
planner to get a path that is then output on the planned_path topic. It uses a
parameter called robot_frame which correspond to the robot frame in the TF
tree

5 Messages and services

You will need to create a new message, FloatGrid:

1 std_msgs/Header header

2 nav_msgs/MapMetaData info

3 float32[] data

And a new service GetFloatGrid:
1 ---

2 air_lab2/FloatGrid grid

The message allows to represent a DEM and the service define an interface to get
the DEM and from the service.

6 Generate DEM

To help with the DEM, we provide you with a template class (in the air_lab2/extensible_
grid.h header):

6.1 extensible_grid

1 template<typename _T_, int _SubSize_ = 1000>

2 class extensible_grid;

5



This class provides an implementation of a grid that can be expanded to the infinite.
It works by storing the cells in subgrids whose size is given by _SubSize_. _T_ is the
type of the grid cell. It is a sparse structure, and subgrids are only instantiated if needed,
see figure 4.

You can create an extensible_grid with:

1 struct cell_type { /* fields */ };

2 extensible_grid<cell_type> grid(resolution);

resolut ion is the size of a cell, I sugget to use 0.1m, you should have it set using a
ROS parameter.

You can access a value in the grid with (x and y are expressed in meters):
1 cell_type& cell = grid.get_value_ref(x, y);

You can iterate over all the different subgrids:

1 for(auto cit = grid.cbegin(); cit != grid.cend(); ++cit)

2 {

3 // Not all the subgrids are instantiated, check if this one is:

4 if(cit.is_valid())

5 {

6 for(int y = 0; y < cit.get_size(); ++y)

7 {

8 for(int x = 0; x < cit.get_size(); ++x)

9 {

10 const cell_type& c = cit(x,y);

11 ...

12 }

13 }

14 }

15 }

grid.get_columns_count()

g
rid

.g
e
t_ro

w
s_co

u
n

t()

_SubSize_

(grid.get_origin_x(), grid.get_origin_y())

(it.get_left(), it.get_top())=(_SubSize_, 2*_SubSize_)

it

grid.get_value_ref(x, y)

Figure 4: extensible_grid and its associated functions.

6



6.2 DEM generation algorithm

In a callback triggered everytime a new point cloud P is received, follow those steps to
generate a DEM:

1. Get the transformationT from the sensor frame (given by msg.header.frame_id)
to odom using the TF listener (see section 2)

2. For all points Ps in the point cloud P , compute its coordinates in the odom frame
as Pg = T ∗ Ps = (xg , yg , zg). zg correspond to the altitude of the point, xg and
yg to its coordinate in the DEM map. This allow you to update the altitude of the
point, using a simple averaging technique:

elevation_at_cel l(xg , yg) =
elevation_at_cel l(xg , yg) + zg

samples_at_cel l(xg , yg) + 1
(1)

samples_at_cel l(xg , yg) = samples_at_cel l(xg , yg) + 1 (2)

See section 3 to access the points in the point cloud.

6.3 DEM request service

Now you need to give access the DEM through service calls. We will use a ROS service
call for that purpose using the air_lab2/GetFloatGrid service definition.

You will create a callback for the service function that looks like:
1 bool mapService(air_lab2::GetFloatGridRequest& _req,

2 air_lab2::GetFloatGridResponse& _resp)

3 {

4 ...

5 }

In _resp you will need to fill:

• the header field:

– frame_id with the frame of the map, in this case odom

– stamp the current time (you can use ros::Time::now())

• the info field:

– resolution in m, the size of the cell

– width, height, origin with width, height and origin of the map (you can
get them from the extensible_grid)

Then the tricky part is to fill the data field. First you will need to resize the grid
with:

1 _resp.grid.data.resize(_resp.grid.info.width*_resp.grid.info.height, NAN);

You can access pixel (x,y) with:

1 _resp.grid.data[x + y * _resp.grid.info.width]

7



Then you need to fill the data. We suggest that you use the subgrid_iterator_impl
from the extensible_grid class to iterate over the subgrids and fill the resulting data
structure. In figure 5 you can see a mapping between the coordinate (xg,yg) in the
FloatGrid and the coordinate in a subgrid.

_resp.grid.info.width

_re
sp

.g
rid

.in
fo

.h
e
ig

h
t

_SubSize_

(it.get_left(), it.get_top())=(_SubSize_, 2*_SubSize_)

it

(xg,yg)=(xl + cit.get_left() , yl + cit.get_top())

Figure 5: Coordinates for copying a subgrid to a FloatGrid.

6.4 Run the DEM generation and display

You can run the DEM:
1 rosrun air_lab2 pc_to_dem __ns:=/husky0 point_cloud:=velodyne

To display it:
1 rosrun air_lab2 dem_to_display __ns:=/husky0

Then in Rviz add a display for map and set it to the topic /husky0/dem_display.
You should see something like on figure 6.

Figure 6: Rviz with a map. The grey part show the altitude, the greenbluish color
represent unknown area.

8



6.5 Initial altitude

As you can see on figure 6, there is an unknown area around the robot because the laser
cannot see close. This will cause problem for the motion planning, to work around the
problem, you can set the altitude around the robot to the current altitude of the robot.

7 Path planning

In the second part of the lab you should create a program that will plan motion path using
the OMPL3 library. To do this you should create a new ROS node called motion_planner.

You will need the following headers from OMPL:

1 #include <ompl/base/Goal.h>

2 #include <ompl/base/spaces/SE2StateSpace.h>

3 #include <ompl/geometric/SimpleSetup.h>

4 #include <ompl/geometric/planners/rrt/RRTstar.h>

5 #include <ompl/geometric/planners/rrt/RRTConnect.h>

We will assume some namespace aliases to make our life easier:
1 namespace ob = ompl::base;

2 namespace og = ompl::geometric;

The main challenge for using OMPL is to create a ob::StateValidityChecker

which is a class that allow to check if a state is a valid position in the environment. We
will consider that the Husky has four points of contact, as shown on figure7, you can
assume that width is 60cm and length is 80cm.

