
Algorithmic
Problem Solving

Le 8 – Strings I

Fredrik Heintz
Dept of Computer and Information Science

Linköping University

2Outline

 String Matching (lab 3.1)
 String Multi-Matching (lab 3.2)
 DP over Strings
 Trie
 The Substring Problem

3String Matching

Given a text string T with n characters and a pattern string P with
m characters, find all occurrences of P in T.
 Easiest solution: Use string library (C++ string::find, C strstr,

Java String.indexOf))
 Knuth-Morris-Pratt: O(n+m) time and O(m) space (lab 3.1)
 Boyer-Moore: also O(n+m) time and O(m) space, but more

efficient when the alphabet is large or the pattern is long since
it matches from right to left

 More efficient solutions exist, as we will see…

4String Multi-Matching

Given a text string T (with n) characters and pattern strings
P1,...,Pp, find all occurrences of every pattern Pi in T.

 The Aho-Corasick algorithm finds all matches of strings P1, ...,Pp in T in
O(n+m+k) time and O(n) space, where m=∑|Pi| and k is the total number
of matches (lab 3.2)

5DP over Strings
 The edit distance between strings S1 and S2 is the minimum number of

operations I (insert the next char of S2), D (delete), R (replace by the next
char of S2) that transforms S1 into S2 (also known as the Levenshtein
distance)
 Define D(i, j) to be the edit distance of prefixes S1[1...i] and S2[1...j], then D(n, m)

is the edit distance of S1 and S2.
 Define D(i, j) = min(D(i−1, j)+1, D(i, j−1)+1), D(i−1, j−1)+t(i,j)), where t(i,j) = 0 if

S1[i] =S2[j] else 1.
 DP computation of D(n,m) is O(nm).

 We can also consider edit operations with weights: d for
deletion/insertion, r for substitution, and e for match. Edit distance
is then a special case with d=r=1 and e=0.
 The Hamming distance is also a special case, with d=∞, r=1, and e=0.

(Minimization)
 Longest Common Subsequence is also a special case, with d=0, r=−∞, and e=1.

(Maximization)

6Trie (Prefix Tree)

Trie: An ordered tree structure used for storing a set of data,
usually strings, optimized for doing prefix searches
 Example: Does any word in the set start with the prefix mart?
 The idea: use a “26-ary” tree

 each node has 26 children: one for each letter A-Z
 add a word to the trie by following the appropriate child pointer

7The Substring Problem

The substring problem: For a text S of length n, after
O(n) time preprocessing, given any string P either find
an occurrence of P in S, or determine that one does not
exist in time O(|P|)
 Build a trie of all substring of S, O(n2).
 It is easy to find prefixes of string in a trie.
 Each substring S[i...j] is a prefix of the suffix S[i...n] of S.
 Therefore, create a trie of the n non-empty suffixes of S.
 This can be done in O(n) time.

8Summary

 String Matching
 String Multi-Matching
 DP over Strings
 Trie
 The Substring Problem

