
TDDE05: Lab 1: Control and State Machines

Cyrille Berger

January 23, 2017

The goal of this lab is to implement the position control subsystem for your robot.
The robot can have the following control mode:

• Idle: the robot should keep a null velocity

• Velocity: the robot should keep a specific velocity (linear and angular)

• Position: the robot should reach and stop at a specific location

• Waypoints: the robot is given a set of waypoints (a path) to follow

• Positions queue: the robot keep a queue of positions and when it reaches a position
it starts moving toward the next position

The simulated robot takes as input velocity commands, on the topic /husky0/velocity_cmd.
This should be the output of your control subsystem.

1 Get the code for lab1

Get the skeleton code for lab1 from gitlab:

1 cd ~/TDDE05/catkin_ws/src/air_labs/

2 git pull git@gitlab.ida.liu.se:tdde05/air_labs.git master

WARNING: if you try to build at this point, you are very likely to get an error, you
need to implement the PID controller before you can compile.

2 March

March is the Modeled Architecture. It is a state chart framework which allow to define
state machines that integrate with ROS. State machine are designed using March Studio,
which can be launched with the following command:

1 march_studio

It should show a window like in figure 1. This window contains buttons for the dif-
ferent type of project supported by March. You are mostly concerned with the machine,
component and processing component.

To get the ROS modules, you need to add the search path to the studio, go in
settings, in paths tab, add:

• /home/TDDE05/software/catkin_ws/src/lrs_march/march

1

Figure 1: March Studio’s welcome screen

• /home/TDDE05/software/catkin_ws/build/lrs_march/march

In this lab, however, you are already provided a base state machine: air_labs/

air_lab1/machines/husky_control.mhl. If you open that file you will see a win-
dow similar to figure 2. On the left of the window, you will see the toolbox used to
create connection, states, nodes, connectors... On the right the actual machine.

Figure 2: Husky control machine opened in March Studio

On figure 3, you can see an overview of the state machine you were given. In the
top left corner is a group that decompose a nav_msgs/Odometry messages so that we
can use its components in the state machine. In the bottom left corner is the group that
control which control mode is currently used (idle, velocity, waypoints...). On the right
is the velocity control group.

3 Linear/angular velocity PID

3.1 PID

The first step of the lab is to add a PID controller to control the velocity of your robot.
To simulate the effect of the robot sliding on the ground, the simulator add noise to the

2

Decomposition of
dometry message

Control mode Velocity Control

Figure 3: Overview of the control machine

velocity of the robot, the simple controller of the first lab is not good enough. The gold
standard in control to solve this problem is the PID (proportional–integral–derivative)
controller, see figure 4.

Plant /
Process

Figure 4: PID controller (source: wikipedia)

u(t) = u(t) = Kpe(t) + Ki

∫ t

0

e(τ) dτ+ Kd
de(t)

d t
(1)

where Kp, Ki and Kd are non negative constant corresponding to the proportional,
integral and derivative components of the controller.

• the proportional term correspond to the current error

• the integral term takes into account past errors

• the derivative term correspond to the prediction of future errors

In a discrete time system:

e(t) = et

∫ t

0

e(τ) dτ=
t
∑

τ=0

et ·δτ
de(t)

d t
=

et − et−1

δt
(2)

Where δt is the time interval between t and t − 1.

3.2 PID for Husky velocity

Commonly a velocity controller takes a velocity as input and output an acceleration. In
case of the Husky, the input and output are velocity, the input correspond to the velocity
that we want the robot to have while the output correspond to the velocity of the wheel.
e(t) therefore correspond to the error between the target velocity and the odometer
velocity. While u(t) is the update to the wheel velocity that is then given to the robot,
so that:

3

vwheel(t) = vwheel(t − 1) + u(t) (3)

In the state machine that you were provided with, you will now need to add the PID
controller to the velocity control, see figure 5. You are provided with the input to the
PID controller (the odometry and the desired velocity), you can see the connector on
the left in figure 5. The output of the PID controller is clamped, the clamping is already
done for you, as well as equation 3. The velocity control is a group with a single state,
that state should transition to itself every time a new odometry message is received, as
it is shown through the connection of the odometry to the transition. The state, named
controller is actually implemented as a processing state, which means it contains a flow
chart that is executed every time the state is activated.

Commanded velocity

Measured velocity

Output velocity

transition triggered by odometry

Figure 5: Velocity control

3.3 In practice

For this part of the lab you will need to use two PID loops, one for controlling the
linear velocity and one for controlling the angular velocity. The PID controller is al-
ready implemented as part of the standard distribution of March, it can be found in the
march_control library. It has a single output, which is the update u(t) in figure 4. It
takes four inputs:

• control (std_msgs/float64) a number which correspond to the target ve-
locity (r(t) in figure 4)

• observation (std_msgs/float64) a number which correspond to the odom-
etry value (y(t) in figure 4)

• current_time (std_msgs/float64) expressed in seconds

• initial_previous_time (std_msgs/float64) which you can ignore

To add a PID node to your controller, you need to create a new processing node, using
the processing node creation tool from the toolbox:

• Click on icon to activate the processing node creation tool.

