
9/24/2008 
A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne 

Adam Smith 

Algorithm Design and Analysis 

LECTURE 14  
Divide and Conquer 
• Fast Fourier Transform 



Midterm Exam #1 

•  Willard Building Room 76 
•  Tuesday night, September 30, 8:15pm 

•  You may bring: one (1)  
double-sided,  
hand-written 8.5” x 11” sheet of notes  
on colored paper 
– Hint: use its preparation as a study aid 

9/24/2008 
A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne 



Fast Fourier Transform:  Applications 

Applications. 
  Optics, acoustics, quantum physics, telecommunications, control 

systems, signal processing, speech recognition, data compression, 
image processing. 

  DVD, JPEG, MP3, MRI, CAT scan. 
  Numerical solutions to Poisson's equation. 

The FFT is one of the truly great computational
 developments of this [20th] century. It has changed the
 face of science and engineering so much that it is not an
 exaggeration to say that life as we know it would be very
 different without the FFT.   -Charles van Loan 



Fast Fourier Transform:  Brief History 

Gauss (1805, 1866).  Analyzed periodic motion of asteroid Ceres. 

Runge-König (1924).  Laid theoretical groundwork. 

Danielson-Lanczos (1942).  Efficient algorithm. 

Cooley-Tukey (1965).  Monitoring nuclear tests in Soviet Union and 
tracking submarines.  Rediscovered and popularized FFT. 

Importance not fully realized until advent of digital computers. 



Polynomials:  Coefficient Representation 

Polynomial.  [coefficient representation] 

Add:  O(n) arithmetic operations. 

Evaluate:  O(n) using Horner's method. 

Multiply (convolve):  O(n2) using brute force. 



Polynomials:  Point-Value Representation 

Fundamental theorem of algebra.  [Gauss, PhD thesis]  A degree n 
polynomial with complex coefficients has n complex roots. 

Corollary.  A degree n-1 polynomial A(x) is uniquely specified by its 
evaluation at n distinct values of x. 

x 

y 

xj 

yj = A(xj) 



Polynomials:  Point-Value Representation 

Polynomial.  [point-value representation] 

Add:  O(n) arithmetic operations. 

Multiply:  O(n), but need 2n-1 points. 

Evaluate:  O(n2) using Lagrange's formula. 



Converting Between Two Polynomial Representations 

Tradeoff.  Fast evaluation or fast multiplication. We want both! 

Goal.  Make all ops fast by efficiently converting between two 
representations. 

Coefficient 

Representation 

O(n2) 

Multiply 

O(n) 

Evaluate 

Point-value O(n) O(n2) 

coefficient 
representation 

point-value 
representation 



Converting Between Two Polynomial Representations:  Brute Force 

Coefficient to point-value.  Given a polynomial a0 + a1 x + ... + an-1 xn-1, 
evaluate it at n distinct points x0, ... , xn-1. 

Point-value to coefficient.  Given n distinct points x0, ..., xn-1 and values 
y0, ..., yn-1, find unique polynomial a0 + a1 x + ... + an-1 xn-1 that has given 
values at given points. 

Vandermonde matrix is invertible iff xi distinct 

O(n3) for Gaussian elimination 

O(n2) for matrix-vector multiply 



Coefficient to Point-Value Representation:  Intuition 

Coefficient to point-value.  Given a polynomial a0 + a1 x + ... + an-1 xn-1, 
evaluate it at n distinct points x0, ... , xn-1. 

Divide.  Break polynomial up into even and odd powers. 
  A(x)       =  a0 + a1x + a2x2 + a3x3 + a4x4  + a5x5  + a6x6  + a7x7. 
  Aeven(x)  =  a0 + a2x + a4x2 + a6x3. 
  Aodd (x)  =  a1 + a3x + a5x2 + a7x3. 
  A(-x) = Aeven(x2) + x Aodd(x2). 
  A(-x) = Aeven(x2) - x Aodd(x2). 

