
Algorithmic

Problem Solving
APS2020 Strings I

Fredrik Heintz & Fredrik Präntare

Dept of Computer and Information Science

Linköping University

2Suffixes and Prefixes

Suffix: A substring/affix occurring at the end of a word.

Prefix: A substring/affix occurring at the beginning of a word.

“banana” suffixes:

a, na, ana, nana, anana, (sometimes) banana

“banana” prefixes:

b, ba, ban, bana, banan, (sometimes) banana

3Trie (Prefix Tree)

4Trie (Prefix Tree)

Many applications:

 Dictionary

 Auto-complete

 Longest prefix matching

 Spell checking

 Substring problem

5The String Matching Problem

Find all occurrences of a pattern P in a text S.

6The String Matching Problem

Note that each substring S[i…j] is a prefix of the suffix S[i…n].

Trie solution based on this observation:

1. Build a trie of all suffixes of S in O(|S|^2).

2. Now O(|P|) for finding an occurrence of P in S.

The trie (step 1) can be reused for future queries. Note that the
time and memory complexity of this solution can be too hefty for
many applications/problems.

7The String Matching Problem

Solutions:

 String library
C++ string::find, Java String.indexOf

 KMP Knuth-Morris-Pratt (lab 3.1)
O(|S|+|P|) time, O(|P|) space

 Boyer-Moore
O(|S|+|P|) time, O(|P|) space,
more efficient than KMP when the alphabet is large

8The String Multimatching Problem

Find all occurrences of every pattern P1,…,Pn

in a text S.

9The String Multimatching Problem

Solutions:

 Aho-Corasick (lab 3.2)
O(|S| + |P1| + … |Pn| + k), where k is the total number of
matches

 Suffix Array
More on this next seminar!

10Summary

 This Week’s Problems
▪ Whac-a-Mole

▪ (un)Fair Play

▪ Jack and Jill

▪ Towers of Powers 2

 Trie

 The Substring & String Matching Problems