• Then click within the controller state to create a new node. You will need three of
them, so click three times.

• Press Escape to deselect the tool

4

If you created too many nodes, you can select them and press delete or in the menu
Edit, Delete to remove the superfluous nodes. It should look like on figure 6.

Figure 6: Velocity control with three new nodes.

Then you need to assign the type for each of those new nodes, two of them should
be march_control/pid and one march_ros/current_time. To assign the type of
a node, you should click on the node and then in the property panel on the left, you can
choose the library and the type for each node. Once you have selected the type, you will
also be able to set the parameters for each node, for a pid you can choose Kp, Ki and
Kd . By default, they are set to 0.0, if you set Kp = 1.0, the PID controller will behave
the same way as the lab0 controller.

You will need to connect the control and observation to the desired velocity and the

odometry, using the connection tool . You will then need to connect the output of
the march_ros/current_time node to the current_time connector of the two PID
nodes.

It should then look like on figure 7.

Figure 7: Velocity control with PID nodes.

One last thing you need to do is to adjust the limit of the clamping of the velocity.
The march_math/clamp operation take as input:

• arg0 (number) the value to clamp

• arg1 (number) the minimum value

• arg2 (number) the maximum value

It is possible to set a default value for an input connector (without creating a specific
node), to do that, you can click on a connector of clamp, and then in the property set
the initial message. A reasonable clamping for the velocity is −1 to 1 (both for linear
and angular).

5

3.4 Velocity mode

At this point, you now have a velocity controller, but the only input it ever get is a velocity
of 0. For handling the mode, we will use multiple states within a super state. Each state
correspond to one of our control mode (idle, velocity...). The super state has already
been created for you and can be seen of figure 8, it contains a single idle mode.

Figure 8: Control modes super state.

Before creating a state, we should think about what will be done. In this case, we will
set the velocity of our controller using the geometry_msgs/Twist, which we will need
to decompose into linear velocity along x and angular velocity along z. This is several
operations that needs to be executed once, it is therefore required to use a processing
state rather than a simple state.

You can create a processing state using the processing state creation tool . Once
you have done, that you can use the connection creation tool to create a transition from
idle state to velocity control state. This transition should be triggered when an external
event to_vel_control is triggered, we therefore need to create an external event

connector with the external input event creation tool . Rename the newly created
event by clicking on untitled and write to_vel_control instead.

Then you need to connect this newly created event so that when it is triggered, it
first reset the super state and then switch from idle state to vel_control state. Using the
connection tool, you can click on the event connector to create a new connection and
then click on the middle connector of a transition connection.

You should now have something that looks like on figure 9.
There is a potential problem, events and transitions are executed in creation order, so

if you connected to_vel_control to the transition from idle to vel_control state, then
this will be considered before the reset of the super state, which means your system will
end up in the idle state. To solve that problem, you can set the priority of the event, by
clicking on the middle of an event connection, a higher priority means that the event is
executed first, so set the priority to the event reseting the super state to a higher value
than the one connecting idle to vel_control.

The next step is to set the commanded velocity. You will need to create a data

input connector using the external input data creation tool . You can set the name to

6

Figure 9: Control modes with idle mode and vel_control mode.

cmd_vel. You will need to set the type to ros_geometry_msgs/twist (this will be
automatically mapped to a geometry_msgs/Twist message in ROS).

Then in your processing state you should create processing nodes and use ros_geometry_msgs_tools
library to disassemble the message to be able to extract the linear and angular compo-
nents. Those components can then be connected to the PID controllers. Also, you will
need to update the velocity every time a new message is received on the cmd_vel topic,
therefore you should create a transition on the vel_control state that reset it, every time
a message is received.

Figure 10: The vel_control state is finished and ready to run.

3.5 Run the controller

First you will need to build it:
1 load_ros

2 cd ~/TDDE05/catkin_ws

3 catkin build
Then in packages.xml add:

1 <run_depend>nodelet</run_depend>

Then this will actually build the controller as a ROS nodelet, to launch it you can
use the following command:

1 rosrun nodelet nodelet standalone air_lab1/husky_control_node

2 __ns:=/husky0

You can also add it to a launch file:

7

1 <node pkg="nodelet" type="nodelet"

2 name="HuskyControlNodelet"

3 args="standalone air_lab1/husky_control_node" >

When the state machine is converted into a ROS node, it will create topic for events
and data automatically. To switch between different control modes, you can send a
message on the corresponding topic, for instance, to switch to idle:

1 rostopic pub /husky0/to_idle std_msgs/Empty {}

And then to switch to velocity control:
1 rostopic pub /husky0/to_vel_control std_msgs/Empty {}

Then you can use rqt to steer your robot around like in the first lab (set the topic to
/husky0/cmd_vel).

