
Algorithmic

Problem Solving
Practice Problem Solving

Session/Seminar

Herman Appelgren

Dept of Computer and Information Science

Linköping University

2Solving a Problem

1. Analyze the problem
▪ What data do you receive? What data should you produce?

▪ How large is the input? What is a feasible time complexity?

2. Find a solution
▪ Can you solve it by hand/in your head? What steps do you perform?

▪ Could you alter the problem somehow to make it easier?

▪ When you have a solution in mind, are there any corner cases?

▪ How can you store the data efficiently? Is your time complexity feasible?

3. Implementation
▪ Start with pseudo code (code comments) if your solution is complex.

▪ Use good variable names! Invest a few seconds writing descriptive
names, and in return you’ll save a lot of debugging time.

▪ Are there large numbers? Are 32-bit integers sufficient?

▪ Is there a lot of input/output? See Kattis’ help section for advice.

▪ Learn tools for debugging (valgrind, gdb, jdb, pdb, ...)

3Problem A - Babelfish

 We receive a dictionary of n (0 ≤ n ≤ 100,000) word pairs
< 𝑎𝑖 , 𝑏𝑖 > followed by m (0 ≤ m ≤ 100,000) words 𝑐𝑖.

 Problem: For each 𝑐𝑖, if 𝑐𝑖 = 𝑏𝑖 for some 𝑖, print 𝑎𝑖. Otherwise,
print “eh”.

 Solution: Straight-forward lookup of 𝑐𝑖, but make sure to use
an appropriate data structure.
▪ Linear search takes O(n) per lookup => too slow.

▪ Use a map (TreeMap/std::map in Java/C++) with lookup in O(log(n)).

▪ Use a hashmap (HashMap/std::unordered_map in Java/C++ or Python
dictionary) with lookup in O(1).

 Time complexity: Assuming 𝑛 ≥ 𝑚, the time is bounded by
parsing the input. 𝑂(𝑛 𝑙𝑜𝑔(𝑛)) with map or 𝑂(𝑛) with
hashmap.

4C++ example (0.09 sec)

5Java example (0.57 sec)

6Python example (0.62 sec)

7Notes on Input/Output

 Fast I/O: See Kattis help section.

 The IO specification describes the content of ONE test file, i.e.
what your program must process in a single run. Your program
might be executed several times with different input files.

 Make sure to read the IO specification carefully! In particular:
▪ How are sections of the input data separated?

▪ How do you know how many datapoints there are?

▪ How do you know that there is no more input? Common variants: An
integer n at the beginning, blank lines, special input tokens (such as "0 0"
before EOF in CD), or simply EOF.

▪ Are there multiple test cases in the same input?

 What are the limits of the problem? Is it e.g. allowed to have 0
datapoints?

 Note that the sample input/output doesn't always cover all
possible input/output formats!

8CD

 Problem: Given two sets 𝐴 and 𝐵 of integers (𝐴 = 𝑛, 𝐵 = 𝑚
≤ 1,000,000), find the size of the intersection 𝐴 ∩ 𝐵.

 Solution: Again, the problem can be solved using lookup if we
choose an appropriate data structure. There are several
options:
▪ Use vectors/arrays, sort them (already given in increasing order) and

lookup with binary search.

▪ Use set/hashset similar to map/hashmap in the previous problem.

 Time complexity: Assuming n in O(m).
▪ Using vectors/arrays: input in O(n), sort in O(nlogn), lookup in

O(nlogn) => O(nlogn)

▪ Using set/hashset: both input and lookup in O(nlogn)/O(n).

 Warning: The input size is quite large (up to a few MB), so
make sure to use techniques for fast IO.

9Closest Sums

 Given is a set A = {𝑎1, … , 𝑎𝑛} of n (2 ≤ n ≤ 1,000) integers and m
(1 ≤ m ≤ 24) query integers 𝑏𝑖.

 Problem: For each 𝑏𝑖, output 𝑐𝑖 such that 𝑐𝑖 = 𝑎𝑗 + 𝑎𝑘 where

𝑗 ≠ 𝑘 and |𝑏𝑖– 𝑐𝑖| is minimized.

 Subproblem: Find all possible sums of pairs of integers in A.
▪ Iterate over A with two nested loop. O(n^2) is fine since n is small.

 Solution: Calculate all possible sums of pairs, store them in an
efficient data structure and use lookup for all queries.
▪ Here, a hash map doesn’t work, since there might not be an exact match.

▪ Use a sorted vector/array or a map, which allows lookup of closest match
in O(log(n)).

 Time complexity: 𝑂(𝑛2log(𝑛2)) = 𝑂(𝑛2log(𝑛)) to calculate
all sums to an appropriate data structure. 𝑂 𝑚 log 𝑛2 =
𝑂(𝑚 log 𝑛) for lookups.

10Mathemagicians

 n magicians (3 ≤ n ≤ 100,000) magicians stand in a circle, each
wearing either a red or a blue hat.

 The magicians can (one at a time) change the color of their
hats to match one of their neighbors’.

 Problem: Is it possible to reach a given target configuration
from a given original configuration?

 Note: The state space is huge (2^100,000 ≈ 10^30,000), so
conventional search techniques (to be covered later in the
course) are not feasible.

11Mathemagicians

 Think in terms of contiguous “fields” of magicians wearing the
same color hat.

 Operations on the borders extend/contract the size of adjacent
fields.

 Key conclusion: We can only move or remove fields, not
create new ones!

 Solution: Count the number of fields a in the original and b in
the target configuration. Bar special cases, the target is
reachable if b ≤ a.
▪ Special case 1: a = 1 and all magicians wear the wrong color.

▪ Special case 2: The magicians wear alternating colors and the target is the
opposite configuration of alternating colors.

 Time complexity: Count the number of fields in 𝑂(𝑛).

12Problem set

 On the live sessions later during the semester, there will be six
problem instead of today’s four.

 Today's problems mainly involved basic data structures, but
many problems on live sessions are based on more advanced
algorithms and data structures implemented in the labs.

 According to the ranking at open.kattis.com, today’s problems
ranged from 2.1 to 4.8 in difficulty on a scale from 1-10. The
difficulty of the live problems are usually in the range 2.5-7.5.

 Today the problems were arranged approx. in increasing order
of difficulty, but this will not be the case in general.

13Conclusion

 Most of today’s problems were about basic data structures. If
you found them difficult, consider recapitulating theory from
your data structures and algorithms course.
▪ OpenDSA is a good free online resource:

https://www.ida.liu.se/opendsa/Books/TDDD86F20/html/

▪ Make sure you are familiar with how they are implemented in your
chosen programming language.

 Be familiar with how Kattis handles input and output.
▪ Consult the documentation for your language.

▪ Know how to ensure fast IO for large datasets.

https://www.ida.liu.se/opendsa/Books/TDDD86F20/html/

