
Algorithmic 

Problem Solving
Exercise 05 & Graph II

Herman Appelgren
based on slides by Fredrik Heintz and Fredrik Präntare

Dept of Computer and Information Science

Linköping University



2Outline

 This Week’s Problems
(Getting Gold, Frogger, Killing Aliens in a Borg Maze, Proving 
Equivalences)

 Network flow
▪ Max Flow (lab 2.6)

▪ Min Cut (lab 2.7)

▪ Min Cost Max Flow (lab 2.8)



3Network Flow

 Motivating problem 1: Two computers are communicating 
with each other using a network of routers and cables. Each 
connection has a set bandwidth. How should we route traffic in 
the network to maximize data throughput?

 Motivating problem 2: What connections in the network 
above are limiting the flow? Alternatively, if we get to increase 
the bandwidth of some connections, which should be chosen 
to increase the data throughput?



4Network Flow

Suboptimal solution with blocking flow.



5Network Flow

 A network is a directed graph 𝐺 = (𝑉, 𝐸) with a source vertex 
𝑠 ∈ 𝑉 and a sink vertex 𝑡 ∈ 𝑉. Also, each edge (𝑢, 𝑣) ∈ 𝐸 has a 
capacity denoted by 𝑐(𝑢, 𝑣).

If 𝑢, 𝑣 ∉ 𝐸, it is often useful to define 𝑐(𝑢, 𝑣) = 0. 

 In a network flow problem, we assign a flow 𝑓(𝑢, 𝑣) to all 
edges (𝑢, 𝑣) ∈ 𝐸 that satisfy the following properties:
▪ Capacity constraint: 𝑓(𝑢, 𝑣) ≤ 𝑐(𝑢, 𝑣) and 𝑓 𝑢, 𝑣 ≥ 0 for all 𝑢, 𝑣 ∈ 𝑉.

▪ Conservation: ∑𝑣 ∈ 𝑉 𝑓 𝑢, 𝑣 = 0 for all 𝑢 ∈ 𝑉 ∖ 𝑠, 𝑡 .

 The flow value 𝐹(𝑠) from source 𝑠 is defined as: 
𝐹(𝑠) = ∑𝑣 ∈ 𝑉 𝑓(𝑠, 𝑣)



6Ford Fulkerson’s Method



7

 The residual capacity of an arc is the difference between an 
arc’s capacity and its flow: 𝑟(𝑢, 𝑣) = 𝑐(𝑢, 𝑣) – 𝑓(𝑢, 𝑣)

 To model this residual capacity, we introduce back edges that 
can reverse “bad choices of flow”.

 A residual network is a network with back edges (and residual 
capacities).

 An augmenting path is a path from 𝑠 to 𝑡 in a residual network 
that we can add positive flow to.

Ford Fulkerson’s Method



8Ford Fulkerson’s Method

 Ford Fulkerson’s method: Add flow through augmenting 
paths until no more augmenting paths exists.

 DFS implementation of Ford Fulkerson’s runs in 𝑂 𝑓𝑚𝑎𝑥𝐸 .

 Very slow on certain types of graphs.



9The Edmond-Karp Algorithm

 However, BFS implementation runs in 𝑂 𝑉𝐸2 .

 This BFS implementation of Ford-Fulkerson’s method is called 
Edmond-Karp’s algorithm.



10Maximum Flow Algorithms

 Ford-Fulkerson with DFS 𝑂(𝑓𝑚𝑎𝑥𝐸)

 Edmond-Karp (i.e. Ford-Fulkerson with BFS) 𝑂(𝑉𝐸2)

 Dinic’s 𝑂(𝑉2𝐸)

 Push-relabel (preflow-push) 𝑂(𝑉3)

 Binary blocking flow algorithm 
O(min(V2/3, E1/2) E log(V2/E) log(𝑓𝑚𝑎𝑥))



11Dinic’s Algorithm

 The idea is to reduce our max flow problem to the simple case where 
all edge capacities are either 0 or 1 (Gabow in 1985 and Dinic in 1973):
▪ Scale the problem down by rounding off lower order bits.

▪ Solve the rounded problem.

▪ Scale the problem back up, add back the bits we rounded off, and fix any 
errors in our solution.

 In the specific case of the maximum flow problem, the algorithm is:
▪ Start with all capacities in the graph at 0.

