Algorithmic

Problem Solving
APS2020 Strings |

Suffixes and Prefixes

Suffix: A substring/affix occurring at the end of a word.
Prefix: A substring/affix occurring at the beginning of a word.

“banana” suffixes:

a, Na, ana, hana, anana, (sometimes) banana

“banana” prefixes:

b, ba, ban, bana, banan, (sometimes) banana

Trie (Prefix Tree)

Trie: An ordered tree structure used for storing a set of data,
usually strings, optimized for doing prefix searches

Example: Does any word in the set start with the prefix mart?
The idea: use a “26-ary” tree

each node has 26 children: one for each letter A-Z
add a word to the trie by following the appropriate child pointer

Trie (Prefix Tree)

Many applications:
Dictionary
Auto-complete
Longest prefix matching
Spell checking

Substring problem

The String Matching Problem

Find all occurrences of a pattern P in a text S.

The String Matching Problem

Note that each substring S[i...j] is a prefix of the suffix S[i...n].

Trie solution based on this observation:
Build a trie of all suffixes of § in O(|S|"2).
Now O(|P|) for finding an occurrence of P in S.

The trie (step 1) can be reused for future queries. Note that the
time and memory complexity of this solution can be too hefty for
many applications/problems.

The String Matching Problem

Solutions:

String library

C++ string::find, Java String.indexOf

KMP Knuth-Morris-Pratt (lab 3.1)

O(|S|+|P|) time, O(|P|) space

Boyer-Moore

O(|S|+|P|) time, O(|P|) space,

more efficient than KMP when the alphabet is large

The String Multimatching Problem |

Find all occurrences of every pattern P,,...,P,
in a text S.

The String Multimatching Problem |

Solutions:

Aho-Corasick (lab 3.2)

O(|S| + |P,| + ... |P,| + k), where k is the total number of
matches

Suffix Array
More on this next seminar!

Summary

This Week’s Problems
Whac-a-Mole
(un)Fair Play
Jack and Jill

Towers of Powers 2
Trie
The Substring & String Matching Problems

