Seminar 13 Computational Geometry TDDD95: APS

Seminar in *Algorithmic Problem Solving* May 3, 2016

Tommy Färnqvist Department of Computer and Information Science Linköping University Computational Geometry

Tommy Färnqvist

Outline Primitive Operations Polygon Area Convex Hull Closest Pair Final Note Outline

1 Primitive Operations

2 Polygon Area

3 Convex Hull

4 Closest Pair

Computational Geometry

Tommy Färnqvist

Outline

Primitive Operations Polygon Area

olygon Alea

Convex Hull

Closest Pair

Geometric Primitives

- Point: two numbers (*x*, *y*).
- Line: two numbers a and b. [ax + by = 1]
- Line segment: two points.
- Polygon: sequence of points.

Primitive operations

- Is a polygon simple?
- Is a point inside a polygon?
- Do two line segments intersect?
- What is the Euclidean distance between two points?
- Given tree points p_1, p_2, p_3 , is $p_1 \rightarrow p_2 \rightarrow p_3$ a counterclockwise turn?

Computational Geometry

Tommy Färnqvist

Outline

Primitive Operations

Polygon Area

Convex Hull

Closest Pair

Geometric Intuition

Warning: intution may be misleading.

- Humans have spatial intuition in 2D and 3D.
- Computers do not.
- Neither has good intuition in higher dimensions!

algorithm sees this

Q. Is a given polygon simple? (No crossings.)

Computational Geometry

Tommy Färnqvist

Outline

Primitive Operations

Polygon Area

Convex Hull

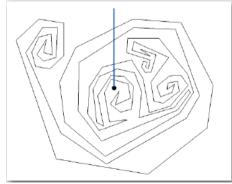
Closest Pair

Polygon inside, outside

Theorem (Jordan curve theorem, Jordan 1886, Veblen 1905)

Any continuous simple closed curve cuts the plane in exactly two pieces: the inside and the outside.

Q. Is a point inside a simple polygon?

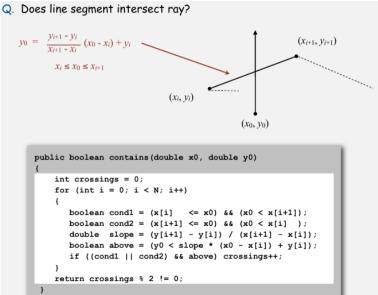


Tommy Färnqvist

Outline

Primitive Operation Polygon Area Convex Hull Closest Pair Final Note

Polygon inside, outside: crossing number



Computational Geometry

Tommy Färnqvist

Outline

Primitive Operation: Polygon Area

Folygon Area

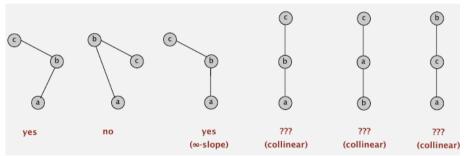
Convex Hull

Closest Pair

Implementing ccw

CCW. Given three points *a*, *b*, and *c*, is $a \rightarrow b \rightarrow c$ a counterclockwise turn?

- Analog of compares in sorting
- Idea: compare slopes



Lesson. Geometric primitives are tricky to implement.

- Dealing with degenerate cases.
- Coping with floating-point precision.

Computational Geometry

Tommy Färnqvist

Outline Primitive Operations Polygon Area Convex Hull Closest Pair Final Note

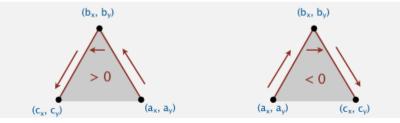
Implementing ccw

CCW. Given three points *a*, *b*, and *c*, is $a \rightarrow b \rightarrow c$ a counterclockwise turn?