A B

C D

width

le
n
g
th

Figure 7: Husky’s footprint.

We will consider that a position is valid according to the following algorithm:

• Fit a plane P through the four contact points A, B, C , D. You can use
gte::ApprOrthogonalPlane3 in the air_lab2/Mathematics/GteApprOrthogonalPlane3.
h.

• Check that the distance between the points A, B, C , D and plane P is not bigger
than 10cm.

• Check that the normal of the plane P does not have a angle with the vertical
bigger than 30◦.

• Check that there are no point whithin the robot footprint that goes higher than
the ground clearance of the robot which is 15cm. See figure 8 for a few example
of good and bad configurations.

3http://ompl.kavrakilab.org/

9



Ok!Ok! Not ok!

Figure 8: Some collision configuration.

This node should provide a service plan_path of type nav_msgs/GetPlan, with
a callback function that looks like:

1 bool planPath(nav_msgs::GetPlanRequest& _req,

2 nav_msgs::GetPlanResponse& _resp)

3 {

4 ...

5 }

The first step is to get the map from pc_to_demROS node. You can look at dem_to_display
to see how to make a service call to pc_to_dem to access the map.

10



1 class StateValidityChecker : public ob::StateValidityChecker

2 {

3 public:

4 StateValidityChecker(const air_lab2::FloatGrid& _grid,

5 ob::SpaceInformation *si)

6 : ob::StateValidityChecker(si), m_grid(_grid)

7 {}

8 virtual bool isValid(const ob::State* state) const

9 {

10 const ob::SE2StateSpace::StateType* ss = state->

11 as<ob::SE2StateSpace::StateType>();

12 // Coordinate of the state are given by ss->getX(), ss->getY()

13 // and ss->getYaw()

14 // Check the footprint of the robot for collision

15 return ???;

16 }

17 double elevation_at(double _x, double _y) const

18 {

19 int x = (_x - m_grid.info.origin.position.x) / m_grid.info.resolution;

20 int y = (_y - m_grid.info.origin.position.y) / m_grid.info.resolution;

21
22 // Modify this function to look in neighbourgh cell for an

23 // altitude if std::is_nan(elevation_safe_at(x, y))

24 return elevation_safe_at(x, y);

25 }

26 double elevation_safe_at(int _i, int _j) const

27 {

28 if(_i >= 0 and

29 _j >= 0 and

30 _i < m_grid.info.width and

31 _j < m_grid.info.height)

32 {

33 return m_grid.data[ _i + _j * m_grid.info.width ];

34 } else {

35 return NAN;

36 }

37 }

38 private:

39 const air_lab2::FloatGrid m_grid;

40 };

Then in your planPath, after getting the map you can do the path planning.
Create an instance of the state space, we will use a 2D space (x,y,yaw):

1 ob::StateSpacePtr space(new ob::SE2StateSpace());

We need to set the bounds according to the map bounds:

11



1 ob::RealVectorBounds bounds(2);

2 bounds.setLow(0, left coordinate of the map);

3 bounds.setHigh(0, right coordinate of the map);

4 bounds.setLow(1, top coordinate of the map);

5 bounds.setHigh(1, bottom coordinate of the map);

6 space->as<ob::SE2StateSpace>()->setBounds(bounds);

Setup the valididy checker:

1 ob::SpaceInformationPtr si(new ob::SpaceInformation(space));

2
3 ob::StateValidityCheckerPtr svc(

4 new StateValidityChecker(req.response.grid, si.get()));

5 si->setStateValidityChecker(svc);

Set the start and goal position according to _req:

1 ob::ScopedState<> start(space);

2 start[0] = start x;

3 start[1] = start y;

4 start[2] = start yaw;

5
6 ob::ScopedState<> goal(space);

7 goal[0] = start x;

8 goal[1] = start y;

9 goal[2] = start yaw;

Create an instance of ompl::base::ProblemDefinition and set the start and goal states
for the problem definition.

1 ob::ProblemDefinitionPtr pdef(new ob::ProblemDefinition(si));

2
3 pdef->setStartAndGoalStates(start, goal);

We will use the RRT* planner:

12



1 ob::PlannerPtr planner(new og::RRTstar(si));

2 planner->setProblemDefinition(pdef);

3 planner->setup();

4
5 ob::PlannerStatus solved = planner->solve(1.0);

6
7 if (solved)

8 {

9
10 og::PathSimplifierPtr psp(new og::PathSimplifier(si));

11 og::PathGeometric pg = *static_cast<og::PathGeometric*>(

12 pdef->getSolutionPath().get());

13 psp->simplify(pg, 1.0);

14
15 _resp.plan.header.frame_id = req.response.grid.header.frame_id;

16
17 // Convert the plan

18 for(ob::State* s : pg.getStates())

19 {

20 const ob::SE2StateSpace::StateType* ss =

21 s->as<ob::SE2StateSpace::StateType>();

22 // You can use ss->getX(), ss->getY() and ss->getYaw()

23 // to get the coordinate

24 }

25 }

8 Running the motion planner

You can run the motion planner this way:

1 rosrun air_lab2 motion_planner __ns:=/husky0

2 rosrun air_lab2 move_to_point.py __ns:=/husky0

3 _robot_frame:=husky0/base_footprint planned_path:=waypoints

You can then use Rviz to select the point (on topic /husky0/destination), dis-
play the path (on topic waypoints). Do not forget to put your Husky controller in
waypoints control.

13


