
Lab 04/Project
Adding Extra Functionality

TDDD97/732A56
Web Programming
Department of Computer Science
Linköping University



1

Introduction
In this lab, you will learn additional web programming concepts, techniques and technologies. In
addition you will independently search, assess, apprehend, and apply information about new
technologies and third-party resources as well as downloading, installing, configuring and
troubleshooting relevant libraries and frameworks.

Grading
Your task is to extend the Twidder application, which you developed in the first three labs, with
additional functionality. You can choose to implement different functionality from a list of alternatives
described below, where each criteria gives a certain number of points. Your final grade for the course
will be determined by the total number of points your implementation collects (see Table 1).

Table 1. The number of points required for achieving each grade

Total number of criteria points Course grade

3 3

6 4

9 + well-documented code(Server) 5

Below you will find a description of each alternative criteria, including suggestions for third-party
libraries or frameworks, and the number of points they give. You may use other libraries and
frameworks, but in this case you must discuss them with you lab assistant before starting the work.

NOTE
The mandatory section needs to be done first before moving to alternatives. This section gives two
points and also mandatory in order to get passed in the project.



2

Mandatory
Using HTTP status codes and upgrading the feedback mechanism[2 points]
Your task is to use HTTP status codes instead of field 1, status, introduced in lab 2. Both
the client and server code shall be upgraded after you are done. Each server function shall be
upgraded properly and use status codes to cover all cases in the code. The following status
codes shall “at least” be used:

200 OK
The request succeeded.

201 Created
The request succeeded, and a new resource was created as a result. This is typically the response sent after POST
requests, or some PUT requests.

400 Bad Request
The server cannot or will not process the request due to something that is perceived to be a client error (e.g.,
malformed request syntax, invalid request message framing, or deceptive request routing).

401 Unauthorized
Although the HTTP standard specifies "unauthorized", semantically this response means "unauthenticated". That is, the
client must authenticate itself to get the requested response.

404 Not Found
The server cannot find the requested resource. In the browser, this means the URL is not recognized. In an API, this can
also mean that the endpoint is valid but the resource itself does not exist. Servers may also send this response instead
of 403 Forbidden to hide the existence of a resource from an unauthorized client. This response code is probably the
most well known due to its frequent occurrence on the web.

405 Method Not Allowed
The request method is known by the server but is not supported by the target resource. For example, an API may not
allow calling DELETE to remove a resource.

409 Conflict
This response is sent when a request conflicts with the current state of the server.

500 Internal Server Error
The server has encountered a situation it does not know how to handle.

Some of the status codes may be returned automatically by Flask. In such cases it is only
the client code which needs to be updated in order to handle the problem. Handling the
problem mostly requires at least notifying the user about the issue. Feel free and add more
status codes to your implementation if possible.
Please keep in mind that you are also required to upgrade the client-side code in a way that
all feedback shown to the user is decided by the client-side and not the server-side as you
may have done in lab 2.

HTTP status codes
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status#successful_responses

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/200
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/201
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/401
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/404
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/405
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/405
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/500
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status#successful_responses


3

NOTE
As a status code can be initiated by a broad range of causes you may still need to rely on the
message field coming from the server. This field shall contain more specific information
about the status of the request and what exactly has happened at the server-side. Please
remember the message you show to the user shall be decided by the client and not the

server in order todecrease coupling. In other words the message you get from

the server turns more into an error key intended for the client code and not the end user.

Example, the user tries to read a message received from another user:

Server returns {message:”user not found”}, 404
Client displays “The entered username does not exist! Please try again!”

Server returns {message:”message not found”}, 404
Client displays “Incorrect message id! The message may have been deleted!”

At the client-side it is important to first check the status code in order to determine the status
and then possible error key. It can happen that a status code does only have a possible error
key or it can happen that it doesn’t matter which error key has been returned and the same
feedback shall be shown to the user anyway.

Example, the user tries to create a new account:

Server returns {message:”user exists”}, 409
Client displays “The username is already taken! Please try another one!”

In the above example we assume that there is only one possible error key. In such cases we
don’t even need to check the error key.



