Algorithmic

Problem Solving

Practice Problem Solving
Session/Seminar

Solving a Problem

Analyze the problem
What data do you receive? What data should you produce?
How large is the input? What is a feasible time complexity?

Find a solution
Can you solve it by hand/in your head? What steps do you perform?
Could you alter the problem somehow to make it easier?
When you have a solution in mind, are there any corner cases?
How can you store the data efficiently? Is your time complexity feasible?

Implementation
Start with pseudo code (code comments) if your solution is complex.

Use good variable names! Invest a few seconds writing descriptive
names, and in return you'll save a lot of debugging time.

Are there large numbers? Are 32-bit integers sufficient?
Is there a lot of input/output? See Kattis’” help section for advice.
Learn tools for debugging (valgrind, gdb, jdb, pdb, ...)

Problem A - Babelfish

We receive a dictionary of n (o0 < n < 100,000) word pairs
< a;, b; > followed by m (o < m < 100,000) words c;.

Problem: For each ¢;, if ¢c; = b; for some i, print a;. Otherwise,

«

print “eh”.

Solution: Straight-forward lookup of c;, but make sure to use
an appropriate data structure.

Linear search takes O(n) per lookup => too slow.

Use a map (TreeMap/std::map in Java/C++) with lookup in O(log(n)).

Use a hashmap (HashMap/std::unordered_map in Java/C++ or Python
dictionary) with lookup in O(1).

Time complexity: Assuming n = m, the time is bounded by
parsing the input. O(n log(n)) with map or O (n) with
hashmap.

babelfish.cpp

#include <iostream>
#include <sstream>
#include <string>
#include <unordered map>

=

W oo~ oW

39

using namespace std;

int main() {
'/ Improves IO speed without

ving to use the cstdio routin

// order, this is important!
ios_base::sync_with stdio(false);
cin.tie(NULL);

unordered _map<string, string> dict;
while (true) {

string line, a, b;

getline(cin, line);

if (line.size() == @) break;

istringstream iss(line);

iss »> a »> b;

dict[b] = a;

1
J
string c;
while (cin >> ¢) {
if (dict.find(c) == dict.end()) {
cout << "eh" << "\n";
} else {
cout << dict[c] << "\n";
¥
}
// Avoid std::endl. Tt flushes the buffer, which reduces perf

// when the output is large. Pref
" single std::flush at the end.
cout << flush;

\n" for line breaks and

return @;

ne
" which are particularly cumbersome for string data. Note cal

ormance

do a

Java example (0.57 sec)

Babelfish.java

1 import java.util.HashMap;
2 import java.io.¥;

3
4 public class Babelfish {
5 public static void main(String[] args) throws I0Exception{
6 / Buffered I0 to improve speed. For numeric input, use
7 / the Kattio class available on the Kattis help pages.
B8 BuF{eredPeader input = new BufferedReader(new InputStreamReader(System.in));
9 PrintWriter output = new PrintlWriter(new BufferedOutputStream(System.out));
18
11 HashMap<String, String:> dict = new HashMap<:();
12 while (true) {
13 String[] line = input.readline().split(" ");
14 if (line.length < 2) break;
15 dict.put(line[1], line[8]);
16]
17 while (true) {
18 String ¢ = input.readline();
19 if (¢ == null) break;
20 if (dict.containsKey(c)) {
21 output.println{dict.get(c));
22 } else {
23 output.println{”eh");
24]
25]
26 output.flush(); // Crucial when using buffered output
27 1

Python example (0.62 sec)

babelfish.py
1 dict = {}
2 line = input()

3 while line:

4 a, b = line.split()

5 dict[b] = a

6 line = input()

7 while True:

8 try:

9 c = input()
18 print{'eh" if ¢ not in dict else dict[c])
11 except:

12 break

13

Notes on Input/Output

Fast [/O: See Kattis help section.

The 10 specification describes the content of ONE test file, i.e.
what your program must process in a single run. Your program
might be executed several times with different input files.

