
TDDD95 Algorithmic

Problem Solving
Le 4 – Problem Solving

Paradigms

Fredrik Heintz

with some slides from Fredrik Präntare
Dept of Computer and Information Science

Linköping University

2Overview

 Problem solving paradigms:

▪ Simulation / Ad-hoc

▪ Greedy and Dynamic Programming (again!)

▪ Divide and Conquer

▪ Complete Search and Branch-and-Bound

▪ Probabilistic Search

3Simulation/Ad hoc

 Simulation/Ad hoc.

▪ Do what is stated in the problem.

▪ Example: Simulate a robot.

▪ Many such problems last week:

▪ The SetStack Computer

▪ Introspective Caching

▪ Chopping Wood
(reverse simulation to some degree)

4Complete Search

 When a problem is small or (almost) all
possibilities must be tried, complete search is a
candidate approach.

 To determine the feasibility of complete search:
estimate the number of calculations that must
be made (usually interested in the worst case).

5Complete Search

 Iterative complete search uses nested loops to generate
every possible complete solution and filter out the valid
ones.

▪ Iterating over all permutations using
std::next_permutation.

▪ Iterating over all subsets using bit set technique.

 Recursive complete search extends a partial solution with
one element until a complete and valid solution is found.

▪ This approach is often called recursive backtracking.

▪ Pruning can sometimes be used to significantly improve
the efficiency by removing partial solutions that can not
lead to a solution. In the best case, only valid solutions
are generated.

6Branch-and-Bound

 If you can find a search space representation that
we can partition, it might be possible to use
branch-and-bound to reduce the number of
solutions you have to test/investigate/look at.
▪ Calculate bounds (lower & upper) for regions/branches of

the search space, and continuously remove regions/branches
(subspaces) that cannot contain the solution that you are
looking for (e.g. the optimal).

▪ Extensively used in optimization: CPLEX, Gurobi, …

▪ Specific problems may make it possible to use more
advanced pruning techniques, or approximative solutions (if
you are not looking for the optimal solution), for example by
taking advantage of expert knowledge (e.g. in chess).

7Greedy

 An algorithm is said to be greedy if it makes a
locally optimal choice in each step towards the
globally optimal solution.

 For a greedy algorithm to give a globally optimal
result, a problem must have two properties:
▪ It has optimal sub-structures, i.e. an optimal solution

contains the optimal solutions to sub problems.

▪ It has the greedy choice property, i.e. if we extend a partial
solution by making a locally optimal choice, we will get the
optimal complete solution without reconsidering previous
choices.

8Greedy

 Classical examples: Coin change in some
currencies, interval coverage, approximation
algorithms (e.g. for good-enough suboptimal
solutions).

 Greedy algorithms can be useful as heuristics.

 Can be very useful to calculate bounds for
branch-and-bound techniques.

9Divide and Conquer

 Divide and conquer is very common and
powerful technique which divides a problem
into smaller parts, solves each part recursively
and then puts together the answer from the
pieces.

 Many well-known algorithms are based on
divide and conquer such as quick sort, merge
sort and binary search.

10Dynamic Programming

 Dynamic Programming is a problem-solving
approach which computes the answer for every
possible state exactly once.

11Dynamic Programming

 Top-down (memorization): no need to
consider the order of computations, only
compute states actually used, natural transition
from complete search,

 Bottom-up (tabulation): no recursion,
computes every state, table size can be reduced
if only the previous row of states is used then
only two rows are required.

12Dynamic Programming

 Displaying the optimal solution:
Store the previous state for each solution.

 Often used to solve NP-hard problems.

14Monte Carlo / Stochastic / Random Search

 Sometimes it is possible to use probabilistic
techniques for intractable/difficult problems.

 A high number of random samples from the search
space can sometimes make it possible (e.g. by being
combined) to guarantee a high-enough probability for
a solution to be correct (or good enough).

▪ Used extensively in ray tracing/rendering
(Hyperion), physics simulations, scheduling tasks,
and game-playing systems (MCTS & AlphaGo).

 Typically not applicable to this course, but there are
some exercises that can be solved with AC using this
type of technique.

15Summary

 Problem solving paradigms:

▪ Simulation / Ad-hoc

▪ Complete Search and Branch-and-Bound

▪ Greedy Search

▪ Divide and Conquer

▪ Dynamic Programming

▪ Probabilistic Search