Intuition.  Choose two points to be ±1. 
  A(-1) = Aeven(1) + 1 Aodd(1).  
  A(-1) = Aeven(1) - 1 Aodd(1). Can evaluate polynomial of degree ≤ n 

at 2 points by evaluating two polynomials
 of degree ≤ ½n at 1 point. 



Coefficient to Point-Value Representation:  Intuition 

Coefficient to point-value.  Given a polynomial a0 + a1 x + ... + an-1 xn-1, 
evaluate it at n distinct points x0, ... , xn-1. 

Divide.  Break polynomial up into even and odd powers. 
  A(x)       =  a0 + a1x + a2x2 + a3x3 + a4x4  + a5x5  + a6x6  + a7x7. 
  Aeven(x)  =  a0 + a2x + a4x2 + a6x3. 
  Aodd (x)  =  a1 + a3x + a5x2 + a7x3. 
  A(-x) = Aeven(x2) + x Aodd(x2). 
  A(-x) = Aeven(x2) - x Aodd(x2). 

Intuition.  Choose four points to be ±1, ±i. 
  A(-1) = Aeven(-1) + 1 Aodd( 1).  
  A(-1) = Aeven(-1) - 1 Aodd(-1). 
  A(-i) = Aeven(-1) + i Aodd(-1).  
  A(-i) = Aeven(-1) - i Aodd(-1). 

Can evaluate polynomial of degree ≤ n 
at 4 points by evaluating two polynomials
 of degree ≤ ½n at 2 points. 

1 -1 

i 

-i 



Discrete Fourier Transform 

Coefficient to point-value.  Given a polynomial a0 + a1 x + ... + an-1 xn-1, 
evaluate it at n distinct points x0, ... , xn-1. 

Key idea:  choose xk = ωk  where ω is principal nth root of unity. 

Discrete Fourier transform Fourier matrix Fn 



Roots of Unity 

Def.  An nth root of unity is a complex number x such that xn = 1. 

Fact.  The nth roots of unity are: ω0, ω1, …, ωn-1 where ω = e 2π i / n. 
Pf.  (ωk)n  = (e 2π i k / n) n  = (e π i ) 2k  =  (-1) 2k  =  1. 

Fact.  The ½nth roots of unity are: ν0, ν1, …, νn/2-1 where ν = e 4π i / n. 
Fact.  ω2 = ν  and  (ω2)k = νk. 

ω0 = ν0 = 1 

ω1 

ω2 = ν1 = i 

ω3 

ω4 = ν2 = -1 

ω5  

ω6 = ν3 = -i 

ω7  

n = 8 



Fast Fourier Transform 

Goal.  Evaluate a degree n-1 polynomial A(x) = a0 + ... + an-1 xn-1 at its nth 
roots of unity: ω0, ω1, …, ωn-1. 

Divide.  Break polynomial up into even and odd powers. 
  Aeven(x)  =  a0 + a2x + a4x2 + … + an/2-2 x(n-1)/2. 
  Aodd (x)  =  a1 + a3x + a5x2 + … + an/2-1 x(n-1)/2. 
  A(x)   = Aeven(x2) + x Aodd(x2). 

Conquer.  Evaluate degree Aeven(x) and Aodd(x) at the ½nth roots of 
unity: ν0, ν1, …, νn/2-1. 

Combine.   
  A(ωk+n) = Aeven(νk) + ωk Aodd(νk),   0 ≤ k < n/2 
  A(ωk+n/2) = Aeven(νk) - ωk Aodd(νk),   0 ≤ k < n/2 

ωk+n/2 = -ωk 

νk  =  (ωk)2   =  (ωk+n/2)2 



fft(n, a0,a1,…,an-1) { 
   if (n == 1) return a0 

   (e0,e1,…,en/2-1) ← FFT(n/2, a0,a2,a4,…,an-2) 
   (d0,d1,…,dn/2-1) ← FFT(n/2, a1,a3,a5,…,an-1) 

   for k = 0 to n/2 - 1 { 
      ωk ← e2πik/n 
      yk+n/2 ← ek + ωk dk 
      yk+n/2 ← ek - ωk dk 
   } 

   return (y0,y1,…,yn-1) 

} 

FFT Algorithm 



FFT Summary 

Theorem.  FFT algorithm evaluates a degree n-1 polynomial at each of 
the nth roots of unity in O(n log n) steps. 