• Determinant gives twice signed area of triangle.

$$2 \times Area(a, b, c) = \begin{vmatrix} a_x & a_y & 1 \\ b_x & b_y & 1 \\ c_x & c_y & 1 \end{vmatrix} = (b_x - a_x)(c_y - a_y) - (b_y - a_y)(c_x - a_x)$$

- If area > 0 then $a \rightarrow b \rightarrow c$ is counterclockwise.
- If area < 0 then $a \rightarrow b \rightarrow c$ is clockwise.
- If area = 0 then $a \rightarrow b \rightarrow c$ are collinear.



Tommy Färnqvist

Outline

Primitive Opera Polygon Area Convex Hull Closest Pair Final Note

Immutable Point Data Type

```
public class Point
   private final int x;
   private final int v;
   public Point(int x, int v)
   { this.x = x; this.y = y; }
   public double distanceTo(Point that)
      double dx = this x - that x:
      double dv = this.v - that.v;
                                                   cast to long to avoid
      return Math.sgrt(dx*dx + dv*dv);
                                                   overflowing an int
   public static int ccw(Point a, Point b, Point c)
      int area2 = (b.x-a.x)*(c.y-a.y) - (b.y-a.y)*(c.x-a.x);
      if
              (area 2 < 0) return -1;
      else if (area 2 > 0) return +1;
      else
                          return 0:
   public static boolean collinear (Point a, Point b, Point c)
   { return ccw(a, b, c) == 0; }
```

Computational Geometry

Tommy Färnqvist

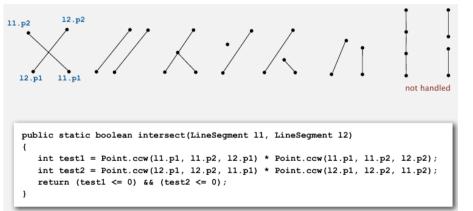
Outline

Primitive Operatio Polygon Area Convex Hull Closest Pair

Sample ccw client: line intersection

Intersect. Given two line segments, do they intersect?

- Idea 1: find intersection point using algebra and check.
- Idea 2: check if the endpoints of one line segment are on different "sides" of the other line segment (4 calls to ccw).



Computational Geometry

Tommy Färnqvist

Outline

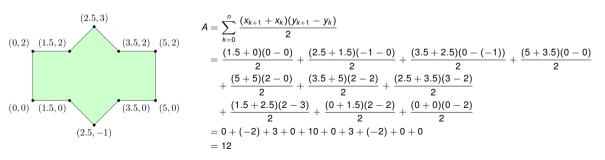
Area of Polygons

Area. The area of any simple polygon is given by the following formula

$$A = \sum_{k=0}^{n} \frac{(x_{k+1} + x_k)(y_{k+1} - y_k)}{2}$$

where *n* is the number of vertices, (x_k, y_k) is the *k*th point when labelled in a counterclockwise manner, and $(x_{n+1}, y_{n+1}) = (x_0, y_0)$.

Example



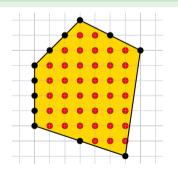
Area of Polygons

Area. The area of any simple polygon with vertices at integer coordinates is given by Pick's theorem:

$$A=I+\frac{R}{2}-1$$

where R is the number of integer points on the boundary of the polygon, and I is the number of integer points in the interior of the polygon.

Example



Here, R = 12, and I = 40, which means the area of the polygon is 40 + 6 - 1 = 45.

Tommy Färnqvist

Outline

Primitive Operations

Polygon Area

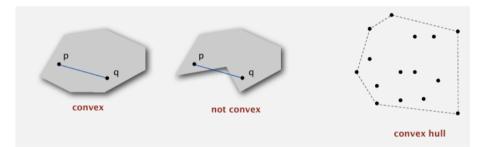
Convex Hull

Closest Pair

Convex Hull

A set of points is convex if, for any two points p and q in the set, the line segment \overline{pq} is completely in the set.

Convex hull. Smallest convex set containing all the points.