▪ Shift in the higher-order bit of each capacity. Each capacity is then either 0 or 
1.

▪ Solve this maximum flow problem.

▪ Repeat this process until we have processed all remaining bits.

 To scale back up:
▪ Start with the maximum flow for the scaled-down problem. Shift the bit of 

each capacity by 1, doubling all the capacities. If we then double all our flow 
values, we still have a maximum flow.

▪ Restores the lower order bits that we truncated. Find augmenting paths in 
the residual network to re-maximize the flow.



12Minimum Cut

 An 𝑠 − 𝑡 cut of a network is a partition of its vertices 𝑉 into 
2 groups: 𝐶𝑠 and 𝐶𝑡 = 𝑉 ∖ 𝐶𝑠 , such that 𝑠 ∈ 𝐶𝑠 and 𝑡 ∈ 𝐶𝑡 .
▪ The flow along cut C = (𝐶𝑠, 𝐶𝑡) is defined as:

𝑓(𝐶) = ∑𝑣 ∈ 𝐶𝑠 ∑𝑤 ∈ 𝐶𝑡 𝑓(𝑣, 𝑤)

▪ The capacity of a cut is defined as: 
𝑐(𝐶) = ∑𝑣 ∈ 𝐶𝑠 ∑𝑤 ∈ 𝐶𝑡 𝑐(𝑣, 𝑤)

 A minimum cut is a cut with minimum possible capacity.

𝐶𝑠 𝐶𝑡

s t



13Minimum Cut

 To find a minimum 𝑠 − 𝑡 cut 𝐶 = (𝐶𝑠 , 𝐶𝑡) of 𝐺, compute the 
maximum flow and find the set of vertices reachable from 𝑠 in 
the residual graph, this is the set 𝐶𝑠.

 𝐶𝑠 represents the vertices that appear before the closest 
“bottleneck” (or “choke”) that prevents us from adding more 
positive flow from 𝑠 to 𝑡.

 The max-flow min-cut theorem states that the maximum 
flow is equal to the minimum capacity over all 𝑠 − 𝑡 cuts.



14Minimum Cost Maximum Flow

 Extend the definition of a network flow with a cost per unit of flow 
on each edge: 𝑘(𝑣, 𝑤) ∈ 𝑅, where (𝑣, 𝑤) ∈ 𝐸.

 The cost of a flow 𝑓 is defined as: 𝑘(𝑓) = ∑𝑒 ∈ 𝐸 𝑓(𝑒) ⋅ 𝑘(𝑒)

 A minimum cost maximum flow of a network 𝐺 = (𝑉, 𝐸) is a 
maximum flow with the smallest possible cost.
▪ Note that edges in the residual graph of a network need to have their costs 

determined carefully. Consider an edge (𝑣, 𝑤) with capacity 𝑐(𝑣, 𝑤), cost per 
unit flow 𝑘(𝑣,𝑤). Let 𝑓(𝑣,𝑤) be the flow of the edge. Then the residual 
graph has two edges corresponding to (𝑣, 𝑤). The first edge is (𝑣, 𝑤) with 
capacity 𝑐(𝑣, 𝑤) − 𝑓(𝑣, 𝑤) and cost 𝑘(𝑣, 𝑤), and second edge is (𝑤, 𝑣) with 
capacity 𝑓(𝑣, 𝑤) and cost −𝑘(𝑣,𝑤).

▪ It's clear that minimum cost maximum flow generalizes maximum flow by 
assigning a cost to every edge.

▪ It also generalizes shortest path: if we set each cost equal to its corresponding 
edge length while assigning the same capacity to every edge.

 The maximum flow with minimum cost can be found using a 
variation of Edmond-Karp’s, in which we use Dijkstra instead of BFS.



15Network Construction

 Many more complex networks can be reduced to the single-
source, single-sink networks we’ve considered so far.

 Multiple sources/sinks
▪ Create a super-source/sink with infinite capacity edges to the 

sources/sinks.

 Vertex capacities
▪ Split each vertex into two vertices and add a bi-directional edge with the 

vertex capacity between them. Remember to change the edges to the 
vertex.

 Multigraphs

 Bipartite Matching



16Summary

 Residual Graphs, Augmenting Paths, Flow Networks

 Max Flow (lab 2.6)

 Min Cut (lab 2.7)

 Max Flow Min Cut Theorem

 Min Cost Max Flow (lab 2.8)

 Network Construction


