
Advanced

Algorithmic Problem

Solving
Le 4 – Problem Solving

Paradigms

Fredrik Heintz

Dept of Computer and Information Science

Linköping University

2Important Problem Solving Approaches

 Simulation/Ad hoc

 Do what is stated in the problem

 Example: Simulate a robot

 Greedy approaches

 Find the optimal solution by extending a partial solution by making locally
optimal decisions

 Example: Minimal spanning trees, coin change in certain currencies

 Divide and conquer

 Take a large problem and split it up in smaller parts that are solved individually

 Example: Merge sort and Quick sort

 Dynamic programming

 Find a recursive solution and compute it “backwards” or use memoization

 Example: Finding the shortest path in a graph and coin change in all currencies

 Search

 Create a search space and use a search algorithm to find a solution

 Example: Exhaustive search (breadth or depth first search), binary search,
heuristic search (A*, best first, branch and bound)

3Outline

 Complete search (iterative and recursive, UVA 11656, UVA 750)

 Divide and Conquer (binary search, UVA 11935)

 Greedy search (lab 1.1, UVA 10382)

 Dynamic programming (lab 1.2, lab 1.3, UVA 147, UVA 11450,
UVA 507, UVA 108)

4Complete Search

 When a problem is small or (almost) all possibilities have to be
tried complete search is a candidate approach.

 To determine the feasibility of complete search estimate the
number of calculations that have to be made in the worst case.

 Iterative complete search uses nested loops to generate every
possible complete solution and filter out the valid ones.
 Iterating over all permutations using next_permutation

 Iterating over all subsets using bit set technique

 Recursive complete search extends a partial solution with one
element until a complete and valid solution is found.
 This approach is often called recursive backtracking.

 Pruning is used to significantly improve the efficiency by removing
partial solutions that can not lead to a solution as soon as possible. In the
best case only valid solutions are generated.

5Divide and Conquer

 Divide and conquer is very common and powerful technique
which divides a problem into smaller parts, solves each part
recursively and then puts together the answer from the pieces.

 Many well known algorithms are based on divide and conquer
such as quick sort, merge sort and binary search.

 Binary search is a very versatile and useful technique which can
be used to
 find a particular value in a sorted range,

 find the parameters of a (convex) function that gives a particular value,

 find the minimum/maximum value of a function.

 Binary search can be implemented either using built in
functions (lower_bound/upper_bound), iterating until the
difference between the end points is small enough or iterate a
constant but sufficiently large number of times.

6Greedy

 An algorithm is said to be greedy if it makes a locally optimal
choice in each step towards the globally optimal solution.

 For a greedy algorithm to give a globally optimal result a
problem must have two properties:
 It has optimal sub-structures, i.e. an optimal solution contains the

optimal solutions to sub problems.

 It has the greedy choice property, i.e. if we extend a partial solution by
making a locally optimal choice we will get the optimal complete solution
without reconsidering previous choices.

 Classical examples: Coin change in some currencies, interval
coverage and load balancing.

 Greedy algorithms can be very useful as heuristics for example
in branch-and-bound search algorithms.

 In combinatorics matroids and the generalization greedoids
characterize classes of problems with greedy solutions.

7Dynamic Programming

 Dynamic Programming is a problem solving approach which
computes the answer for every possible state exactly once.

 For DP to be suitable a problem must have two properties:
 It has optimal sub-structures, i.e. an optimal solution contains the

optimal solutions to sub problems.

 Overlapping sub-problems, i.e. the same subproblem occurs many times.

 Top-down (memoization) vs Bottom-up
 Top-down: no need to consider the order of computations, only compute

states actually used, natural transition from complete search,

 Bottom-up: no recursion, computes every state, table size can be reduced
if only the previous row of states is used then only two rows are required.

 Displaying the optimal solution
 Store the previous state for each solution

 Use the DP table and the optimal sub-structures property to compute the
path.

8Classical DP Problems

 Max 1D sum

 Max 2D sum

 Longest increasing subsequence (LIS)
 Longest decreasing subsequence (LDS)

 0-1 Knapsack (subset sum)

 Coin Change (general version)

 Travelling Salesman Problem (TSP)

1D RSQ 2D RSQ LIS Knapsack CoinChange TSP

State (i) (i,j) (i) (id,remW) (v) (pos,mask)

Space O(n) O(n2) O(n) O(nS) O(V) O(n2n)

Transition subarray submatrix all j<i take/ignore all n coins all n cities

Time O(1) O(1) O(n2) O(nS) O(nV) O(2nn2)

9Summary

 When a problem is small or (almost) all possibilities have to be
tried complete search is a candidate approach.

 Divide and conquer is very common and powerful technique
which divides a problem into smaller parts, solves each part
recursively and then puts together the answer from the pieces.

 An algorithm is said to be greedy if it makes a locally optimal
choice in each step towards the globally optimal solution.

 Dynamic Programming is a problem solving approach which
computes the answer for every possible state exactly once.