3.6 Troubleshooting

If the robot does not move:

• Check your transitions

• Check the clamping

• Check the parameters of PID

• To help you debug, use the std_msgs/print operation to print values on the
standard console

3.7 Calibrate the PID loops

Then you will need to calibrate the PID loops. This is a try/error operation, you should
use the evaluate_controller.py script developed during lab0 to evaluate the qual-
ity.

4 Position controller

In the remainder of the lab, we are going to implement three control mode related to
move the robot toward a position, or a set of positions. From the book Introduction to
Autonomous Mobile Robots, you should read section 3.6.

Since the position controller is going to be used by three different mode, it should be
added in its own group (at the same level as odometry, control mode and velocity control

groups). You can create a new group with the group creation tool .
The controller itself is already implemented, it is available in the air_lab1_march

module. First you need to load the module, to do that, in the file menu, select load state
description libraries... and then load the module from ${HOME}/TDDE05/catkin_ws/

src/air_labs/air_lab1/modules/.
The controller should only output velocity when we are in position control mode

(so not when idle, nor when in velocity mode), so in your group, you should have two
states, one for idling and one that is set to air_lab1_march/reach_point.

The air_lab1_march/reach_point takes three inputs:

8

• cmd_position (ros_geometry_msgs/pose_stamped) the destination of the
robot (come from the control mode)

• cmd_max_vel (ros_geometry_msgs/twist) the maximum velocity that the
robot should drive when reaching the point (should be set from outside the state
machine with an external connector)

• current_position (ros_geometry_msgs/pose) the current position from
the odometry

It has two outputs:

• linear (std_msgs/float64) linear velocity

• angular (std_msgs/float64) angular velocity

Those should get connected to your PID controllers.
It has three parameters:

• kρ (Krho) which determine how fast the robot should move toward the goal

• kα (Kalpha) which determine how much the robot should aim toward the goal

• kβ (Kbeta) which determine how much the robot should face the target orientation

kρ > 0; kβ < 0; kα − kρ > 0 (4)

The idle state should output a velocity of 0. The idle state is the inital state, to set
the initial state you need to click in the circle in the top left corner of the state.

Transition you will need to create a transition from idle state to reach_point, this tran-
sition should be triggered every time a new position is set. You will need a recursive
transition on reach_point state that is triggered every time a new current_position

is given by the odometry.
You will also need to create a transition from the reach_point state to idle state,

which should be triggered once the robot reach its destination. This transition should
be triggered on the event finished, but only if the robot has reached its destination, which
means we need to prevent the transition to be triggered until the condition is reached.
This can be done using a guard.

Guard You can define a guard using the expression field of the transition option. The
expression should be a valid C++ expression, in your case it should check that the cur-
rent position of the robot is close to the target position. By default, guards on a transition
only have acccess to the output of the source state. However, you can connect any data
source to a transition, you have already done it to trigger events, but you can also do it
to give data to the transition:

• With the connection tool, connect the odometry pose to the transition

9

• By default it creates an event connection, click on the event connection, and in
the property select data

• You also need to set a name, this name will be used in the guard expression as a
variable name.

Figure 11: The expression box to set a guard on a transition.

5 Position control

For this mode, you will just need to represent it with a regular state:

• create a data input connector named cmd_position of type
ros_geometry_msgs/pose_stamped

• create a state set it to march_std_lib/pass_through

• create an event input connector named to_position_control

• connect everything similarly to the vel_control state

The output of march_std_lib/pass_throughwill be used as input to the position
controller that you implemented in the previous section.

5.1 Rviz

You can use rviz to easily select the destination point, launch rviz:

1 rviz

In the panelsmenu, make sure tool properties is checked. In the tool properties

panel, set 2D nav goal to /husky0/cmd_position.

6 Waypoints control

Next step is to create a trajectory control mode:

• create a data input connector named waypoints of type
ros_nav_msgs/Path

• create an event input connector named to_waypoints

10

In the control mode group, you will need to create a new super state in which you will
receive the waypoints from the connector and dequeue a waypoint everytime the previ-
ous point has been reached. You can use an event from the position controller to detect
when the current waypoint has been reached. You can use march_std_lib/list_pop
to remove the first element from a list and output it. march_std_lib/list_pop input
a list, and output the first element and that list without the first element.

To test your mode, you can use the following command:

1 rostopic pub /husky0/waypoints nav_msgs/Path

2 "{ poses: [{ pose: { position: {: 0, y: -2 } } },

3 { pose: { position: {x: 0, y: 2 } } }] }"

7 Position queuing

The final step is to create a mode in which you enqueue position received on the topic
enqueue_position. To switch to that mode you should use an event called
to_position_queue_control. You can use march_std_lib/list_append to add
a new element to the queue. You can use Rviz to set the destination position.

8 Launch file

You should create a launch file for your robot, in which you start the state machine. You
will add other nodes to that launch file in the next labs.

11