4

Status Code Checklist

Function Expected Status Codes

sign_in 200, 400, 401, 405, 500

sign_up 201, 400, 409, 405, 500

sign_out 200, 400, 401, 405, 500

change_password 200, 400, 401, 405, 500

get_user_data_by_token 200, 401, 405, 500

get_user_data_by_email 200, 401, 404, 405, 500

get_user_messages_by_toke
n

200, 401, 405, 500

get_user_messages_by_emai
l

200, 401, 404, 405, 500

post_message 201, 401, 400, 405, 500

Alternatives
1. Providing Live Data Presentation [3 points]
This criterion requires your application to present dynamic data on the fly. The data may
change over time while being presented as diagrams or charts using a third-party library such
as D3JS and ChartJS. The data must be application-related and be composed of at least three
different fields, which are updated by the backend. For example, the user could be able to see a
live presentation of the number of posts on his/her wall, number of views of his/her page, and
total number of users currently online. You need to use websockets or other available
technologies to push the data to the clients on the fly. At least two types of diagrams shall
be used.

D3 official website
http://d3js.org/

ChartJS official website
http://www.chartjs.org/

http://d3js.org/
http://www.chartjs.org/


5

2. Use of HTML5 for Drag and Drop [1 point]
This criterion requires your application to provide drag-and-drop functionality for performing a
specific task. Please note that the drag-and-drop functionality itself matters in this assignment
even though you can also add a new requirement, which can be used by using the
drag-and-drop functionality. For example, the user can copy the posts on his/her wall, posted
by himself/herself or other users, into a text area to be edited and reused.

HTML5 Drag and Drop
http://www.w3schools.com/htmL/html5_draganddrop.asp

3. Performing Client-side Routing + Overriding Back/Forward buttons
using the History API [2 point]

This criterion requires your application to provide a valid URL associated with each view or
resource. The difference from the traditional form of URL handling, is that it shall happen at
the client-side and shall mainly be done by using Javascript and third-party libraries. This
approach requires having at least three separately-assigned URLs. Note that your
implementation must tolerate any unwanted page refreshes and maintain the correct URL in the
address bar upon any refresh event. You are also required to use the History API to make back
and forward buttons usable for changing views in your application. At the current stage
clicking on the back button will cause the browser to leave your application.

PageJS a small client-side routing library
http://smalljs.org/client-side-routing/page/

Manipulating the browser history
https://developer.mozilla.org/en-US/docs/Web/API/History_API

4. Third-Party Authentication Using OpenID/OAuth 2.0 [3 point]
Give the user the possibility to login via a third-party service, such as Facebook, Google and
Microsoft. Please note, since your application is based on SPA architecture, you need to avoid
page refreshes as much as you can.

What is OpenID
https://openid.net/developers/how-connect-works/

Google OAuth 2.0
https://developers.google.com/accounts/docs/OAuth2

http://www.w3schools.com/htmL/html5_draganddrop.asp
http://smalljs.org/client-side-routing/page/
https://developer.mozilla.org/en-US/docs/Web/API/History_API
https://developers.google.com/accounts/docs/OAuth2


6

5. Applying Further Security Measures [3 points]
This criterion requires the following two security measures to be applied:

1. Protecting passwords from being stolen directly from the server, in case of the database
being compromised, by hashing them before storing in the database. In other words instead of
the password itself, its hashed value shall be stored in the database once the user signs up.

Password Hashing
https://crackstation.net/hashing-security.htm

Flask BCrypt
http://flask-bcrypt.readthedocs.org/en/latest/

2. Protecting data while being transmitted. Since data, including tokens, are transmitted
unencrypted over the network, they are subject to be retrieved and abused by a third party
tapping the network. In this case, a villain can read a request to the server, change some
parameter in it and then resend it to the server on behalf of the victim until the token
becomes invalid by logout. This is called REPLAY attack.You are required to follow the
provided instructions and prevent such attack. At the same time this technique does not wire
the token itself on the network which prevents anyone from reading the token itself and
using it later on to make its own requests. This technique does not prevent villian from
seeing other data parameters.

Guideline
https://www.ida.liu.se/~TDDD97/labs/hmacarticle.pdf

Replay Attack
https://www.kaspersky.com/resource-center/definitions/replay-attack

6. Testing Using Selenium [2 points]
This criterion requires you to test your application by using the Selenium UI testing
framework. You need to test at least five (5) different UI features of your application like sign
in, sign up and post messages. Please note that it is not allowed to use the Selenium IDE and
instead you need to use another language like python for writing the test cases.

