
Advanced

Algorithmic Problem

Solving
Le 4 – Problem Solving

Paradigms

Fredrik Heintz

Dept of Computer and Information Science

Linköping University

2Important Problem Solving Approaches

 Simulation/Ad hoc

 Do what is stated in the problem

 Example: Simulate a robot

 Greedy approaches

 Find the optimal solution by extending a partial solution by making locally
optimal decisions

 Example: Minimal spanning trees, coin change in certain currencies

 Divide and conquer

 Take a large problem and split it up in smaller parts that are solved individually

 Example: Merge sort and Quick sort

 Dynamic programming

 Find a recursive solution and compute it “backwards” or use memoization

 Example: Finding the shortest path in a graph and coin change in all currencies

 Search

 Create a search space and use a search algorithm to find a solution

 Example: Exhaustive search (breadth or depth first search), binary search,
heuristic search (A*, best first, branch and bound)

3Outline

 Complete search (iterative and recursive, UVA 11656, UVA 750)

 Divide and Conquer (binary search, UVA 11935)

 Greedy search (lab 1.1, UVA 10382)

 Dynamic programming (lab 1.2, lab 1.3, UVA 147, UVA 11450,
UVA 507, UVA 108)

4Complete Search

 When a problem is small or (almost) all possibilities have to be
tried complete search is a candidate approach.

 To determine the feasibility of complete search estimate the
number of calculations that have to be made in the worst case.

 Iterative complete search uses nested loops to generate every
possible complete solution and filter out the valid ones.
 Iterating over all permutations using next_permutation

 Iterating over all subsets using bit set technique

 Recursive complete search extends a partial solution with one
element until a complete and valid solution is found.
 This approach is often called recursive backtracking.

 Pruning is used to significantly improve the efficiency by removing
partial solutions that can not lead to a solution as soon as possible. In the
best case only valid solutions are generated.

5Divide and Conquer

 Divide and conquer is very common and powerful technique
which divides a problem into smaller parts, solves each part
recursively and then puts together the answer from the pieces.

 Many well known algorithms are based on divide and conquer
such as quick sort, merge sort and binary search.

 Binary search is a very versatile and useful technique which can
be used to
 find a particular value in a sorted range,

 find the parameters of a (convex) function that gives a particular value,

 find the minimum/maximum value of a function.

 Binary search can be implemented either using built in
functions (lower_bound/upper_bound), iterating until the
difference between the end points is small enough or iterate a
constant but sufficiently large number of times.

6Greedy

 An algorithm is said to be greedy if it makes a locally optimal
choice in each step towards the globally optimal solution.

 For a greedy algorithm to give a globally optimal result a
problem must have two properties:
 It has optimal sub-structures, i.e. an optimal solution contains the

optimal solutions to sub problems.

 It has the greedy choice property, i.e. if we extend a partial solution by
making a locally optimal choice we will get the optimal complete solution
without reconsidering previous choices.

 Classical examples: Coin change in some currencies, interval
coverage and load balancing.

 Greedy algorithms can be very useful as heuristics for example
in branch-and-bound search algorithms.

 In combinatorics matroids and the generalization greedoids
characterize classes of problems with greedy solutions.

7Dynamic Programming

 Dynamic Programming is a problem solving approach which
computes the answer for every possible state exactly once.

 For DP to be suitable a problem must have two properties:
 It has optimal sub-structures, i.e. an optimal solution contains the

optimal solutions to sub problems.

 Overlapping sub-problems, i.e. the same subproblem occurs many times.

 Top-down (memoization) vs Bottom-up
 Top-down: no need to consider the order of computations, only compute

states actually used, natural transition from complete search,

 Bottom-up: no recursion, computes every state, table size can be reduced
if only the previous row of states is used then only two rows are required.

 Displaying the optimal solution
 Store the previous state for each solution

 Use the DP table and the optimal sub-structures property to compute the
path.

8Classical DP Problems

 Max 1D sum

 Max 2D sum

 Longest increasing subsequence (LIS)
 Longest decreasing subsequence (LDS)

 0-1 Knapsack (subset sum)

 Coin Change (general version)

 Travelling Salesman Problem (TSP)

1D RSQ 2D RSQ LIS Knapsack CoinChange TSP

State (i) (i,j) (i) (id,remW) (v) (pos,mask)

Space O(n) O(n2) O(n) O(nS) O(V) O(n2n)

Transition subarray submatrix all j<i take/ignore all n coins all n cities

Time O(1) O(1) O(n2) O(nS) O(nV) O(2nn2)

9Summary

 When a problem is small or (almost) all possibilities have to be
tried complete search is a candidate approach.

 Divide and conquer is very common and powerful technique
which divides a problem into smaller parts, solves each part
recursively and then puts together the answer from the pieces.

 An algorithm is said to be greedy if it makes a locally optimal
choice in each step towards the globally optimal solution.

 Dynamic Programming is a problem solving approach which
computes the answer for every possible state exactly once.

