
Algorithmic
Problem Solving

Le 8 – Strings I

Fredrik Heintz
Dept of Computer and Information Science

Linköping University

2Outline

 String Matching (lab 3.1)
 String Multi-Matching (lab 3.2)
 DP over Strings
 Trie
 The Substring Problem

3String Matching

Given a text string T with n characters and a pattern string P with
m characters, find all occurrences of P in T.
 Easiest solution: Use string library (C++ string::find, C strstr,

Java String.indexOf))
 Knuth-Morris-Pratt: O(n+m) time and O(m) space (lab 3.1)
 Boyer-Moore: also O(n+m) time and O(m) space, but more

efficient when the alphabet is large or the pattern is long since
it matches from right to left

 More efficient solutions exist, as we will see…

4String Multi-Matching

Given a text string T (with n) characters and pattern strings
P1,...,Pp, find all occurrences of every pattern Pi in T.

 The Aho-Corasick algorithm finds all matches of strings P1, ...,Pp in T in
O(n+m+k) time and O(n) space, where m=∑|Pi| and k is the total number
of matches (lab 3.2)

5DP over Strings
 The edit distance between strings S1 and S2 is the minimum number of

operations I (insert the next char of S2), D (delete), R (replace by the next
char of S2) that transforms S1 into S2 (also known as the Levenshtein
distance)
 Define D(i, j) to be the edit distance of prefixes S1[1...i] and S2[1...j], then D(n, m)

is the edit distance of S1 and S2.
 Define D(i, j) = min(D(i−1, j)+1, D(i, j−1)+1), D(i−1, j−1)+t(i,j)), where t(i,j) = 0 if

S1[i] =S2[j] else 1.
 DP computation of D(n,m) is O(nm).

 We can also consider edit operations with weights: d for
deletion/insertion, r for substitution, and e for match. Edit distance
is then a special case with d=r=1 and e=0.
 The Hamming distance is also a special case, with d=∞, r=1, and e=0.

(Minimization)
 Longest Common Subsequence is also a special case, with d=0, r=−∞, and e=1.

(Maximization)

6Trie (Prefix Tree)

Trie: An ordered tree structure used for storing a set of data,
usually strings, optimized for doing prefix searches
 Example: Does any word in the set start with the prefix mart?
 The idea: use a “26-ary” tree

 each node has 26 children: one for each letter A-Z
 add a word to the trie by following the appropriate child pointer

7The Substring Problem

The substring problem: For a text S of length n, after
O(n) time preprocessing, given any string P either find
an occurrence of P in S, or determine that one does not
exist in time O(|P|)
 Build a trie of all substring of S, O(n2).
 It is easy to find prefixes of string in a trie.
 Each substring S[i...j] is a prefix of the suffix S[i...n] of S.
 Therefore, create a trie of the n non-empty suffixes of S.
 This can be done in O(n) time.

8Summary

 String Matching
 String Multi-Matching
 DP over Strings
 Trie
 The Substring Problem

