
TDDD95 Algorithmic 

Problem Solving
Le 6 – Graphs II

Fredrik Heintz

Dept of Computer and Information Science

Linköping University



2Outline

 Max Flow (lab 2.6)

 Min Cut (lab 2.7)

 Max Flow Min Cut Theorem

 Min Cost Max Flow (lab 2.8)

 Network Flow Variants 



3Network Flow

 A network is a directed graph 𝐺 = (𝑉, 𝐸) with a source vertex 
𝑠 ∈ 𝑉 and a sink vertex 𝑡 ∈ 𝑉. Also, each edge (𝑢, 𝑣) ∈ 𝐸 has a 
capacity denoted by 𝑐(𝑢, 𝑣). 

If 𝑢, 𝑣 ∉ 𝐸, it is often useful to define 𝑐(𝑢, 𝑣) = 0. 

 In a network flow problem, we assign a flow 𝑓(𝑢, 𝑣) to all 
edges (𝑢, 𝑣) ∈ 𝐸 that satisfy the following properties:
▪ Capacity constraint: 𝑓(𝑢, 𝑣) ≤ 𝑐(𝑢, 𝑣) and 𝑓 𝑢, 𝑣 ≥ 0 for all 𝑢, 𝑣 ∈ 𝑉.

▪ Conservation: ∑𝑣 ∈ 𝑉 𝑓 𝑢, 𝑣 = 0 for all 𝑢 ∈ 𝑉 ∖ 𝑠, 𝑡 .

 The flow value 𝐹(𝑠) from source 𝑠 is defined as: 
𝐹(𝑠) = ∑𝑣 ∈ 𝑉 𝑓(𝑠, 𝑣)



4Maximum Flow

Suboptimal solution with blocking flow.



5Ford Fulkerson’s Method



6

 The residual capacity of an arc is the difference between an 
arc’s capacity and its flow: 𝑟(𝑢, 𝑣) = 𝑐(𝑢, 𝑣) – 𝑓(𝑢, 𝑣)

 To model this residual capacity, we introduce back edges that 
can reverse “bad choices of flow”.

 A residual network is a network with back edges (and residual 
capacities).

 An augmenting path is a path from 𝑠 to 𝑡 in a residual network 
that we can add positive flow to.

Ford Fulkerson’s Method



7Ford Fulkerson’s Method

 DFS implementation of Ford Fulkerson’s runs in 𝑂 𝑓𝑚𝑎𝑥𝐸 .

 Very slow on certain types of graphs.



8The Edmond-Karp Algorithm

 However, BFS implementation runs in 𝑂 𝑉𝐸2 .



9The Edmond-Karp Algorithm



10The Edmond-Karp Algorithm



11Maximum Flow Algorithms

 Ford-Fulkerson with DFS 𝑂(𝑓𝑚𝑎𝑥𝐸)

 Edmond-Karp (i.e. Ford-Fulkerson with BFS) 𝑂(𝑉𝐸2)

 Dinic’s 𝑂(𝑉2𝐸)

 Push-relabel (preflow-push) 𝑂(𝑉3)

 Binary blocking flow algorithm 
O(min(V2/3, E1/2) E log(V2/E) log(𝑓𝑚𝑎𝑥))



12Dinic’s Algorithm

 The idea is to reduce our max flow problem to the simple case where all 

edge capacities are either 0 or 1 (Gabow in 1985 and Dinic in 1973):

▪ Scale the problem down somehow by rounding off lower order bits.

▪ Solve the rounded problem.

▪ Scale the problem back up, add back the bits we rounded off, and fix any errors in our 

solution.

 In the specific case of the maximum flow problem, the algorithm is:

▪ Start with all capacities in the graph at 0.

▪ Shift in the higher-order bit of each capacity. Each capacity is then either 0 or 1.

▪ Solve this maximum flow problem.

▪ Repeat this process until we have processed all remaining bits.

 To scale back up:

▪ Start with the maximum flow for the scaled-down problem. Shift the bit of each 

capacity by 1, doubling all the capacities. If we then double all our flow values, we still 

have a maximum flow.