Selenium official website
http://www.seleniumhq.org/

Selenium documentation
http://docs.seleniumhq.org/docs/index.jsp

https://crackstation.net/hashing-security.htm
http://flask-bcrypt.readthedocs.org/en/latest/
https://www.ida.liu.se/~TDDD97/labs/hmacarticle.pdf
http://www.seleniumhq.org/
http://docs.seleniumhq.org/docs/index.jsp


7

7. Client-side Templating Using a Third-Party API [1 point]
By using templates, you can define an HTML structure that always remains the same. Inside
the template there are variable parts that change each time the template is rendered depending
on the data provided. Templates can be used to implement different views inside of an
application, for example the profile view. Here you are required to use a third-party library,
such as Mustache and HandlebarsJS, to perform client-side templating to reimplement the
existing views inside of Twidder application. To re-do only one view is enough.

Mustache official website

https://mustache.github.io/

HandlebarsJS official website
http://handlebarsjs.com/

8. Media Streaming [3 points]
This criterion requires you to have both Audio/Video and Image files stored at the server-side
and streamed to the client when needed. Users should be able to upload media files to the
server, which stores them in a database or in a directory on the disc. For example the user shall
be able to share media on his/her wall to be seen by other users. The user could also upload and
set a profile picture for himself/herself to be seen by other users.

HTML5 Video
http://www.w3schools.com/html/html5_video.asp

NOTE
In case of storing media files on disc, make sure they are NOT publicly accessible by using
URL pointing to them in the static directory. You need to add a service(s) that sends media
files to the client based on the received parameters.

9. Styling and Responsive Design [2 points]
This criterion requires you to use a third-party framework, such as Bootstrap and Pure, for
handling layout and styling. Also, you may need to use your own CSS code for certain cases.
Using only CSS is also OK. You should follow the responsive design principles to make your
application adaptable to different display resolutions from mobile to desktop for at least three
different display-resolution ranges:

https://mustache.github.io/
http://handlebarsjs.com/
http://www.w3schools.com/html/html5_video.asp


8

1. Mobile view
2. Tablet view
3. Desktop view

As a guideline, there are two areas in which your application needs to adapt to different screen
sizes:

● The layout
● The resources such as images which are displayed to the user.

For example, in the desktop view all media and images shall be displayed in multiple columns
while in the mobile view no or a few images are displayed and all text is displayed in one
column. The tablet view stands in between the two.

Bootstrap official website
http://getbootstrap.com/

Pure official website
http://purecss.io/

Guide to Responsive Web Design
http://blog.teamtreehouse.com/modern-field-guide-responsive-web-design

Responsive Web Design Basics
https://developers.google.com/web/fundamentals/layouts/rwd-fundamentals/

HTML Responsive Web Design
http://www.w3schools.com/html/html_responsive.asp

10. Deploy Your Solution on a PaaS [2 points]
Platform as a service (PaaS) is a cloud computing model in which a third-party provider
delivers hardware and software needed by developers and companies to deploy their
applications on the cloud.

Your task is to deploy your application on the cloud with the help of a PaaS provider. In result,
the users shall be able to open your web application by using a domain address, given by the
provider after deployment, instead of localhost.

Top 10 PaaS providers of 2023 and what they offer you
https://www.techtarget.com/searchcloudcomputing/feature/Top-10-PaaS-providers-and-what-th
ey-offer-you

http://getbootstrap.com/
http://purecss.io/
http://blog.teamtreehouse.com/modern-field-guide-responsive-web-design
https://developers.google.com/web/fundamentals/layouts/rwd-fundamentals/
http://www.w3schools.com/html/html_responsive.asp
https://www.techtarget.com/searchcloudcomputing/feature/Top-10-PaaS-providers-and-what-they-offer-you
https://www.techtarget.com/searchcloudcomputing/feature/Top-10-PaaS-providers-and-what-they-offer-you


9

NOTE
We do know that Microsoft Azure provides free student accounts at the time of writing the
instructions. You can follow the following instructions from another course, TDDD80. The
instructions are in Swedish:
https://www.ida.liu.se/~TDDD80/laborationer/server/lab3.sv.shtml

NOTE
Switching to a real DBMS like MySQL or PostgreSQL shall give an extra point.

