Algorithmic

Problem Solving
Le 12 — Number Theory

Fredrik Heintz
Dept of Computer and Information Science
Linkoping University

Outline

Modular arithmetic (Lab 3.5)
Chinese reminder theorem (Lab 3.6-3.7)
Primes and Prime testing (Lab 3.8)

Modular Arithmetic (Z,)

Definition
a= b(modn) < n|(b — a), alternatively a= qgn+ b

Zn for an integer n is an equivalence relation

Definition (An equivalence class mod n)

[al = {x|x=a(modn)} ={a+qn|q € Z}

Arithmetic can be done with these equivalence classes (Lab 3.5)

Modular Inverse

What does it mean to calculate x / y mod n?
Reformulate as x-y* mod n
That is, we are looking fory 7, such that y-y * mod n =1 holds

Recall Euclid’s algorithm for greatest common divisor:
ull gcd(ull a, ull b) {

ull t;

while (b) t=a, a = b,b = t%b;

return a;

}

And the extended Euclidean algorithm, that finds x, y such that
ax + by = gcd(a,b):
void exeuclid(ll a, Il b, I *x Il *y) {

if (Ib) *x=1, *y = 0;

else exeuclid(b, a%b, y, x),*y -=*x * (a/b);

Chinese Remainder Theorem (Lab 3.6-3.7)

Theorem 2.9: (Chinese Remainder Theorem) Let my,my,...,m, be
pairwise relatively prime positive integers and let b,, b,, ..., b, be any
integers. Then the system of linear congruences in one variable given by

X = bl mOd nt,

X = bz mod m,

x = b, modm,
has a unique solution modulo m,;m; - - - m,.
Proof: We first construct a solution to the given system of linear
congruences in one variable. Let M = mym,---m, and, for i = 1,2,...,n,
let M, = M/m,. Now (M, m;) = 1 for each i. (Why?) So M;x; = 1 modm, has

a solution for each i by Corollary 2.8. Form

¥ e blM111 = szzIz R b,,M,,x,,

Chinese Remainder Theorem (Lab 3.6-3.7)

Note that x is a solution of the desired system since, fori = 1,2,...,n,

e blm\l‘-}- bZ‘MZ'rZ G blMle ey b,,M,,X,,
N
=0+0+--+b+ - +0modm,

= b, mod m,

It remains to show the uniqueness of the solution modulo M. Let x' be another
solution to the given system of linear congruences in one variable. Then, for all
i, we have that x’ = b, mod m;; since x = b,mod m; for all i, we have that
x = x" mod m; for all i, or, equivalently, m, |x — x' for all . Then M | gt
(why?), from which x = x" mod M. The proof is complete. B

Note that the proof of the Chinese Remainder Theorem shows the existence
and uniqueness of the claimed solution modulo M by actually constructing this

First prime and the only even prime: 2
First 10 primes: {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}
Primes in range:

1to 100: 25 primes
1t0 1,000: 168 primes
1to 7,919: 1,000 primes

1t0 10,000: 1,229 primes

Largest prime in signed 32-bit int = 2,147,483,647

Prime Testing (Lab 3.8)

Algorithms for testing if N is prime: isPrime(N)
First try: check if N is divisible by i € [2, ..., N-1]?
O(N)

Improved 1: Is N divisible by i € [2, ..., sqrt(N)]?
O(sqrt(N))

Improved 2: Is N divisible by i € [3, 5, ..., sqrt(N)]
One test for i=2, no need to test other even numbers
O(sqrt(N)/2)=0(sqrt(N))

Improved 3: Is N divisible by i primes < sqrt(N)
O(n(sqrt(N)) = O(sqrt(N)/log(sqrt(N)))

n(M) = number of primes up to M
For this, we need smaller primes beforehand

Prime Generation

Generate primes between |o, ..., N]:
Use bitset of size N, set all true except index o and 1
Start from i=2 until k*I > N
If bitset at index i is on, cross all multiples of i (i.e. turn off bit at index I
Finally, whatever not crossed are primes
Example:
= 0,1,2,3,4,5,6,7,8,9,10, 11, ...,51,52,53,54,55, ... 75,76, 77, ...
0,1,2,3,4,5,6,7,8, 9, 0, 11, ..., 51, 52, 53, 54, 55, ..., 75, 76, 77, ...
0,1,23,4,5,6,7,8,9,10,11, .., 51, 52, 53, 54, 55, ..., 75, 76, 77, ...
- 0,1,2,3,4,5,6,7,8,9, 10, 11, ..., 51, 52, 53, 54, 55, ..., 75, 76, 77, ...
0,1,2,3,4,5,6,738,9,10,11, .., 51,52, 53, 54, 55, ..., 75, 76, 77, ...

Prime Testing and Generation

void sieve (1l upperbound)

3leve s3ize = upperbound + 1;

cross out multiples of i starting from i * i!
for (11 jJ =1 * 1; J <= 3sleve 31ze; j += 1) bs|]] = 0;

bool isPrime(ll N)

if (N <= sieve size) return bs | N):

Outline

Modular arithmetic (Lab 3.5)
Chinese reminder theorem (Lab 3.6-3.7)
Primes and Prime testing (Lab 3.8)