Running time.  T(2n) =  2T(n) + O(n)  ⇒  T(n)  = O(n log n). 

O(n log n) 

coefficient 
representation 

point-value 
representation 

assumes n is a power of 2 



Recursion Tree 

a0, a1, a2, a3, a4, a5, a6, a7 

a1, a3, a5, a7 a0, a2, a4, a6 

a3, a7 a1, a5 a0, a4 a2, a6 

a0 a4 a2 a6 a1 a5 a3 a7 

"bit-reversed" order 

000 100 010 110 001 101 011 111 

perfect shuffle 



Point-Value to Coefficient Representation:  Inverse DFT 

Goal.  Given the values y0, ... , yn-1 of a degree n-1 polynomial at the n 
points ω0, ω1, …, ωn-1, find unique polynomial a0 + a1 x + ... + an-1 xn-1 that 
has given values at given points. 

Inverse DFT Fourier matrix inverse (Fn)-1 



Claim.  Inverse of Fourier matrix is given by following formula. 

Consequence.  To compute inverse FFT, apply same algorithm but use 
 ω-1 = e -2π i / n as principal nth root of unity (and divide by n). 

Inverse FFT 



Inverse FFT:  Proof of Correctness 

Claim.  Fn and Gn are inverses. 
Pf.   

Summation lemma.  Let ω be a principal nth root of unity. Then 

Pf. 
  If k is a multiple of n then ωk = 1  ⇒  sums to n. 
  Each nth root of unity ωk is a root of xn - 1 = (x - 1) (1 + x + x2 + ... + 

xn-1). 
  if ωk ≠ 1 we have:  1 + ωk + ωk(2) + . . . + ωk(n-1) = 0  ⇒  sums to 0.  ▪ 

summation lemma 



Inverse FFT:  Algorithm 

ifft(n, a0,a1,…,an-1) { 
   if (n == 1) return a0 

   (e0,e1,…,en/2-1) ← FFT(n/2, a0,a2,a4,…,an-2) 
   (d0,d1,…,dn/2-1) ← FFT(n/2, a1,a3,a5,…,an-1) 

   for k = 0 to n/2 - 1 { 
      ωk ← e-2πik/n 
      yk+n/2  ← (ek + ωk dk) / n 
      yk+n/2  ← (ek - ωk dk) / n 
   } 

   return (y0,y1,…,yn-1) 

} 



Inverse FFT Summary 

Theorem.  Inverse FFT algorithm interpolates a degree n-1 polynomial 
given values at each of the nth roots of unity in O(n log n) steps. 

assumes n is a power of 2 

O(n log n) 

coefficient 
representation 

O(n log n) point-value 
representation 



Polynomial Multiplication 

Theorem.  Can multiply two degree n-1 polynomials in O(n log n) steps. 

O(n) 

point-value multiplication 

O(n log n) FFT inverse FFT O(n log n) 

coefficient 
representation coefficient 

representation 



Integer Multiplication 

Integer multiplication.  Given two n bit integers a = an-1 … a1a0 and 
b = bn-1 … b1b0, compute their product c = a × b. 

Convolution algorithm. 
  Form two polynomials. 
  Note:  a = A(2), b = B(2). 
  Compute C(x) = A(x) × B(x). 
  Evaluate C(2) = a × b. 
  Running time:  O(n log n) complex arithmetic steps. 

Theory.  [Schönhage-Strassen 1971]  O(n log n log log n) bit operations. 
    [Martin Fϋrer (Penn State) 2007]  O(n log n 2log* n) bit operations. 

Practice.  [GNU Multiple Precision Arithmetic Library]  GMP proclaims 
to be "the fastest bignum library on the planet." It uses brute force, 
Karatsuba, and FFT, depending on the size of n. 