- Shortest (perimeter) fence surrounding the points.
- Smallest (area) convex polygon enclosing the points.

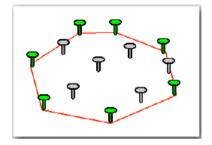
Computational Geometry

Tommy Färnqvist

Outline Primitive Operations Polygon Area Convex Hull Closest Pair Final Note

Mechanical Solution

Mechanical convex hull algorithm. Hammer nails perpendicular to the plane; stretch elastic rubber band around points.



Computational Geometry

Tommy Färnqvist

Outline Primitive Operations Polygon Area

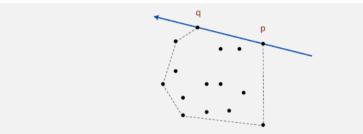
Convex Hull

Closest Pair

Brute-force Algorithm

Observation 1. Edges of convex hull of P connects pairs of points in P.

Observation 2. *p*-*q* is on convex hull of all other points are counterclockwise of \overrightarrow{pq} .



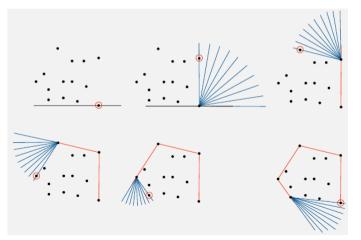
 $\mathcal{O}(N^3)$ algorithm. For all pairs of points *p* and *q*:

- Compute Point.ccw(p, q, x) for all other points x.
- $p \rightarrow q$ is on hull if all valules are positive.

Degeneracies. Three (or more) points on a line.

Package Wrap (Jarvis March)

- Start with point with smallest y-coordinate.
- Rotate sweep line aroung current point in the ccw direction.
- First point hit is on the hull.
- Repeat.



Computational Geometry

Tommy Färnqvist

Outline

Primitive Operations

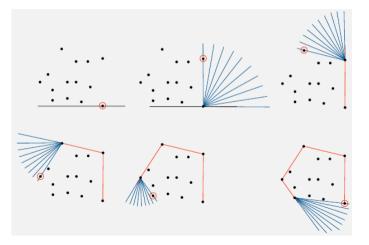
Polygon Area

Convex Hull

Closest Pair

Package Wrap (Jarvis March)

- Compute angle between current point and all remaining points.
- Pick smallest angle larger than current angle.
- $\Theta(N)$ per iteration.



Computational Geometry

Tommy Färnqvist

Outline Primitive Operations Polygon Area

Closest Pair

How Many Points on the Hull?

Parameters.

- *N* = number of points.
- h = number of points on the hull.

Package wrap running time. $\Theta(Nh)$.

How many points on the hull?

- Worst case: h = N.
- Average case: difficult problems in stochastic geometry.
 - uniformly at random in a disc: $h = N^{1/3}$
 - uniformly at random in a convex polygon with $\mathcal{O}(1)$ edges: $h = \log N$

Outline

Primitive Operations

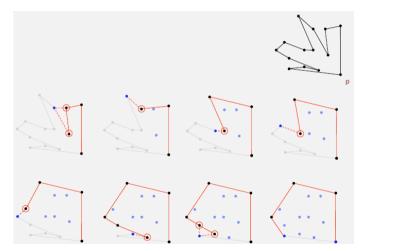
Polygon Area

Convex Hull

Closest Pair

Graham Scan

- Choose point *p* with smallest *y*-coordinate.
- Sort points by polar angle with *p* to get (simple) polygon.
- Consider points in order, and discard those that would create clockwise turn.



