TDDD97 - Web Programming

Client-Server Communication

Sahand Sadjadee
Dept. of Computer and Information Science

Linkoping University

AJAX
Web-sockets
JSON

Project Overview

Outline

Asynchronous Javascript And XML

* Browser clients get HTML documents from the web server when you
load a web page (through the HTTP protocol)

* How can a JavaScript program transfer information to and from the
web server?
* Several solutions to this problem
* In the labs: XMLHttpRequest (XHR)

XMLHttpRequest

* Exchange data between client and server using AJAX
* Exchange data with a server behind the scenes

* Originally designed by Microsoft, currently being standardized by
W3C

* Supported by all modern browsers
* |E7+, Firefox, Chrome, Safari, Opera

* Not just for receiving XML, useful for text, JSON, etc.

* The XMLHttpRequest JavaScript object
* Creating an XMLHttpRequest object:

variable = new XMLHttpRequest () ;

XMLHttpRequest — send request

*The open () and send () methods of the XMLHttpRequest object
send a request to the server.

e Simple GET request:

var xmlhttp=new XMLHttpRequest () ;
xmlhttp.open ("GET", "/contact/find", true);
xmlhttp.send() ;

e Simple POST request:

xmlhttp.open ("POST", "/contact/save", true);
xmlhttp.send () ;

*The send () method can take an optional single parameter with the
data to send; that is, send (myText)

XMLHttpRequest — asynchronous calls

* Avoids blocking during the call execution
* Do not wait for the server response

*Set the third parameter of open () to true to enable
asynchronous calls
exmlhttp.open ("GET", "/contact/find", true);

* Specify a function to execute when the response is ready in the
onreadystatechange event:

xmlhttp.onreadystatechange=function()

if (xmlhttp.readyState==4 && xmlhttp.status==200) {
document.getElementById ("myDiv") .innerHTML=xmlhttp.responseText;

}
}

xmlhttp.open ("GET", "/contact/find", true);
xmlhttp.send () ;

XMLHttpRequest — onreadystatechange
event

*The readyState property holds the status of the XMLHttpRequest

onreadystatechange Stores a function (or the name of a function) to
be called automatically each time the
readyState property changes

readyState Holds the status of the XMLHttpRequest.
Changes from 0 to 4:

: request not initialized

: server connection established

: request received

: processing request

: request finished and response is ready <:|

status 200: "OK" -
404: Page not found

o

A WN B

XMLHttpRequest — response

* Getting the response from the server
* Use the responseText property of the XMLHttpRequest object

*The responseText property:

response = JSON.parse (xmlhttp.responseText) ; <tj
let txt = “;
for (i=0 ; i<response.length ; i++){

txt = txt + “<div>" + responsel[i] + "</div>";

)

document .getElementById ("myDiv") .innerHTML=txt;

XMLHttpRequest — more things

*The setRequestHeader method
* Example: tell the server that this call is made for ajax purposes

xmlhttp.setRequestHeader ('X-Requested-With', 'XMLHttpRequest') ;

* Aborting requests: The abort () method

* Aborts the request if the readyState of the XMLHttpRequest object has not
yet become 4

* Ensures that the callback handler does not get invoked in an asynchronous
request

Flask repetition

* Flask routing

* Flask Template Rendering
*SQL and Flask

e Sample Flask Server

Flask Routing

*The route () decorator binds a function to a URL

* Examples:

@app.route('/")
def index() :

@app.route (' /hello)
def hello() :

return 'Hello World'

return 'Welcome to this web app'

e VVariable URLs:

@app.route (' /user/<username>')
def show user profile(username) :
show the name of a user
if len(username) >= 8:

return jsonify(r)

else:

return “”, 400

r = database_helper.get user profile(username)

Flask

web development,
> one drop at a time

11

Flask Template Rendering

* Based on the Jinja2 template language/engine for Python
* HTML templates should be located in the templates directory

* Template rendering function: render template ()
* Example:

from flask import render template

@app.route ('/hello/<name>"')
def hello(name=None) :

return render template('hello.html', name=name)

Flask Template Rendering (cont.)

