
Sahand Sadjadee

Dept. of Computer and Information Science

Linköping University

1

TDDD97 - Web Programming

Server-side development

Outline
● Python

● Flask

● SQL/SQLite

● Rest API

● Validation

● Security

Server-side languages

Websites require two key components to function: a client and a web server. Clients,
as we’ve learned, are any web browser or device that’s used to view and interact with
a website. All of the files and data associated with displaying a website on a client are
stored on a web server.

https://www.codeschool.com/beginners-guide-to-web-development/server-side-languages

In the SPA world, server-side languages are used to create REST API, implement part
of the logic, implement validation, communicate with the database and ... at the
server-side.

3

https://www.codeschool.com/beginners-guide-to-web-development/server-side-languages

Server-side languages

4

Programming languages used in most popular websites*

https://en.wikipedia.org/wiki/Programming_languages_used_in_most_popular_websites

https://en.wikipedia.org/wiki/Programming_languages_used_in_most_popular_websites

Python

• High-level, interactive, object-oriented programming
language

• No need for compilation
• You can interact with the interpreter directly through

the Python command prompt
• History

– Developed by Guido van Rossum in the late-1980s and
early-1990s at the National Research Institute for
Mathematics and Computer Science in the Netherlands

– Inspired by many other languages (e.g., ABC, Modula-3, C,
C++, Algol-68, SmallTalk, and various scripting languages)

5

Python

6
The sample code is taken from Wikipedia.

Python Highlights

• Easy to learn, read, and maintain

• Broad standard library

• Interactive mode (prompt)

• Available on many platforms

• Support for functional and structured
programming methods as well as OOP

• Interfaces to databases available

7

Python basic syntax

• Lines and indentation
– No braces { } to define blocks
– Blocks are defined by indentation

– In Python, all continuous lines indented with similar
number of spaces from a block.

– Multiple statements on the same line should be separated
by semicolon (;)

8

if True:

 print ”It is true!"

else:

 print ”This is false."

Reserved words

and exec not

assert finally or

break for pass

class from print

continue global raise

def if return

del import try

elif in while

else is with

except lambda yield

9

Python basic syntax

• Comments
– A hash sign (#) comments out the rest of the line

-- Multi-line comments are made by using three consequent
quotations for starting and three other consequent
quotations for closing the comment.

• Blank lines
– Ignored by the Python interpreter
– In interactive sessions, an empty line terminates multiline

statements

10

First comment

print "Hello, Python!"; # second comment

Multiline statements

• Normally, statements end with a new line

• It is possible to use multiple lines with (\)

11

grand_total = variable_one + \

 variable_two + \

 variable_three

Quotation in Python

• String literals
– Single quote (’)

– Double quote (”)

– Same type at the start and end of the string
required

• Triple quotes can be used to create multiline
strings

12

word = ’Hello’

two_words = ”Hello World”

Variables

• No need to declare them
• Assignments:

• Standard data types: Numbers, String, List, Tuple,
Dictionary

13

cars = 200

parking_spaces = 150

parking_type = ”Residential”

print cars

print parking_spaces

print parking_type

Strings

• Plus (+) is used for string concatenation and
asterisk for repetition (*)

14

str = 'Hello World'

print str # Prints complete string

print str[0] # Prints first character of the string

print str[2:5] # Prints characters starting from 3rd to 5th

print str[2:] # Prints string starting from 3rd character

print str * 2 # Prints string two times

print str + "TEST" # Prints concatenated string

Lists

• Compound data type

15

list = [’Hello', 123, 456, ’world', 16.2]
shortlist = [97, ’TDDD']

print list # Prints the list

print list[0] # Prints first element

print list[1:3] # Prints elements starting from 2nd till 3rd

print list[2:] # Prints elements starting from 3rd element

print shortlist * 2 # Prints list twice

print list + shortlist # Prints concatenated lists

Tuples

• Sequences similar to lists

• Tuples cannot be updated (i.e., they are
read-only lists)