Make sure to read the IO specification carefully! In particular:
How are sections of the input data separated?
How do you know how many datapoints there are?

How do you know that there is no more input? Common variants: An
integer n at the beginning, blank lines, special input tokens (such as "o o'
before EOF in CD), or simply EOF.

Are there multiple test cases in the same input?
What are the limits of the problem? Is it e.g. allowed to have o
datapoints?

Note that the sample input/output doesn't always cover all
possible input/output formats!

Problem: Given two sets A and B of integers (|A| = n,|B| = m

< 1,000,000), find the size of the intersection 4 N B.

Solution: Again, the problem can be solved using lookup if we
choose an appropriate data structure. There are several
options:
Use vectors/arrays, sort them (already given in increasing order) and
lookup with binary search.

Use set/hashset similar to map/hashmap in the previous problem.
Time complexity: Assuming n in O(m).

Using vectors/arrays: input in O(n), sort in O(nlogn), lookup in
O(nlogn) => O(nlogn)

Using set/hashset: both input and lookup in O(nlogn)/O(n).

Warning: The input size is quite large (up to a few MB), so
make sure to use techniques for fast I0.

Closest Sums

Givenisaset A ={a4,..,a,} of n (2 < n <1,000) integers and m
(1 < m < 24) query integers b;.

Problem: For each b;, output ¢; such that ¢; = a; + a, where
j # k and |b;- c;| is minimized.

Subproblem: Find all possible sums of pairs of integers in A.

Iterate over A with two nested loop. O(n”2) is fine since n is small.

Solution: Calculate all possible sums of pairs, store them in an
efficient data structure and use lookup for all queries.

Here, a hash map doesn’t work, since there might not be an exact match.

Use a sorted vector/array or a map, which allows lookup of closest match
in O(log(n)).
Time complexity: 0(n?log(n?)) = 0(n*log(n)) to calculate
all sums to an appropriate data structure. 0(mlog(n?)) =
O(mlog(n)) for lookups.

Mathemagicians

n magicians (3 < n < 100,000) magicians stand in a circle, each
wearing either a red or a blue hat.

The magicians can (one at a time) change the color of their
hats to match one of their neighbors.

Problem: Is it possible to reach a given target configuration
from a given original configuration?

Note: The state space is huge (2100,000 = 10"*30,000), SO
conventional search techniques (to be covered later in the
course) are not feasible.

Mathemagicians

Think in terms of contiguous “fields” of magicians wearing the
same color hat.

Operations on the borders extend/contract the size of adjacent

fields.

Key conclusion: We can only move or remove fields, not
create new ones!

Solution: Count the number of fields a in the original and b in
the target configuration. Bar special cases, the target is
reachable if b < a.

Special case 1: a = 1 and all magicians wear the wrong color.

Special case 2: The magicians wear alternating colors and the target is the
opposite configuration of alternating colors.

Time complexity: Count the number of fields in O (n).

Problem set

On the live sessions later during the semester, there will be six
problem instead of today’s four.

Today's problems mainly involved basic data structures, but
many problems on live sessions are based on more advanced
algorithms and data structures implemented in the labs.

According to the ranking at open.kattis.com, today’s problems
ranged from 2.1 to 4.8 in difficulty on a scale from 1-10. The
difficulty of the live problems are usually in the range 2.5-7.5.

Today the problems were arranged approx. in increasing order
of difficulty, but this will not be the case in general.

Conclusion

Most of today’s problems were about basic data structures. If
you found them difficult, consider recapitulating theory from
your data structures and algorithms course.

OpenDSA is a good free online resource:
https://www.ida.liu.se/opendsa/Books/TDDD86F20/html/

Make sure you are familiar with how they are implemented in your
chosen programming language.
Be familiar with how Kattis handles input and output.

Consult the documentation for your language.
Know how to ensure fast IO for large datasets.

https://www.ida.liu.se/opendsa/Books/TDDD86F20/html/