* In the file templates/hello.html

<!doctype html>
<title>Hello from Flask</title>
{$ if name %}
<hl>Hello {{ name }}!</hl>
{% else %}
<hl>Hello World!</hl>
{$ endif %}

13

SQL and Flask

Two possible methods
*SQLite3

* Light-weight ? _

* Will be used in the labs SQLite
* Any other relational database like MySQL, PostgreSQL and Oracle.

* Not light-weight

* A separate process

ORMis like SQLAIchemy can be used combined.
e Python SQL toolkit and Object Relational Mapper
* More powerful and flexible—suitable for larger applications

SQLAlchemy

14

Sample database implementation

import sglite3
from flask import g

def connect db():
return sglite3.connect ("mydatabase.db")

def get db():
db = getattr(g, 'db', None)
if db is None:
db = g.db = connect db()
return db

def init():
c = get db()
c.execute ("drop table if exists entries")

text)")

c.commit ()

def add message (name,message) :
c = get db()
c.execute ("insert into entries (name,message) values (?,?)",

c.commit ()

def close():
get _db() .close()

c.execute ("create table entries (id integer primary key, name text, message

(name, message))

15

WebSockets

port 80
t<::>©
HTTP
< —>
< —>
< >
e WebSockets

* Overcome (historic) limitations with the HTTP protocol
* Backward compatible with HTTP while providing new features

* Full duplex communication
e Additional channels

WebSockets

* Protocol providing full-duplex communications channels over a single
TCP connection
* Part of the HTMLS5 initiative
* Unlike HTTP, WebSockets provide full-duplex communication

* Designed to be implemented in web browsers and web servers

* Enables more interaction between browsers and web sites
* Normally, communications are performed over TCP port 80

* Supported by common web browsers
* Google Chrome, Internet Explorer, Firefox, Safari, Opera

Other alternatives/ Interval Polling

The client asks for any updates every X interval o time.

Example:

let askForUpdates = function () {
// Ajax call to the server

I

setInterval (askForUpdates, 1000);

Disadvantages:

1. Arequest shall be sent even if there are no updates.

2. The updates at the client-side are not instantaneous.
3. High traffic.

Other alternatives/ long polling(Comet)

The server does hold the connection with the client made by a http request sent
from the client. The server does respond when a new update is available. Once
responded, the client sends another empty http request for the next update.

Disadvantages:
1. Complex and messy code
2. More resources at the server-side are required.

HTML5/ Server-Sent Events(SSE)

The server can send updates to the client.

Disadvantages:

1. The client cannot send data to the server (Half-duplex).

2. More implementation issues like disconnect detection and overriding
headers.

WebSocket protocol handshake

* WebSockets use “upgraded” HTTP connections
* Client request:

GET /mychat HTTP/1.1

Host: server.example.com

Upgrade: websocket <:|

Connection: Upgrade Once the connection is
Sec-WebSocket-Key: x3JJHMbDL1EzLkh9GBhXDw== established, the client and
Sec-WebSocket-Protocol: chat server can send WebSocket

Sec-WebSocket-Version: 12 data or text frames back and

Origin: http://example.com forth in full-duplex mode.c

*Server response:

HTTP/1.1 101 Switching Protocols Refreshing the page or restarting
Upgrade: websocket <:| the server causes the connection
Connection: Upgrade to be lost.

Sec-WebSocket-Accept: HSmrc0sM1YUkAGmm50PpG2HaGWk=
Sec-WebSocket-Protocol: chat

21

WebSocket — client side

* Open a WebSocket connection

let connection = new WebSocket('ws://html5rocks.websocket.org/echo');

e Attach some event handlers

// When the connection is open, send some data to the server
connection.onopen = function () {

connection.send('Ping'); // Send the message 'Ping' to the server
// Log errors
connection.onerror = function (error) ({

console.log('WebSocket Error ' + error);
// Log messages from the server
connection.onmessage = function (e) {

console.log('Server: ' + e.data);

};

WebSocket — client side

* Communicating with the server

// Sending String

connection.send('your message in json');

Flask Sock library — server side

* Library for websockets at the
server-side.
e Straightforward in Flask

* Add routing decorations
* Need to use another server than

the embedded sever to get it to work.