11. Geolocation [2 points]
Your task is to show the user’s location by using HTML5 geolocation. The location shall be
displayed to other users in the form of a functionality. For example, Every message shall also
include the user’s location who has posted it. It is a requirement to use Geocode.xyz API to
convert the coordinates to a readable address.

Geocode.xyz API
https://geocode.xyz/api

NOTE
It is the coordinates, instead of the human-readable address, which need to be stored in the
database. The conversion of the coordinates to an address can either happen at the
client-side or the server-side.

12. Recover Your Password [2-3 points]
Your task is to allow the user to recover his/her password via e-mail or sms. As the task is
about security, most of your code about password recovery is located at the server-side. Having
said that, the user shall have the required UI at the client-side to initiate the process. Please
note that the new password can be generated for the user and sent to him/her. In this scenario
this alternative shall only give two points. The user can get the chance to enter the new
password directly on a page whose link has been sent to him/her. The page shall receive a
unique id as a part of the link which determines the password recovery regards which user. In
this scenario the alternative gives 3 points.

https://www.ida.liu.se/~TDDD80/laborationer/server/lab3.sv.shtml
https://geocode.xyz/
https://geocode.xyz/
https://geocode.xyz/api
https://geocode.xyz/api


10

13. Verification via SMS[3 points]
The user shall be able to add a phone number under Profile tab which is going to be shown
under Home tab, if verified. The verification process includes sending a random code to the
entered phone number which shall later on be entered inside of the web application for
completing the verification process. The user shall be able to request a new SMS with a new
code at any time which itself invalidates the previous sent code.

● If the user enters an incorrect code then a feedback shall be displayed and the user shall
have the chance to ask for another code via SMS. No SMS is sent automatically after
the user has entered a wrong code. The user can enter wrong codes in a row for a
limited number of times, for example 3 times. After that the phone number shall be
blocked for that specific user. The user shall not be able to use that phone number
anymore and shall receive an error message before even starting the verification
process.

● If the user succeeds then a feedback shall be displayed and the phone number shall be
saved.

● The user shall have the possibility to remove the phone number at any time without
verification.

● In a real world scenario the number of SMS which are sent to a specific user shall be
limited during a specific time period, for example 10 SMS per day. This requirement
is not included in this alternative. Having said that, if you decide to implement this

requirement then you shall get an extra point reaching the total number of 4 points
for the whole alternative.

For implementing the verification process via SMS you need to use one of the following
CPaaS, CPaas stands for Communication Platform as a Service:

● Sinch, https://www.sinch.com/
○ https://developers.sinch.com/docs/sms
○ https://dashboard.sinch.com/signup?utmcsr=%28direct%29&utmcmd=

%28none%29&utmccn=%28not%20set%29&utmcsr=google&utmcmd
=cpc&utmccn=Search_US_Sinch_TM&utmctr=sinch%20sms&utmcct=

● Twilio, https://www.twilio.com/en-us
○ https://www.twilio.com/docs/messaging
○ https://www.twilio.com/en-us/blog/get-started-twilio-free-sms-busine

sses

https://www.sinch.com/
https://developers.sinch.com/docs/sms
https://dashboard.sinch.com/signup?utmcsr=%28direct%29&utmcmd=%28none%29&utmccn=%28not%20set%29&utmcsr=google&utmcmd=cpc&utmccn=Search_US_Sinch_TM&utmctr=sinch%20sms&utmcct=
https://dashboard.sinch.com/signup?utmcsr=%28direct%29&utmcmd=%28none%29&utmccn=%28not%20set%29&utmcsr=google&utmcmd=cpc&utmccn=Search_US_Sinch_TM&utmctr=sinch%20sms&utmcct=
https://dashboard.sinch.com/signup?utmcsr=%28direct%29&utmcmd=%28none%29&utmccn=%28not%20set%29&utmcsr=google&utmcmd=cpc&utmccn=Search_US_Sinch_TM&utmctr=sinch%20sms&utmcct=
https://www.twilio.com/en-us
https://www.twilio.com/docs/messaging
https://www.twilio.com/en-us/blog/get-started-twilio-free-sms-businesses
https://www.twilio.com/en-us/blog/get-started-twilio-free-sms-businesses

