Algorithmic

Problem Solving
Exercise 05 & Graph Il

Outline

Network flow
Max Flow (lab 2.6)
Min Cut (lab 2.7)
Min Cost Max Flow (lab 2.8)

Network Flow

Motivating problem 1: Two computers are communicating
with each other using a network of routers and cables. Each
connection has a set bandwidth. How should we route traffic in
the network to maximize data throughput?

Motivating problem 2: What connections in the network
above are limiting the flow? Alternatively, if we get to increase
the bandwidth of some connections, which should be chosen
to increase the data throughput?

Network Flow

Suboptimal solution with blocking flow.

Network Flow

A network is a directed graph ¢ = (V, E) with a source vertex
s € V and a sink vertex t € V. Also, each edge (u,v) € E hasa
capacity denoted by c(u, v).

If (u,v) & E, it is often useful to define c(u,v) = 0.

In a network flow problem, we assign a flow f (u, v) to all
edges (u, v) € E that satisfy the following properties:

Capacity constraint: f(u,v) < c(u,v) and f(u,v) = 0forallu,v € V.
Conservation:), ., f(u,v) = 0forallu e V' \ {s, t}.

The flow value F (s) from source s is defined as:

F(S) :ZvEVf(S'v)

Ford Fulkerson’s Method

e One Solution: Ford Fulkerson’s Method

— A surprisingly simple iterative algorithm

Send a flow f through path p whenever there exists
an augmenting path p from sto ¢

Ford Fulkerson’s Method

The residual capacity of an arc is the difference between an
arc’s capacity and its flow: r(u,v) = c(u,v) - f(u,v)

To model this residual capacity, we introduce back edges that
can reverse “bad choices of flow”.

A residual network is a network with back edges (and residual
capacities).

An augmenting path is a path from s to t in a residual network
that we can add positive flow to.

3/3

s

3/3

Ford Fulkerson’s Method

Ford Fulkerson’s method: Add flow through augmenting
paths until no more augmenting paths exists.

DFS implementation of Ford Fulkerson’s runs in O (f;;,4.E)-
Very slow on certain types of graphs.

9 1& 99 9
\ \ \ M

I ?(x.t,_. / l (x_t_.. / I ?(\-.t..- / 198

100 100 10W 99 8 iterations ©
later

........

The Edmond-Karp Algorithm

However, BFS implementation runs in O(VE?).

This BFS implementation of Ford-Fulkerson’s method is called
Edmond-Karp’s algorithm.

()
A - After just 2

-~ . .
100 iterations

Maximum Flow Algorithms

Ford-Fulkerson with DFS O (f,,,4+F)

Edmond-Karp (i.e. Ford-Fulkerson with BFS) O(VE?)
Dinic’s O(V?E)

Push-relabel (preflow-push) 0 (V3)

Binary blocking flow algorithm
O(min(V?53, EY2) E log(V?*/E) log(fmax))

Dinic’s Algorithm

The idea is to reduce our max flow problem to the simple case where
all edge capacities are either o or 1 (Gabow in 1985 and Dinic in 1973):
Scale the problem down by rounding off lower order bits.
Solve the rounded problem.
Scale the problem back up, add back the bits we rounded off, and fix any
errors in our solution.
In the specific case of the maximum flow problem, the algorithm is:
Start with all capacities in the graph at o.

Shift in the higher-order bit of each capacity. Each capacity is then either o or
1.

Solve this maximum flow problem.
Repeat this process until we have processed all remaining bits.

To scale back up:

Start with the maximum flow for the scaled-down problem. Shift the bit of
each capacity by 1, doubling all the capacities. If we then double all our flow
values, we still have a maximum flow.

Restores the lower order bits that we truncated. Find augmenting paths in
the residual network to re-maximize the flow.

Minimum Cut

An s — t cut of a network is a partition of its vertices V into
2 groups: C; and C; =V \ C, such thats € C;and t € ;.
The flow along cut C = (C, C;) is defined as:
f(C)=2velsyweCl f(v,w)
The capacity of a cut is defined as:
c(C)=>Yvel;dweClCc(v,w)

A minimum cut is a cut with minimum possible capacity.

Minimum Cut

To find a minimum s — t cut € = (Cs, C;) of G, compute the
maximum flow and find the set of vertices reachable from s in
the residual graph, this is the set C.

C, represents the vertices that appear before the closest
“bottleneck” (or “choke”) that prevents us from adding more
positive flow from s to t.

The max-flow min-cut theorem states that the maximum
flow is equal to the minimum capacity over all s — t cuts.

Minimum Cost Maximum Flow |

Extend the definition of a network flow with a cost per unit of flow
on each edge: k(v,w) € R, where (v,w) € E.

The cost of a flow f is defined as: k(f) = Ye € E f(e) - k(e)

A minimum cost maximum flow of a network G = (V,E) isa
maximum flow with the smallest possible cost.
Note that edges in the residual graph of a network need to have their costs
determined carefully. Consider an edge (v, w) with capacity c(v, w), cost per
unit flow k(v,w). Let f (v, w) be the flow of the edge. Then the residual
graph has two edges corresponding to (v, w). The first edge is (v, w) with
capacity c(v,w) — f(v,w) and cost k(v,w), and second edge is (w, v) with
capacity f(v,w) and cost —k (v, w).
It's clear that minimum cost maximum flow generalizes maximum flow by
assigning a cost to every edge.

It also generalizes shortest path: if we set each cost equal to its corresponding
edge length while assigning the same capacity to every edge.

The maximum flow with minimum cost can be found using a
variation of Edmond-Karp’s, in which we use Dijkstra instead of BFS.

Network Construction

Many more complex networks can be reduced to the single-
source, single-sink networks we've considered so far.

Multiple sources/sinks

Create a super-source/sink with infinite capacity edges to the
sources/sinks.

Vertex capacities

Split each vertex into two vertices and add a bi-directional edge with the
vertex capacity between them. Remember to change the edges to the
vertex.

Multigraphs
Bipartite Matching

Summary

Residual Graphs, Augmenting Paths, Flow Networks
Max Flow (lab 2.6)

Min Cut (lab 2.7)

Max Flow Min Cut Theorem

Min Cost Max Flow (lab 2.8)

Network Construction