We use Gunicorn in this
course.

from flask import Flask
from flask sock import Sock

app = Flask(name)
sockets = Sock (app)

@sockets.route (' /echo')
def echo socket (ws) :
while True:
message = ws.receive ()
ws.send (message)

@app.route('/")
def hello() :
return 'Hello World!'’

Running the server using Gunicorn

* Gunicorn is a python HTTP-server.

e Install Gunicorn using pip install gunicorn
e Use Gunicorn in order to start the server.

gunicorn -b . : --workers --threads

server:app

25

Sharing memory

Gunicorn workers do not share memory which means the global
dictionary which you use for implementing websocket mapping may
not be accessible from different requests. You can do one of the
following:

1. Use only one worker(enough for the course but not in reality when
you have better hardware and higher number of users). You still
need multiple threads, for example 100.

a. gunicorn -b . : --workers --threads server:app

2. Use a manager as following to share memory among workers.

a. https://medium.com/@jgleeee/sharing-data-across-workers-in-a-gunicorn-flask-application-2ad698591875

26

https://medium.com/@jgleeee/sharing-data-across-workers-in-a-gunicorn-flask-application-2ad698591875

Better performance by optimizing

Gunicorn config

https://medium.com/building-the-system/gunicorn-3-means-of-concu

rrency-efbb547674b7

27

https://medium.com/building-the-system/gunicorn-3-means-of-concurrency-efbb547674b7
https://medium.com/building-the-system/gunicorn-3-means-of-concurrency-efbb547674b7

Sample standard service

 Server method for logging in (e.g., in Lab 2)

def signIn(email, password) :
c = get_db()
res = c.execute ("SELECT * FROM users WHERE email='"+email+"' AND password='"+password+"' LIMIT 1")
res = res.fetchone ()
if not res:

Not logged in

return json.dumps ({'"success'": False, "message": "Invalid email or password"})
else:
Logged in
return json.dumps({"success": True, "message'": "You are now signed in", "data": token})

return None

* Routing

@app.route("/signin", methods=["POST"])
def sign in():
return signIn(request.json["email"], request.json["password"])

28

Flask Sock under Linux (IDA)

> python3 -V

Python 3.8.1

> virtualenv -p python3 test

New python executable in test/bin/python

Installing setuptools...........done.
Installing pip.... ... done.
> cd test

> bin/pip3 install flask
Downloading/unpacking flask...

> pip3 install gunicorn <tj

. pip3 install flask-sock {3

29

Resources

* Gunicorn
* https://flask.palletsprojects.com/en/2.0.x/deploving /wsgi-standalone/

* Flask-Sock
* https://flask-sock.readthedocs.io/en/latest/

30

https://flask.palletsprojects.com/en/2.0.x/deploying/wsgi-standalone/
https://flask-sock.readthedocs.io/en/latest/

Tutorial

A useful tutorial on Flask sock and Gunicorn:

https://blog.miguelsrinberg.com/post/add-a-websocket-route-to-your-flask-2-x-a

pplication’

31

https://blog.miguelgrinberg.com/post/add-a-websocket-route-to-your-flask-2-x-application
https://blog.miguelgrinberg.com/post/add-a-websocket-route-to-your-flask-2-x-application

Formatting Data for Transfer

* Several different formats possible
* Varying complexity
* Varying library/language support
* Varying efficiency
* Examples of formats
* CSV

* XML
* JSON

* For the labs: JSON

JSON

* JavaScript Object Notation — JSON

* Compact, text-based format for data exchange
* Easy to read and write (for humans)

* Easy to parse and generate (for machines)

