
Algorithmic

Problem Solving
Practice Problem Solving

Session/Seminar

Herman Appelgren

Dept of Computer and Information Science

Linköping University

2Solving a Problem

1. Analyze the problem
▪ What data do you receive? What data should you produce?

▪ How large is the input? What is a feasible time complexity?

2. Find a solution
▪ Can you solve it by hand/in your head? What steps do you perform?

▪ Could you alter the problem somehow to make it easier?

▪ When you have a solution in mind, are there any corner cases?

▪ How can you store the data efficiently? Is your time complexity feasible?

3. Implementation
▪ Start with pseudo code (code comments) if your solution is complex.

▪ Use good variable names! Invest a few seconds writing descriptive
names, and in return you’ll save a lot of debugging time.

▪ Are there large numbers? Are 32-bit integers sufficient?

▪ Is there a lot of input/output? See Kattis’ help section for advice.

▪ Learn tools for debugging (valgrind, gdb, jdb, pdb, ...)

3Problem A - Babelfish

 We receive a dictionary of n (0 ≤ n ≤ 100,000) word pairs
< 𝑎𝑖 , 𝑏𝑖 > followed by m (0 ≤ m ≤ 100,000) words 𝑐𝑖.

 Problem: For each 𝑐𝑖, if 𝑐𝑖 = 𝑏𝑖 for some 𝑖, print 𝑎𝑖. Otherwise,
print “eh”.

 Solution: Straight-forward lookup of 𝑐𝑖, but make sure to use
an appropriate data structure.
▪ Linear search takes O(n) per lookup => too slow.

▪ Use a map (TreeMap/std::map in Java/C++) with lookup in O(log(n)).

▪ Use a hashmap (HashMap/std::unordered_map in Java/C++ or Python
dictionary) with lookup in O(1).

 Time complexity: Assuming 𝑛 ≥ 𝑚, the time is bounded by
parsing the input. 𝑂(𝑛 𝑙𝑜𝑔(𝑛)) with map or 𝑂(𝑛) with
hashmap.

4C++ example (0.09 sec)

5Java example (0.57 sec)

6Python example (0.62 sec)

7Notes on Input/Output

 Fast I/O: See Kattis help section.

 The IO specification describes the content of ONE test file, i.e.
what your program must process in a single run. Your program
might be executed several times with different input files.

 Make sure to read the IO specification carefully! In particular:
▪ How are sections of the input data separated?

▪ How do you know how many datapoints there are?

▪ How do you know that there is no more input? Common variants: An
integer n at the beginning, blank lines, special input tokens (such as "0 0"
before EOF in CD), or simply EOF.

▪ Are there multiple test cases in the same input?

 What are the limits of the problem? Is it e.g. allowed to have 0
datapoints?

 Note that the sample input/output doesn't always cover all
possible input/output formats!

8CD

 Problem: Given two sets 𝐴 and 𝐵 of integers (𝐴 = 𝑛, 𝐵 = 𝑚
≤ 1,000,000), find the size of the intersection 𝐴 ∩ 𝐵.

 Solution: Again, the problem can be solved using lookup if we
choose an appropriate data structure. There are several
options:
▪ Use vectors/arrays, sort them (already given in increasing order) and

lookup with binary search.

▪ Use set/hashset similar to map/hashmap in the previous problem.

 Time complexity: Assuming n in O(m).
▪ Using vectors/arrays: input in O(n), sort in O(nlogn), lookup in

O(nlogn) => O(nlogn)

▪ Using set/hashset: both input and lookup in O(nlogn)/O(n).

 Warning: The input size is quite large (up to a few MB), so
make sure to use techniques for fast IO.

9Closest Sums

 Given is a set A = {𝑎1, … , 𝑎𝑛} of n (2 ≤ n ≤ 1,000) integers and m
(1 ≤ m ≤ 24) query integers 𝑏𝑖.

 Problem: For each 𝑏𝑖, output 𝑐𝑖 such that 𝑐𝑖 = 𝑎𝑗 + 𝑎𝑘 where

𝑗 ≠ 𝑘 and |𝑏𝑖– 𝑐𝑖| is minimized.

 Subproblem: Find all possible sums of pairs of integers in A.
▪ Iterate over A with two nested loop. O(n^2) is fine since n is small.

 Solution: Calculate all possible sums of pairs, store them in an
efficient data structure and use lookup for all queries.
▪ Here, a hash map doesn’t work, since there might not be an exact match.

▪ Use a sorted vector/array or a map, which allows lookup of closest match
in O(log(n)).

 Time complexity: 𝑂(𝑛2log(𝑛2)) = 𝑂(𝑛2log(𝑛)) to calculate
all sums to an appropriate data structure. 𝑂 𝑚 log 𝑛2 =
𝑂(𝑚 log 𝑛) for lookups.

10Mathemagicians

 n magicians (3 ≤ n ≤ 100,000) magicians stand in a circle, each
wearing either a red or a blue hat.

 The magicians can (one at a time) change the color of their
hats to match one of their neighbors’.

 Problem: Is it possible to reach a given target configuration
from a given original configuration?

 Note: The state space is huge (2^100,000 ≈ 10^30,000), so
conventional search techniques (to be covered later in the
course) are not feasible.

11Mathemagicians

 Think in terms of contiguous “fields” of magicians wearing the
same color hat.

 Operations on the borders extend/contract the size of adjacent
fields.

 Key conclusion: We can only move or remove fields, not
create new ones!

 Solution: Count the number of fields a in the original and b in
the target configuration. Bar special cases, the target is
reachable if b ≤ a.
▪ Special case 1: a = 1 and all magicians wear the wrong color.

▪ Special case 2: The magicians wear alternating colors and the target is the
opposite configuration of alternating colors.

 Time complexity: Count the number of fields in 𝑂(𝑛).

12Problem set

 On the live sessions later during the semester, there will be six
problem instead of today’s four.

 Today's problems mainly involved basic data structures, but
many problems on live sessions are based on more advanced
algorithms and data structures implemented in the labs.

 According to the ranking at open.kattis.com, today’s problems
ranged from 2.1 to 4.8 in difficulty on a scale from 1-10. The
difficulty of the live problems are usually in the range 2.5-7.5.

 Today the problems were arranged approx. in increasing order
of difficulty, but this will not be the case in general.

13Conclusion

 Most of today’s problems were about basic data structures. If
you found them difficult, consider recapitulating theory from
your data structures and algorithms course.
▪ OpenDSA is a good free online resource:

https://www.ida.liu.se/opendsa/Books/TDDD86F20/html/

▪ Make sure you are familiar with how they are implemented in your
chosen programming language.

 Be familiar with how Kattis handles input and output.
▪ Consult the documentation for your language.

▪ Know how to ensure fast IO for large datasets.

https://www.ida.liu.se/opendsa/Books/TDDD86F20/html/