16

tuple = (’Hello', 123, 456, ’world', 16.2)
shorttuple = (97, ’TDDD’)

print tuple # Prints the tuple

print tuple[0] # Prints first element

print tuple[1:3] # Prints elements starting from 2nd till 3rd

print tuple[2:] # Prints elements starting from 3rd element

print shorttuple * 2 # Prints tuple twice

print tuple + shorttuple # Prints concatenated tuple

Dictionary

• Associative array

• Key–value pairs

17

dict = {'name': ’John Doe','code':1337, 'dept': ’CS'}

print dict[’name'] # Prints value for ’name' key

print dict # Prints complete dictionary

print dict.keys() # Prints all the keys

print dict.values() # Prints all the values

Control structures

• If-statements

18

if expression1:
 statement(s)

elif expression2:

 statement(s)

else:

 statement(s)

if expression1:
 statement(s)

 if expression2:

 statement(s)

 elif expression3:

 statement(s)

 else

 statement(s)

elif expression4:

 statement(s)

else:

 statement(s)

if expression:
 statement(s)

else:

 statement(s)

if expression:
 statement(s)

Control structures

• While loop

• For loop

• Break, continue, and else (!) statements available

19

while expression:

 statement(s)

for iterating_var in sequence:

 statements(s)

Functions

• The keyword def is used for defining
functions
– Parameters passed by reference

– General syntax:

– Example:

20

def function_name(parameters):

 "function documentation string"
 function_body
 return [expression]

def add_numbers(i, j):

 return i + j

>>> add_numbers(2, 3)
5
>>>

Function arguments

• Different types of arguments
– Required arguments

• “Normal” arguments, runtime error if not provided

– Keyword arguments
• Caller provides the argument name
• Definition: def hello(s):
• Call: hello(s = ”World”)

– Default arguments
• Uses default value of argument if not passed by the caller
• Definition: def hello(s = ”World”)
• Call: hello() => ”World” hello(“Universe”) =>
“Universe”

– Value-length arguments
• Varying number of arguments

21

Classes

• Class definitions

• Instantiation

22

class Person:

 def __init__(self, name, age):
 self.name = name
 self.age = age

 def printPerson(self):
 print "Name : ", self.name, ", Age: ", self.age

p1 = Person(”Kalle”, 22)

p2 = Person(”Anna”, 23)
printPerson p1
printPerson p2
print (p1.age + p2.age)

Python 2.x versus 3.x

• Python 2.x
– Now considered “legacy”

• Python 3.x
– The present and future of the language

– A.k.a. Python 3000 or Py3K

– Fixes some well-known annoyances and warts

– Print statement replaced with a print() function

23

We shall use
Python 2.7.x in
the labs.

PyCharm

• Python IDE
• Code assistance

– Syntax highlighting
– Auto-indentation
– Code completion

• Code navigation
• Refactoring
• Community Edition

– Free, open source
– Apache 2 license

24

PyCharm in this course

• Start with for example
/home/TDDD97/pycharm-4.0.4/bin/pycharm.sh

• License activation:

25

PyCharm in this course (cont.)

26

PyDev

• Python IDE for Eclipse
– Integration with Eclipse environment

• Code analysis
• Code completion
• Type hinting
• Code navigation
• Debugger
• Refactoring

27

Flask, the micro-framework

28

Web frameworks

“Server-side web frameworks (a.k.a. "web application frameworks") are software
frameworks that make it easier to write, maintain and scale web applications. They
provide tools and libraries that simplify common web development tasks,
including routing URLs to appropriate handlers, interacting with databases,
supporting sessions and user authorization, formatting output (e.g. HTML, JSON,
XML), and improving security against web attacks.”, MDN.

https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Web_frameworks

https://en.wikipedia.org/wiki/Comparison_of_web_frameworks

29

https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Web_frameworks
https://en.wikipedia.org/wiki/Comparison_of_web_frameworks

Web frameworks

It is possible to create Rest API and also do server-side templating both in most of
the popular web frameworks today.

For example, FLASK!

