Algorithmic

Problem Solving
Le 8 — Strings |

Fredrik Heintz
Dept of Computer and Information Science
Linkoping University

Outline

String Matching (lab 3.1)

String Multi-Matching (lab 3.2)
DP over Strings

Trie

The Substring Problem

String Matching

Given a text string T with n characters and a pattern string P with
m characters, find all occurrences of P in T.

Easiest solution: Use string library (C++ string::find, C strstr,
Java String.indexOf))

Knuth-Morris-Pratt: O(n+m) time and O(m) space (lab 3.1)

Boyer-Moore: also O(n+m) time and O(m) space, but more
efficient when the alphabet is large or the pattern is long since
it matches from right to left

More efficient solutions exist, as we will see...

String Multi-Matching

Given a text string T (with n) characters and pattern strings
P,...P, find all occurrences of every pattern P; in T.

The Aho-Corasick algorithm finds all matches of strings P, .,P,in T'in
O(n+m+k) time and O(n) space, where m=} | P;| and k is the total number
of matches (lab 3.2)

DP over Strings

The edit distance between strings S1 and Sz is the minimum number of
operations I (insert the next char of S2), D (delete), R (replace by the next
char of S2) that transforms S1 into S2 (also known as the Levenshtein
distance)

Define D(j, j) to be the edit distance of prefixes Si[1...i] and S2[1...j], then D(n, m)
is the edit distance of S1 and Sa2.

Define D(i, j) = min(D(i-1, j)+1, D(i, j—1)+1), D(i-1, j—1)+t(i,j)), where t(i,j) = o if
S1[i] =Sa[j] else 1.

DP computation of D(n,m) is O(nm).

We can also consider edit operations with weights: d for
deletion/insertion, r for substitution, and e for match. Edit distance
is then a special case with d=r=1 and e=o.

The Hamming distance is also a special case, with d=oo, r=1, and e=o.
(Minimization)

Longest Common Subsequence is also a special case, with d=0, r=—c0, and e=1.
(Maximization)

Trie (Prefix Tree)

Trie: An ordered tree structure used for storing a set of data,
usually strings, optimized for doing prefix searches

Example: Does any word in the set start with the prefix mart?

The idea: use a “26-ary” tree
each node has 26 children: one for each letter A-Z
add a word to the trie by following the appropriate child pointer

The Substring Problem

The substring problem: For a text S of length n, after
O(n) time preprocessing, given any string P either find
an occurrence of P in S, or determine that one does not
exist in time O(|P|)

Build a trie of all substring of S, O(n?).

It is easy to find prefixes of string in a trie.

Each substring Sfi...j] is a prefix of the suffix Sfi...n] of S.

Therefore, create a trie of the n non-empty suffixes of S.

This can be done in O(n) time.

Summary

String Matching

String Multi-Matching
DP over Strings

Trie

The Substring Problem