Computational Geometry

Tommy Färnqvist

Closest Pair

Graham Scan: Implementation

- Input: p[1], p[2], ..., p[N] are distinct points (not all collinear).
- Output: M and rearrangement so that p[1], p[2], ..., p[M] is convex hull.

```
// preprocess so that p[1] has smallest y-coordinate;
// sort by polar angle with respect to p[1]
p[0] = p[N]; // sentinel (p[N] is on hull)
int M = 2;
for (int i = 3; i \le N; i++)
ł
   while (Point.ccw(p[M-1], p[M], p[i]) <= 0)
      M--;
   M++:
                                          discard points that would
   swap (p, M, i); add i to putative hull create clockwise turn
```

Computational Geometry

Tommy Färnqvist

Outline Primitive Operations Polygon Area

Closest Pair Final Note

Running time. N log N for sort and linear for rest. (Why?)

Quick Elemination

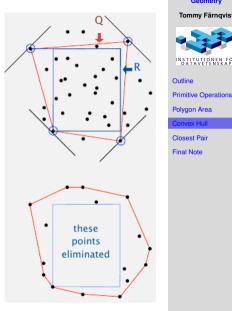
Quick elimination.

- Choose a guadrilateral Q or rectangle R with 4 points as corners.
- Any point inside cannot be on hull.
 - 4 ccw tests for quadrilateral
 - 4 compares for rectangle

Three-phase algorithm.

- Pass through all points to compute R.
- Eliminate points inside R.
- Find convex hull of remaining points.

In practice. Eliminates almost all points in linear time.



Computationa Geometry Tommy Färngvist

Geometry

Computational Tommy Färngvist

Outline Primitive Operations Polygon Area Convex Hull Closest Pair **Final Note**

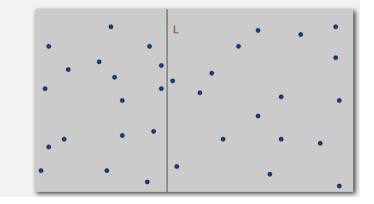
Closest pair problem. Given N points in the plane, find a pair of points with the smallest Euclidean distance between them.

Brute force. Check all pairs with N^2 distance calculations.

1d version. Easy N log N algorithm if points are on a line.

Non-degeneracy assumption. No two points have the same x-coordinate.

• Divide: draw vertical line L so that ~ $\frac{1}{2}N$ points on each side.



Computational Geometry

Tommy Färnqvist

Outline

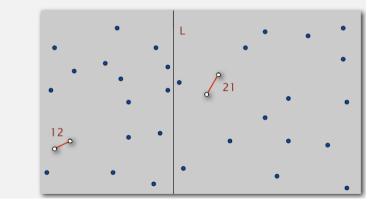
Primitive Operations

Polygon Area

Convex Hull

Closest Pair

- Divide: draw vertical line L so that ~ 1/2 N points on each side.
- Conquer: find closest pair in each side recursively.



Computational Geometry

Tommy Färnqvist

Outline Primitive Operations

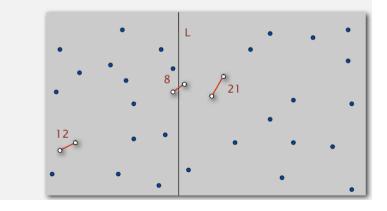
Polygon Area

Convex Hull

Closest Pair

- Divide: draw vertical line L so that ~ ½ N points on each side.
- Conquer: find closest pair in each side recursively.
- Combine: find closest pair with one point in each side.
- Return best of 3 solutions.

seems like O(N2)



Computational Geometry

Tommy Färnqvist

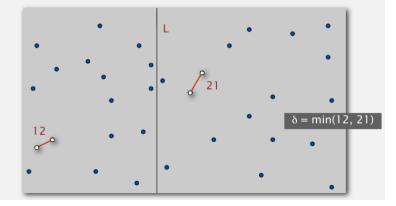
Outline Primitive Operations

Polygon Area

Convex Hull

Closest Pair

Find closest pair with one point in each side, assuming that distance $< \delta$.