30

Flask

• Light-weight web development framework
• Python-based
• Microframework: small, but extensible core
• Examples of extensions include:

– object-relational mappers
– form validation
– upload handling
– various open authentication technologies

• Open source, BSD license
• Web site: http://flask.pocoo.org/

31

http://flask.pocoo.org/

Flask features

• built-in development server and fast debugger

• integrated support for unit testing

• RESTful request dispatching

• Jinja2 templating

• support for secure cookies (client side sessions)

• WSGI 1.0 compliant

• Unicode based

http://quintagroup.com/cms/python/flask

32

http://quintagroup.com/cms/python/jinja2
http://quintagroup.com/cms/python/flask

Hello World Flask Application

• In the Python file hello.py:

• Start the Flask web server with:

33

from flask import Flask
app = Flask(__name__)

@app.route('/')

def hello_world():

 return 'Hello World!'

if __name__ == '__main__':

 app.run()

> python hello.py
 * Running on http://127.0.0.1:5000/

What it means

• from flask import Flask
– Import Flask stuff

• app = Flask(__name__)
– Create the Flask application instance

• @app.route('/')
– Function decoration
– Tells flask to route requests for “/” here

• if __name__ == '__main__':
 app.run()

– Start the application
– Similar to the main method/function in other languages

34

Flask Routing

• The route() decorator binds a function to a
URL

• Examples:

• Variable URLs:

35

@app.route('/')

def index():
 return 'Index Page'

@app.route('/hello')
def hello():
 return 'Hello World'

@app.route('/user/<username>')

def show_user_profile(username):
 # show the name of a user
 return 'User %s' % username

Flask Template Rendering

• Based on the Jinja2 template language/engine for
Python

• HTML templates should be located in the
templates directory

• Template rendering function: render_template()

• Example:

36

from flask import render_template

@app.route('/hello/')

@app.route('/hello/<name>')

def hello(name=None):

 return render_template('hello.html', name=name)

Flask Template Rendering (cont.)

• In the file templates/hello.html

37

<!doctype html>
<title>Hello from Flask</title>

{% if name %}

 <h1>Hello {{ name }}!</h1>

{% else %}

 <h1>Hello World!</h1>

{% endif %}

Flask Debug Mode

• Interactive debugger in the web browser
– Shows interactive stack traces on errors
– Python command prompt in the web page

• Reloads the server automatically on code changes
• Do not use for production servers (because of security)
• Enable by setting the debug flag:

38

app.debug = True

app.run()

Flask under Linux (IDA)

• Make sure you are running python 2.7.x
– Check with python –V

• Create a virtual environment
– Create a new environment for the virtual environment. In

the Python prompt: virtualenv <directory>
– Use the install tool pip to install Flask. In the virtual

environment root directory: bin/pip install
<package>

• Run the application using the Python executable in the
virtual environment (i.e., not the global Python)
– In the virtual environment root directory: bin/python

39

Flask under Linux (IDA)

40

> python -V
Python 2.7.6

> virtualenv test

New python executable in test/bin/python

Installing setuptools….........done.

Installing pip...............done.

> cd test

> bin/pip install flask

Downloading/unpacking flask...

> bin/python

Python 2.7.6 (default, Oct 26 2016, 20:30:19)

[GCC 4.8.4] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>>

Python virtual environments

• Isolated Python environments — sandboxes
• Separate directory for each virtual environment
• Activate/deactivate commands

– Unix/bash: source bin/activate
– MS Windows: scripts\activate
– Both: deactivate

• Examples of use:
– Separated development environments
– Mixing Python version on the same machine

• Command to create: virtualenv <directory>

41

HTTP status codes

• To abort a HTTP request early, call abort()
• Example: abort(404)
• Common error codes

– 404 Not Found
– 403 Forbidden
– 410 Gone
– 500 Internal Server Error

http://en.wikipedia.org/wiki/List_of_HTTP_status_c
odes

42

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

HTTP methods

• GET The GET method requests a representation of the specified resource.
Requests using GET should only retrieve data.

• POST The POST method is used to submit an entity to the specified resource, often
causing a change in state or side effects on the server.

• PUT The PUT method replaces all current representations of the target resource
with the request payload.

• DELETE The DELETE method deletes the specified resource.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

43

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/GET
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PUT
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/DELETE
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

HTTP methods

44

https://blog.4psa.com/rest-best-practices-choos
ing-http-methods/

https://assertible.com/blog/7-http-methods-every-web-dev
eloper-should-know-and-how-to-test-them

https://blog.4psa.com/rest-best-practices-choosing-http-methods/
https://blog.4psa.com/rest-best-practices-choosing-http-methods/
https://assertible.com/blog/7-http-methods-every-web-developer-should-know-and-how-to-test-them
https://assertible.com/blog/7-http-methods-every-web-developer-should-know-and-how-to-test-them

