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 This Week’s Problems
(The Uxuhul Voting System, Cudak, Square Fields (Hard), 
Funny Games)

 Graph Representations 
(adjacency matrix, adjacency list, edge list)

 Graph Traversal
(BFS, DFS, Best-First Search)

 Minimum Spanning Tree 
(Prim, Kruskal)

 Single-Source Shortest Path 
(Dijkstra, Bellman-Ford)

 All-Pairs Shortest Path 
(Floyd-Warshall)
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4Graph Representations

 Adjacency Matrix (O(V2) space, O(V) to enumerate neighbors)

▪ A 2D matrix of weights: int AdjMat[V][V]

▪ Good for small or dense graphs

▪ Cannot represent multi-graphs

 Adjacency List (O(V+E) space, O(k) to enumerate neighbors)
▪ A vector of vectors of “node, weight” pairs: 

using AdjList = vector<vector<pair<int, int>>>

▪ Good for large and sparse graphs

▪ Can represent multi-graphs

 Edge List (O(E) space, O(E) to enumerate neighbors)
▪ A vector of triples “from node, to node, weight”:

using EdgeList = vector<tuple<int, int, int>>

▪ The vector of edges is usually sorted

▪ Useful for some algorithms, like Kruskal’s algorithm for finding MSTs



5Graph Traversal

 Depth-First Search (O(V+E) for adjacency lists and O(V2) for 
adjacency matrices)
▪ Keep a stack of unvisited nodes, initialize it with the start node.
▪ Visit the first node in the stack. If it has been visited before then there is a 

cycle, otherwise add all its children to the stack.

 Breadth-First Search (O(V+E) for adjacency lists and O(V2) for 
adjacency matrices)
▪ Keep a queue of unvisited nodes, initialize it with the start node.
▪ Visit the first node in the queue. If it has been visited before then there is a 

cycle, otherwise add all its children to the queue.
▪ Visits the nodes of a graph in the order of the distance to the start node.

 Best-First Search
▪ Keep a priority queue of unvisited nodes, initialize it with the start node.
▪ Visit the first node in the queue (the best next node). If it has been visited 

before then there is a cycle, otherwise add all its children to the queue.
▪ Visits the nodes of a graph in the shortest weighted distance from the start 

node.

 A* Search
▪ Like Best-First Search but with a heuristic that underestimates the distance 

from the current node to the goal node.



6Applications of DFS/BFS

 Finding Connected Components – undirected graph
▪ Repeatedly select an unvisited node u and run DFS(u) or BFS(u) to find 

all reachable nodes from u. The number of repetitions is the number of 
components.

 Flood Fill
▪ Adaptation of DFS to count the number of cells in a 2D grid with a 

particular color/property. Usually on implicit graphs, i.e. 2D grids.

 Topological Sorting of Directed Acyclic Graphs
▪ Creates a linear ordering of the nodes in a graph such that a node u

comes before the node v if there is an edge uv.

▪ Kahn’s algorithm is based on BFS

▪ When visiting a node, remove it and all its outgoing edges. Add every node v
that now have 0 incoming edges (start with a node that has 0 incoming edges).

▪ Tarjan’s algorithm also exist, which is based on DFS



7Applications of DFS/BFS

 Bipartite Graph Check
▪ Try “coloring” the graph with only two colors using BFS, so that no 

neighbors have the same color. 

 Finding Strongly Connected Components in Directed Graphs
▪ Tarjan’s SCC algorithm; based on DFS.

▪ Solve 2-SAT in linear time [Aspvall, Plass & Tarjan (1979)].



8Minimum Spanning Tree

 Given a connected, undirected and weighted graph G, select a 
subset of edges E’  G such that the graph G is connected and 
the total weight of the selected edges E’ is minimal.

 This corresponds to finding a minimal spanning tree of G, i.e. a 
tree which connects all the nodes in the graph G and whose 
total edge weight is minimal.

 Kruskal’s Algorithm (O(E log V))
▪ Sort the edges based on non-decreasing weight (use an EdgeList).

▪ Greedily add the next edge unless it forms a cycle (use UnionFind)

 Prim’s Algorithm (O(E log V)) also exists



9Single Source Shortest Path

 Given a weighted graph G and a starting source node s, what 
are the shortest paths from s to every other node of G?

 SSSP on Unweighted Graphs (or all edges have equal weight)
▪ Use BFS (O(V+E)).

▪ To reconstruct the shortest path keep a vector<int> p with the parent 
node of each node and generate the path starting from the destination.

 SSSP on Weighted Graphs
▪ Dijkstra (O((V+E) log V)).

▪ Maintain a priority queue with reachable nodes sorted on their total 
distance from the source (increasing). 

▪ Greedily select the node u with shortest distance d from the source and 
update the shortest distance to u according to dist[u]=min(dist[u], d).

▪ If dist[u] is decreased add all neighboring nodes to the priority queue.



10Single Source Shortest Path

 SSSP on Weighted Graphs with Negative Cycles
▪ The Dijkstra version described above works even with negative weights, 

but not with negative cycles.

▪ Bellman-Ford (O(VE) for adjacency lists)

▪ Idea: Relax all E edges V-1 times.

▪ Basically do a DP over every edge (u,v) V-1 times and update as follows:

▪ dist[v] = min(dist[v], dist[u] + w[u][v])

▪ It is possible to determine if there are negative cycles since if there are no 
negative cycles then after V-1 iterations no relaxations should be possible. 
This means that if on the Vth iteration relaxations are possible, there is a 
negative cycle.



11All-Pairs Shortest Path

 Given a weighted graph G, find the shortest path between every 
pair of nodes u and v.

 Floyd-Warshall (O(V3))
▪ For every triple k, i, j compute 

AdjMat[i][ j] = min(AdjMat[i][ j], AdjMat[i][k] + AdjMat[k][ j])

 Applications of APSP
▪ Solving the SSSP on small weighted graphs

▪ Transitive closure

▪ Minimax and maximin
AdjMat[i][ j] = min(AdjMat[i][ j], max(AdjMat[i][k], AdjMat[k][ j]))

▪ Finding the cheapest/negative cycle

▪ Finding the diameter of a graph

▪ Finding the strongly connected components of a graph



12Summary SSSP/APSP

Graph Criteria BFS
O(V+E)

Dijkstra
O((V+E) log V)

Bellman-Ford
O(VE)

Floyd Warshall
O(V3)

Max size V, E <= 10M V, E <= 300K VE <= 10M V <= 400

Unweighted Best Ok Bad Bad in general

Weighted WA Best Ok Bad in general

Negative weight WA Our variant ok Ok Bad in general

Negative cycle Cannot detect Cannot detect Can detect Can detect

Small graph WA if 
weighted

Overkill Overkill Best



13Summary

 Graph Representations (adjacency matrix, adjacency list, edge 
list)

 Graph Traversal (BFS, DFS, Best First Search)

 Finding Strongly Connected Components

 Minimum Spanning Tree (Prim, Kruskal; lab 2.5)

 Single-Source Shortest Path (Dijkstra, Bellman-Ford; lab 2.1-
2.3)

 All-Pairs Shortest Path (Floyd-Warshall, lab 2.4)