* Language independent

* Code for parsing and generating available in many programming
languages (e.g., Java, C++, and JavaScript)
* Maps well to many programming languages
* Example: Matches well to a Python dictionary

* MIME type for JSON text: “application/json”

33

JSON VS XML

JSON is Like XML Because

Both JSON and XML are "self describing" (human readable)

Both JSON and XML are hierarchical (values within values)

Both JSON and XML can be parsed and used by lots of programming languages
Both JSON and XML can be fetched with an XMLHttpRequest

JSON is Unlike XML Because

JSON doesn't use end tag

JSON is shorter

JSON is quicker to read and write
JSON can use arrays

https://www.w3schools.com/js/is json xml.asp

34

https://www.w3schools.com/js/js_json_xml.asp

Basic JSON syntax: Objects and arrays

35

JSO

N Examples

* Object

{

}

"code": "TDDD97",
"title": "Web programming",
"credits": 6

* Array

{

"courses": [
{"code":"TDDD24" , "credits":4 },
{"code":"TDDD97" , "credits":6 }
]

36

JSON Examples (cont.)

* JSON describing a person

{

"firstName": "John",
"lastName": "Doe",
"age": 22,
"address": {
"streetAddress": "Drottinggatan 1",
"city": ”LinkOéping”,
"postalCode": ”58183"
}
"phoneNumber": [
{ "type": "home", "number": "013-123456" },
{ "type": "mobile", "number": "070-123456" }
1.,
"newSubscription": false,

"companyName": null

37

JSON in Python

e Sample interactive Python session

>>> import json

>>> data = [{ 'a':'A', 'b':(2, 4), 'c':3.0 } 1
>>> print 'DATA:', repr(data)

DATA: [{'a': 'A', 'c¢': 3.0, 'b': (2, 4)}]

>>>

>>> data string = json.dumps (data) #jsonify(data)
>>> print 'JSON:', data string

JSON: [{"a": ®"Aw, "c": 3.0, "b": [2, 4]}]

>>>

JSON functions in Python

* Use JSON
e import Jjson

*Serialize obj as JSON formatted stream to fp (file)
* json.dump(obj, fp, <options>)

*Serialize obj to a JSON formatted string
* json.dumps(obj, <options>)

* Deserialize fp to a Python object.

* json. load(fp, <options>)

* Deserialize the string s to a Python object
* json. loads(s, <options>)

JSON validation

* Helpful for validating JSON syntax
e Several on-line and off-line validators available
* JSONLint: http://isonlint.com

JSON Lint artqo

The JSON Validator

Source is on GitHub
Douglas Crockford of JSON JS Lint
Want more from JSONLInt? Try JSONLInt Pro Zach Carter pure JS implementation of jsonlint

FAQ

Validate Kindlin q

40

http://jsonlint.com

JSON and XMLHttpRequest

 Putting JSON and XMLHttpRequest (AJAX) together

var xml = new XMLHttpRequest () ;

xml .onreadystatechange = function() {
if (xml.readyState==4 && xml.status==200) {
var serverResponse = JSON.parse (xml.responseText) ;

}
}i

xml.open ("GET", "test", true);

xml .send (null) ;

The Project(lab 4)

Overview

* Project — learn more concepts, techniques, and technologies

* Independently search, assess, apprehend, and apply information about new technologies and
third-party resources

* Download, install, configure, and troubleshoot relevant libraries and frameworks

 Extend your Twidder application (from labs 1-3) by implementing different functionality (from a list of
alternatives)

* Several alternatives

* Providing Live Data Presentation

* Use of HTML5 for Drag and Drop

* Performing Client-side Routing + Overriding Back/Forward buttons using the History API

* Third-Party Authentication Using OpenID/OAuth 2.0

* Applying Further Security Measures

* Testing Using Selenium

* Client-side Templating Using a Third-Party API

* Media Streaming

* Styling and Responsive Design

* Deploying your Solution on Heroku

* Geolocation

* Recover your password

Grading

* The course is graded based on lab 4.