▪ Increment some of the capacities. This restores the lower order bits that we truncated. 

Find augmenting paths in the residual network to re-maximize the flow.



13Minimum Cut

 An 𝑠 − 𝑡 cut of a network is a partition of its vertices 𝑉 into 
2 groups: 𝐶𝑠 and 𝐶𝑡 = 𝑉 ∖ 𝐶𝑠 , such that 𝑠 ∈ 𝐶𝑠 and 𝑡 ∈ 𝐶𝑡 .
▪ The flow along cut C = (𝐶𝑠, 𝐶𝑡) is defined as:

𝑓(𝐶) = ∑𝑣 ∈ 𝐶𝑠 ∑𝑤 ∈ 𝐶𝑡 𝑓(𝑣, 𝑤)

▪ The capacity of a cut is defined as: 
𝑐(𝐶) = ∑𝑣 ∈ 𝐶𝑠 ∑𝑤 ∈ 𝐶𝑡 𝑐(𝑣, 𝑤)

 A minimum cut is a cut with minimum possible capacity.

𝐶𝑠 𝐶𝑡

s t



14Minimum Cut

 To find a minimum 𝑠 − 𝑡 cut 𝐶 = (𝐶𝑠 , 𝐶𝑡) of 𝐺, compute the 
maximum flow and find the set of vertices reachable from 𝑠 in 
the residual graph, this is the set 𝐶𝑠.

 𝐶𝑠 represents the vertices that appear before the closest 
“bottleneck” (or “choke”) that prevents us from adding more 
positive flow from 𝑠 to 𝑡.

 The max-flow min-cut theorem states that the maximum 
flow is equal to the minimum capacity over all 𝑠 − 𝑡 cuts.



15Minimum Cost Maximum Flow

 Extend the definition of a network flow with a cost per unit of flow 
on each edge: 𝑘(𝑣, 𝑤) ∈ 𝑅, where (𝑣, 𝑤) ∈ 𝐸.

 The cost of a flow 𝑓 is defined as: 𝑘(𝑓) = ∑𝑒 ∈ 𝐸 𝑓(𝑒) ⋅ 𝑘(𝑒)

 A minimum cost maximum flow of a network 𝐺 = (𝑉, 𝐸) is a 
maximum flow with the smallest possible cost.
▪ Note that edges in the residual graph of a network need to have their costs 

determined carefully. Consider an edge (𝑣, 𝑤) with capacity 𝑐(𝑣, 𝑤), cost per 
unit flow 𝑘(𝑣,𝑤). Let 𝑓(𝑣,𝑤) be the flow of the edge. Then the residual 
graph has two edges corresponding to (𝑣, 𝑤). The first edge is (𝑣, 𝑤) with 
capacity 𝑐 𝑣, 𝑤 − 𝑓(𝑣,𝑤) and cost 𝑘(𝑣,𝑤), and second edge is (𝑤, 𝑣) with 
capacity 𝑓(𝑣, 𝑤) and cost −𝑘(𝑣,𝑤).

▪ It's clear that minimum cost maximum flow generalizes maximum flow by 
assigning a cost to every edge.

▪ It also generalizes shortest path: if we set each cost equal to its corresponding 
edge length while assigning the same capacity to every edge.

 The maximum flow with minimum cost can be found using a 
variation of Edmond-Karp’s, in which we use Dijkstra instead of BFS.



16Network Flow Variants

 Multi-source, multi-sink max flow
▪ Create a super-source/sink with infinite capacity edges to the 

sources/sinks.

 Vertex capacities
▪ Split each vertex into two vertices and add a bi-directional edge with the 

vertex capacity between them. Remember to change the edges to the 
vertex.



17Summary

 Residual Graphs, Augmenting Paths, Flow Networks

 Max Flow (lab 2.6)

 Min Cut (lab 2.7)

 Max Flow Min Cut Theorem

 Min Cost Max Flow (lab 2.8)

 Network Flow Variants 


