
TDDD95 Algorithmic

Problem Solving
Le 3 – Arithmetic

Fredrik Heintz

Dept of Computer and Information Science

Linköping University

2Overview

 Arithmetic

 Arbitrarily big integers (BigInt)

 Integer multiplication with Karatsuba (Lab 1.6)

 Multiplication of polynomials with FFT (Lab 1.6)

 Linear equations – Gaussian Elimination (Lab 1.7-1.8)

 Other methods
▪ Segment tree for finding all intervals that contain a query point

3Arithmetic

 Range of default integer data types (C++)
▪ unsigned int = unsigned long: 232 (9‐10 digits)

▪ unsigned long long: 264 (19‐20 digits)

▪ uint128_t (almost 40 digits)

 Operations on Big Integer
(free in e.g. Java and Python, has to be implemented in C++)
▪ Basic: add, subtract, multiply, divide, etc.

▪ Use “high school methods”.

4Arithmetic

 Greatest Common Divisor (Euclidean Algorithm)
▪ GCD(a, 0) = a

▪ GCD(a, b) = GCD(b, a mod b)

▪ // Exercise: Prove this!

▪ int gcd(int a, int b) { return (b == 0 ? a : gcd(b, a % b)); }

 Least Common Multiplier
▪ LCM(a, b) = (a*b) / GCD(a, b)

▪ int lcm(int a, int b) { return (a / gcd(a, b)) * b; }

▪ // Why is it good practice to write the lcm code this way?

 GCD/LCM of more than 2 numbers:
▪ GCD(a, b, c) = GCD(a, GCD(b, c))

5Arithmetic

 Representing rational numbers.
▪ Pairs of integers a,b where GCD(a,b) = 1.

 Representing rational numbers modulo m.
▪ The only difficult operation is inverse, ax = 1 (mod m), where an inverse

exists if and only if a and m are co-prime (gcd(a,m)=1).

▪ Can be found using the Extended Euclidean Algorithm
ax = 1 (mod m) => ax – 1 = qm => ax – qm = 1
(d, x, y) = EGCD(a,m) => x is the solution iff d = 1.

6Karatsuba’s algorithm (Lab 1.6)

 Using the classical pen and paper algorithm two n
digit integers can be multiplied in O(n2) operations.
Karatsuba came up with a faster algorithm.

 Let A and B be two integers with

▪ A = A110
k + A0, A0 < 10k

▪ B = B110
k + B0, B0 < 10k

▪ C = A*B = (A110
k + A0)(B110

k + B0)

= A1B110
2k + (A1B0 + A0 B1)10

k + A0B0

Instead this can be computed with 3 multiplications

▪ T0 = A0B0

▪ T1 = (A1 + A0)(B1 + B0)

▪ T2 = A1B1

▪ C = T210
2k + (T1 - T0 - T2)10

k + T0

7Karatsuba’s algorithm (Lab 1.6)

 Compute 1234 * 4321

 Subproblems:

▪ a1 = 12 * 43

▪ d1 = 34 * 21

▪ e1 = (12 + 34) * (43 + 21) – a1 – d1 = 46 * 64 – a1 – d1

 Need to recurse…

 First subproblem: a1 = 12 * 43

▪ a2 = 1 * 4 = 4 ; d2 = 2 * 3 = 6 ; e2 = (1+2)(4+3) – a2 – d2 = 11

▪ Answer: 4 * 102 + 11 * 101 + 6 = 516

 Second subproblem d1 = 34 * 21

▪ Answer: 6 * 102 + 11 * 101 + 4 = 714

 Third subproblem: e1 = 46 * 64 – a1 – d1

▪ Answer: 4 * 102 + 52 * 101 + 24 - 714 - 516 = 1714

 Final Answer:

▪ 1234 * 4321 = 516 * 104 + 1714 * 102 + 714 = 5,332,114

8Complexity of Karatsuba’s Algorithm

 Let T(n) be the time to compute the product of two n-digit
numbers using Karatsuba’s algorithm.
Assume n = 2k. T(n) = (nlg(3)), lg(3)  1.58

 T(n)  3T(n/2) + cn

 3(3T(n/4) + c(n/2)) + cn = 32T(n/22) + cn(3/2 + 1)

 32(3T(n/23) + c(n/4)) + cn(3/2 + 1)

= 33T(n/23) + cn(32/22 + 3/2 + 1)

…

 3iT(n/2i) + cn(3i-1/2i-1 + … + 3/2 + 1)

...

 c3k + cn[((3/2)k - 1)/(3/2 -1)] --- Assuming T(1)  c

 c3k + 2c(3k - 2k)  3c3lg(n) = 3cnlg(3)

9Fast Fourier Transform (Lab 1.6)

 See separate presentation.