Computational Geometry

Tommy Färnqvist

Outline Primitive Operations

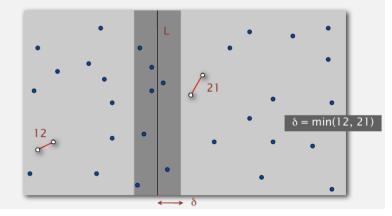
Polygon Area

Convex Hull

Closest Pair

Find closest pair with one point in each side, assuming that distance < δ .

• Observation: only need to consider points within δ of line L.



Computational Geometry

Tommy Färnqvist

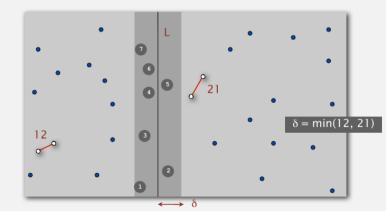
Outline Primitive Operations Polygon Area

Convex Hull

Closest Pair

Find closest pair with one point in each side, assuming that distance < δ .

- Observation: only need to consider points within δ of line $\mathit{L}.$
- Sort points in 2δ -strip by their y-coordinate.



Computational Geometry

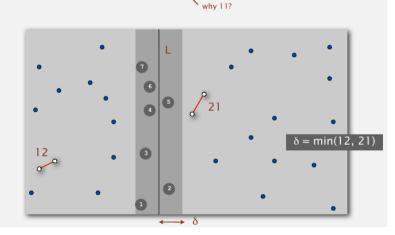
Tommy Färnqvist

Outline Primitive Operations Polygon Area Convex Hull

Closest Pair

Find closest pair with one point in each side, assuming that distance < δ .

- Observation: only need to consider points within δ of line $\mathit{L}.$
- Sort points in 2δ -strip by their y-coordinate.
- Only check distances of those within 11 positions in sorted list!



Computational Geometry

Tommy Färnqvist

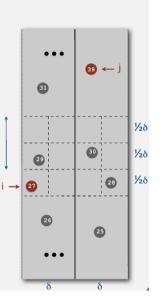
Outline Primitive Operations Polygon Area Convex Hull Closest Pair

Def. Let s_i be the point in the 2δ -strip, with the *i*th smallest *y*-coordinate.

Claim. If $|i-j| \ge 12$, then the distance between s_i and s_j is at least δ . Pf.

- No two points lie in same $\frac{1}{2}\,\delta\text{-by-}\frac{1}{2}\,\delta$ box.
- Two points at least 2 rows apart have distance $\geq 2 (\frac{1}{2} \delta)$.

Fact. Claim remains true if we replace 12 with 7.



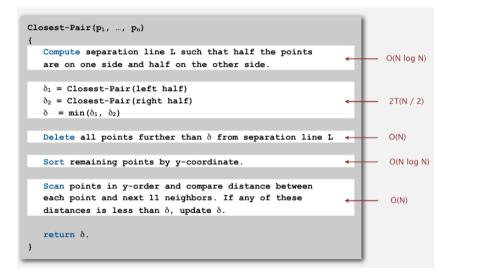
2

rows

Computational Geometry

Tommy Färnqvist

Outline Primitive Operations Polygon Area Convex Hull Closest Pair Final Note



Computational Geometry

Tommy Färnqvist

Outline Primitive Operations Polygon Area Convex Hull Closest Pair

Running time recurrence. $T(N) \leq 2T(N/2) + O(N \log N)$. Solution. $T(N) = O(N(\log N)^2)$. **Remark.** Can be improved to $O(N \log N)$. sort by x- and y-coordinates once (reuse later to avoid re-sorting) $(x_1 - x_2)^2 + (y_1 - y_2)^2$ Lower bound. In guadratic decision tree model, any algorithm for closest pair requires $\Omega(N \log N)$ quadratic tests.

Computational Geometry

Tommy Färnqvist

Outline Primitive Operations Polygon Area

Convex Hull

Closest Pair

Computational Geometry

Tommy Färnqvist

Outline

Primitive Operations

Polygon Area

Convex Hull

Closest Pair

Final Note

Combinatorics/Probability theory...