Useful Resources

• Python tutorial: http://docs.python.org/2/tutorial/
• Another Python tutorial: http://www.learnpython.org
• Flask homepage: http://flask.pocoo.org/docs/
• Flask tutorial: http://flask.pocoo.org/docs/tutorial/
• Another Flask tutorial:

http://blog.miguelgrinberg.com/post/the-flask-mega-t
utorial-part-i-hello-world

45

http://docs.python.org/2/tutorial/
http://www.learnpython.org
http://flask.pocoo.org/docs/
http://flask.pocoo.org/docs/tutorial/
http://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-i-hello-world
http://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-i-hello-world

SQL

46

SQL

Standard language for working/interacting with
a DBMS

SQL

Information

SQL- History

• IBM Sequel language developed as part of System R project at the IBM San
Jose Research Laboratory

• Renamed Structured Query Language (SQL)

• ANSI and ISO standard SQL:

– SQL-86, SQL-89, SQL-92
– SQL:1999, SQL:2003, SQL:2008

• Commercial systems offer most, if not all, SQL-92 features, plus varying

feature sets from later standards and special proprietary features.

SQL and Flask

• Two possible methods for working with the
database

• SQL
– Using SQL directly in the code
– Will be used in the labs

• Using an ORM like SQLAlchemy
– Python SQL toolkit and Object Relational Mapper
– More powerful and flexible—suitable for larger

applications

49

SQLite

• SQL database engine
• Serverless
• In-process library

– Small footprint, compact library
– Well-suited for use in applications and embedded

devices

• Implemented in ANSI-C
– Cross platform: Unix (Linux, OS-X, Android, iOS) and

MS Windows

• SQLite software and documentation in the public
domain https://www.sqlite.org/

50

https://www.sqlite.org/

SQLite Example

• Create a new database
– At the command prompt: >sqlite3 test.db

• Enter SQL commands to create and populate the database
– sqlite> create table table1 (course varchar(6), credits smallint);
– sqlite> insert into table1 values(’TDDD24’, 4);
– sqlite> insert into table1 values(’TDDD97', 6);
– sqlite> select * from table1;
– TDDD24|4
– TDDD97|6
– sqlite> select credits from table1 where course=’TDDD97’;
– 6
– sqlite>

51

SQLite suitability

SQLite works well for
• Application file format

– Load/save application data

• Embedded devices and applications
• Websites

– Low to medium traffic web sites (say < 100k hits/day)

• Replacement for ad-hoc disk files
• Internal or temporary databases

– In-memory databases supported

• Command-line dataset analysis tool
• Stand-in for enterprise database during demos and testing
• Learning databases and SQL

52

SQLite unsuitability

SQLite may be inappropriate for:
• Client-server applications

– Where a separate database server is needed
– SQLite will work over a network file system, however

• High-volume websites
– Where a separate database machine is needed

• Very large datasets
– SQLite databases limited to 140 TB
– Often, the underlying file system is the actual limit

• High concurrency
– Supports unlimited number of readers, but only one writer at the

time

53

Sample Flask Server

54

import sqlite3

from flask import g

def connect_db():

 return sqlite3.connect("mydatabase.db")

def get_db():

 db = getattr(g, 'db', None)

 if db is None:

 db = g.db = connect_db()

 return db

def init():

 c = get_db()

 c.execute("drop table if exists entries")

 c.execute("create table entries (id integer primary key, name text,message text)")

 c.commit()

def add_message(name,message):

 c = get_db()

 c.execute("insert into entries (name,message) values (?,?)", (name,message))

 c.commit()

def close():

 get_db().close()

Sample Flask Server (cont.)

• Checking the database content from the
command line:

55

> sqlite3 mydatabase.db

SQLite version 3.8.2 2013-12-06 14:53:30

Enter ".help" for instructions

Enter SQL statements terminated with a ";”

sqlite> select * from entries;

1|Nisse|Hi from Nisse!

2|Mary|Supercalifragilisticexpialidocious

3|John|What is this?

4|Joe|This looks cool.

sqlite> select * from entries where name='Nisse';

1|Nisse|Hi from Nisse!

sqlite>

Sample Flask Server (cont.)