* Each successfully implemented criteria gives points, which are added
together and translated to a grade.

Total number of points m
3

3

6 4
9 + well-documented code

44

Grading example

* Let us say your project implements
» Using HTTP status codes and upgrading the feedback mechanism[2 points]
* Live Data Presentation [3 points]
* Drag and Drop using HTML5 [1 point]
e Testing using Selenium [2 points]

* Total points: 2+3+1+2=8
* Resulting grade: 4

Alternative 1

Providing Live Data Presentation

Use case:

Stock market apps, Analytics and in general where the data set is produced by a third party and it needs to
be observed visually instantaneously.

Example:
http://www.jscharts.com/examples
https://www.dailyfx.com/usd-sek

LINKOPINGS
II." UNIVERSITET

46

http://www.jscharts.com/examples
https://www.dailyfx.com/usd-sek

Alternative 2

Use of HTMLS5 for Drag and Drop

Use case:
Almost can be used in any Graphical User Interface.

Example:
https://htmI5demos.com/drag/#

LINKOPINGS
II." UNIVERSITET

47

https://html5demos.com/drag/#

Alternative 3

Performing Clientside Routing + Overriding Back/Forward buttons using the History API

Use case:

The most common usage is in Single Page Applications where the application is composed of one
web-page but multiple views.

Example:
http://www.camedin.com

LINKOPINGS
II." UNIVERSITET

http://www.skillbind.com

Alternative 4

Third-Party Authentication Using OpeniD/OAuth 2.0

Advantages:
Decreasing risk, cost and complexity.

Example:
https://www.camedin.com

LINKOPINGS
II." UNIVERSITET

49

https://www.camedin.com

Alternative 5

Applying Further Security Measures

Use case:
Banking apps and generally where security is a high priority.

Example:
Token hashing and salting with other data in the request.

LINKOPINGS
II." UNIVERSITET

Alternative 6

Testing Using Selenium

Advantages:
http://alvinalexander.com/testing/automated-qui-testing-benefits-tools
https://www.youtube.com/watch?v=juKRybHPMwE
https://alvinalexander.com/testing/automated-qui-testing-benefits-tools/

LINKOPINGS
II." UNIVERSITET

51

http://alvinalexander.com/testing/automated-gui-testing-benefits-tools
https://www.youtube.com/watch?v=juKRybHPMwE
https://alvinalexander.com/testing/automated-gui-testing-benefits-tools/

Alternative 7

Client-side Templating Using a ThirdParty API

Advantages:
Code reusability by defining a view structure for showing changing information. Mostly used in SPAs while
being combined with asynchronous calls.

Example:
www.camedin.com

LINKOPINGS
II." UNIVERSITET

http://www.camedin.com

Alternative 8

Media Streaming

Advantages:
No need to download the whole media completely before being able to view it.

Example:
www.youtube.com
www.facebook.com

LINKOPINGS
II." UNIVERSITET

53

http://www.youtube.com
http://www.facebook.com

Alternative 9

Styling and Responsive Design

Advantages:
One GUI which adapts itself to different screen resolutions instead of having different GUI layouts for
different screen resolutions.

Example:
www.bbc.co.uk

LINKOPINGS
II." UNIVERSITET

http://www.bbc.co.uk

Alternative 10

Deploy Your Solution on Heroku

Advantages:
Your web application shall be available to the world. At the same time, you can use a broad range of
different tools and libraries available on Heroku.

Example:
https://www.heroku.com/partners-app-showcase

LINKOPINGS
II." UNIVERSITET

55

https://www.heroku.com/partners-app-showcase

Alternative 11

Geolocation

Advantages:
Users don’t need to enter their location manually which shall improve user experience.

Example:
www.foodora.se

LINKOPINGS
II." UNIVERSITET

https://www.foodora.se/

Alternative 12

Recover your password

Advantages:
I's a must! It's very common that users forget their passwords and need to recover them.

LINKOPINGS
II." UNIVERSITET

