Advanced
Algorithmic Problem
Solving

Le 4 — Problem Solving
Paradigms




Important Problem Solving Approaches

Simulation/Ad hoc
Do what is stated in the problem
Example: Simulate a robot

Greedy approaches

Find the optimal solution by extending a partial solution by making locally
optimal decisions

Example: Minimal spanning trees, coin change in certain currencies

Divide and conquer
Take a large problem and split it up in smaller parts that are solved individually
Example: Merge sort and Quick sort

Dynamic programming
Find a recursive solution and compute it “backwards” or use memoization

Example: Finding the shortest path in a graph and coin change in all currencies

Search
Create a search space and use a search algorithm to find a solution

Example: Exhaustive search (breadth or depth first search), binary search,
heuristic search (A*, best first, branch and bound)



Outline

Complete search (iterative and recursive, UVA 11656, UVA 750)
Divide and Conquer (binary search, UVA 11935)

Greedy search (lab 1.1, UVA 10382)

Dynamic programming (lab 1.2, lab 1.3, UVA 147, UVA 11450,
UVA 507, UVA 108)



Complete Search

When a problem is small or (almost) all possibilities have to be
tried complete search is a candidate approach.

To determine the feasibility of complete search estimate the
number of calculations that have to be made in the worst case.

Iterative complete search uses nested loops to generate every
possible complete solution and filter out the valid ones.
[terating over all permutations using next_permutation

[terating over all subsets using bit set technique

Recursive complete search extends a partial solution with one
element until a complete and valid solution is found.
This approach is often called recursive backtracking.

Pruning is used to significantly improve the efficiency by removing
partial solutions that can not lead to a solution as soon as possible. In the
best case only valid solutions are generated.



Divide and Conquer

Divide and conquer is very common and powerful technique
which divides a problem into smaller parts, solves each part
recursively and then puts together the answer from the pieces.

Many well known algorithms are based on divide and conquer
such as quick sort, merge sort and binary search.

Binary search is a very versatile and useful technique which can
be used to

find a particular value in a sorted range,

find the parameters of a (convex) function that gives a particular value,

find the minimum/maximum value of a function.

Binary search can be implemented either using built in
functions (lower_bound/upper_bound), iterating until the
difference between the end points is small enough or iterate a
constant but sufficiently large number of times.



An algorithm is said to be greedy if it makes a locally optimal
choice in each step towards the globally optimal solution.

For a greedy algorithm to give a globally optimal result a
problem must have two properties:

[t has optimal sub-structures, i.e. an optimal solution contains the
optimal solutions to sub problems.

It has the greedy choice property; i.e. if we extend a partial solution by
making a locally optimal choice we will get the optimal complete solution
without reconsidering previous choices.
Classical examples: Coin change in some currencies, interval
coverage and load balancing.

Greedy algorithms can be very useful as heuristics for example
in branch-and-bound search algorithms.

In combinatorics matroids and the generalization greedoids
characterize classes of problems with greedy solutions.



Dynamic Programming

Dynamic Programming is a problem solving approach which
computes the answer for every possible state exactly once.

For DP to be suitable a problem must have two properties:

[t has optimal sub-structures, i.e. an optimal solution contains the
optimal solutions to sub problems.

Overlapping sub-problems, i.e. the same subproblem occurs many times.

Top-down (memoization) vs Bottom-up

Top-down: no need to consider the order of computations, only compute
states actually used, natural transition from complete search,

Bottom-up: no recursion, computes every state, table size can be reduced

if only the previous row of states is used then only two rows are required.
Displaying the optimal solution

Store the previous state for each solution

Use the DP table and the optimal sub-structures property to compute the
path.



Classical DP Problems

Max 1D sum
Max 2D sum
Longest increasing subsequence (LIS)

Longest decreasing subsequence (LDS)
0-1 Knapsack (subset sum)
Coin Change (general version)

Travelling Salesman Problem (TSP)

State (i) (i,j) (i) (id,remW)
Space O(n) O(n3) O(n) O(nS)
Transition subarray submatrix allj<i take/ignore
Time O@1) O@1) O(n2) O(nS)

(V)

O(V)

all n coins
O(nV)

(pos,mask)
O(nz2")

all n cities
O(2"n?)



Summary

When a problem is small or (almost) all possibilities have to be
tried complete search is a candidate approach.

Divide and conquer is very common and powerful technique
which divides a problem into smaller parts, solves each part
recursively and then puts together the answer from the pieces.

An algorithm is said to be greedy if it makes a locally optimal
choice in each step towards the globally optimal solution.

Dynamic Programming is a problem solving approach which
computes the answer for every possible state exactly once.