56

def get_message(name):

 c = get_db()

 cursor = c.cursor()

 cursor.execute("select name, message from entries where name = '" + name + "'")

 entries = [dict(name=row[0], message=row[1]) for row in cursor.fetchall()]

 c.close()

 return entries[0]['name'] + " says: " + entries[0]['message']

def close():

 get_db().close()

In addition to constructing SQL queries,
database programming entails…

• Connect and disconnect to DB
• Validate data to put into DB

– Assumed by DB to be correct

• Manage UI creation in relation to SQL queries
• Manage object to SQL transformation of data
• Manage security concerns and potentially pass

them on to DB
– Cannot rely on DB security alone
– Manage where DB-related security is handled and how

it is exposed

Rest API, Representational State transfer

58

Rest constraints

• Client-Server

• Cacheable

• Code on demand

• Layered system

• Uniform interface

• Stateless

http://www.restapitutorial.com/lessons/whatisrest.html#

http://www.restapitutorial.com/lessons/whatisrest.html#

REST API

A set of server-side web services, functions, designed and
implemented according to Rest constraints which are
callable from client-side by using HTTP protocol are called
REST API. JSON is most common format for returning data to
the client-side.

Good read
https://restful.io/rest-api-back-to-basics-c64f282d972

https://restful.io/rest-api-back-to-basics-c64f282d972

https://shareurcodes.com/blog/creating%20a%20simple%20rest%20api%20in%20php

Validation

62

Validation
• Client-side code can be inactivated or not used by the user at all.
• Data needs to be validated both at the server-side and the client-side.
• Client-side validation improves responsiveness and user experience.
• Client-side validation has nothing to do with assuring data integrity and

consistency.
• Server-side validation improves data integrity and consistency.
• In real-world all data sent to the server need to be validated before any

operation is done on it.

Good read
http://net-informations.com/faq/asp/validation.htm

http://net-informations.com/faq/asp/validation.htm

Validation

Examples:

• The password is not long enough as required.
• The email address is not in the right form.
• The posted message contains not allowed words or symbols.
• Therequested field is empty.
• ...

Security

65

CIA triad

A simple but widely-applicable security model is the CIA triad; standing for
Confidentiality, Integrity and Availability; three key principles which should be
guaranteed in any kind of secure system.

Confidentiality

Confidentiality is the ability to hide information from those people unauthorised to
view it.

Integrity

The ability to ensure that data is an accurate and unchanged representation of the
original secure information.

Availability

It is important to ensure that the information concerned is readily accessible to the
authorised viewer at all times.

http://www.doc.ic.ac.uk/~ajs300/security/CIA.htm

http://www.doc.ic.ac.uk/~ajs300/security/CIA.htm

CIA principles

Some common attacks

SQL Injection: can target Confidentiality, Integrity and availability.

XSS(Cross-site scripting): can target confidentiality, integrity and availability.

DDOS(Distributed Denial of Service): can target only availability

SQL Injection

John’s phonebook
entries are displayed

Web browser
Application Server

Database
User Input SQL Query

Web Page Result Set

SQL: Structured Query Language.
Used for query, delete, insert, and
update database records.

SELECT * FROM phonebook WHERE
username = ‘John’ AND
password = `abcd’

 Phonebook Record Manager

John
abcd

Usernam
e
Password

Submit

SQL Injection

All phonebook entries are
displayed

Web browser
Application Server

Database
User Input SQL Query

Web Page Result Set

SELECT * FROM phonebook WHERE
username = ‘John’ OR 1=1 --’ AND
password = ‘not needed’

Everything after -- is ignored!

 Phonebook Record Manager

John ’ OR 1=1
--
not needed

Usernam
e
Password

Submit

Cross-site scripting

Cross-Site Scripting (XSS) attacks are a type of injection, in which malicious scripts are
injected into otherwise benign and trusted web sites. XSS attacks occur when an
attacker uses a web application to send malicious code, generally in the form of a
browser side script, to a different end user. Flaws that allow these attacks to succeed
are quite widespread and occur anywhere a web application uses input from a user
within the output it generates without validating or encoding it.

https://www.owasp.org/index.php/Cross-site_Scripting_%28XSS%29

https://www.owasp.org/index.php/Cross-site_Scripting_%28XSS%29

Cross-site scripting

https://vitalflux.com/angular-prevent-xss-attacks-code-examples/

https://vitalflux.com/angular-prevent-xss-attacks-code-examples/

Thanks for listening!