10Systems of Linear Equations (Lab 1.7 and 1.8)

formMatrix form Standard

7

5

3

601

315.2

342

76

535.2

3342

formsdifferent in

 presented becan equationslinear of systemA

3

2

1

31

321

321

















=

































−

−

−










=−

=+−

=−+

x

x

x

xx

xxx

xxx

11Solutions of Linear Equations

52

3

:equations following theosolution t a is
2

1

21

21

2

1

=+

=+









=









xx

xx

x

x

12Solutions of Linear Equations

 A set of equations is inconsistent if there exists no
solution to the system of equations:

ntinconsiste are equations These

542

32

21

21

=+

=+

xx

xx

13Solutions of Linear Equations

 Some systems of equations may have infinite number of
solutions

 allfor solution ais
)3(5.0

solutions ofnumber infinite have

642

32

2

1

21

21

a
a

a

x

x

xx

xx










−
=









=+

=+

14Graphical Solution of Systems of Linear Equations

52

3

21

21

=+

=+

xx

xx

Solution

x1=1, x2=2

15Cramer’s Rule is Not Practical

way efficient in computed are tsdeterminan theif used be canIt

needed. are tionsmultiplica 102.38 system, 30by 30a solve To

tions.multiplica 1)N!-1)(N(N requires system Nby N solve To

. systems largefor practicalnot is RulesCramer'

2

21

11

51

31

,1

21

11

25

13

system thesolve toused be can RulesCramer'

35

21



+

==== xx

16Naive Gaussian Elimination

 The method consists of two steps:
▪ Forward Elimination: the system is reduced to upper triangular

form. A sequence of elementary operations is used.

▪ Backward Substitution: Solve the system starting from the last
variable.

















=



















































=

































'

'

'00

''0

3

2

1

3

2

1

33

2322

131211

3

2

1

3

2

1

333231

232221

131211

b

b

b

x

x

x

a

aa

aaa

b

b

b

x

x

x

aaa

aaa

aaa

17Elementary Row Operations

 Adding a multiple of one row to another.

 Swap two rows.

 Multiply any row by a non-zero constant.

18Example: Forward Elimination



















−

−

−
=





































−

−

−

−



















−

−
=





































−−

−

−

−

18

27

6

16

14320

18120

2240

4226

4 3, 2,equationsfrom Eliminate:Step1

nEliminatio Forward:1Part

34

19

26

16

18146

39133

106812

4226

4

3

2

1

1

4

3

2

1

x

x

x

x

x

x

x

x

x

19Example: Forward Elimination



















−

−

−
=





































−

−

−

−



















−

−

−
=





































−

−

−

−

3

9

6

16

3000

5200

2240

4226

4equation from Eliminate:Step3

21

9

6

16

13400

5200

2240

4226

4 ,3equationsfrom Eliminate:Step2

4

3

2

1

3

4

3

2

1

2

x

x

x

x

x

x

x

x

x

x

20Example: Forward Elimination



















−

−

−
=





































−

−

−

−





















−

−
=





































−−

−

−

−

3

9

6

16

3000

5200

2240

4226

34

19

26

16

18146

39133

106812

4226

:nEliminatio Forward theofSummary

4

3

2

1

4

3

2

1

x

x

x

x

x

x

x

x

21Example: Backward Substitution

3
6

)1(4)2(2)1(216
,1

4

)1(2)2(26

2
2

59
,1

3

3

for solve ,...for solvethen ,for Solve

3

9

6

16

3000

5200

2240

4226

12

34

134

4

3

2

1

=
−−−+

==
−

−−−−
=

−=
+−

==
−

−
=



















−

−

−
=





































−

−

−

−

xx

xx

xxx

x

x

x

x

22Determinant

13detdet

1300

410

321

A'

213

232

321

A

:Example

tdeterminan affect thenot do operations elementary The

operations Elementary

−==

















−−=⎯⎯⎯⎯⎯⎯ →⎯

















=

(A')(A)

23
How Many Solutions Does a

System of Equations AX=B Have?

0 elements0 elements

B ingcorrespondB ingcorrespond

rows zerorows zero

moreor one has moreor one hasrows zero no has

matrix reducedmatrix reducedmatrix reduced

0det(A)0det(A)0det(A)

Infinitesolution NoUnique

=

==

24How Good is the Solution?



















=



















−

−

=





































−

=





































−

−

0.001

0.003

0.002

0.005

:Residues

1.7245

0.3980

0.3469

1.8673

1

1

1

1

3524

3685

4123

1211

4

3

2

1

4

3

2

1

R

x

x

x

x

solution

x

x

x

x

25Other algorithms and data structures

 Segment tree for finding all intervals that
contain a query point in O(log n + k), where
k is the number of intervals.

26Overview

 Arithmetic

 Arbitrarily big integers (BigInt)

 Integer multiplication with Karatsuba (Lab 1.6)

 Multiplication of polynomials with FFT (Lab 1.6)

 Linear equations – Gaussian Elimination (Lab 1.7-1.8)

 Other methods
▪ Segment tree for finding all intervals that contain a query point

