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2Overview

 Arithmetic

 Arbitrarily big integers (BigInt)

 Integer multiplication with Karatsuba (Lab 1.6)

 Multiplication of polynomials with FFT (Lab 1.6)

 Linear equations – Gaussian Elimination (Lab 1.7-1.8)

 Other methods
▪ Segment tree for finding all intervals that contain a query point



3Arithmetic

 Range of default integer data types (C++)
▪ unsigned int = unsigned long: 232 (9‐10 digits)

▪ unsigned long long: 264 (19‐20 digits)

▪ uint128_t (almost 40 digits)

 Operations on Big Integer 
(free in e.g. Java and Python, has to be implemented in C++)
▪ Basic: add, subtract, multiply, divide, etc.

▪ Use “high school methods”.



4Arithmetic

 Greatest Common Divisor (Euclidean Algorithm)
▪ GCD(a, 0) = a

▪ GCD(a, b) = GCD(b, a mod b)

▪ // Exercise: Prove this!

▪ int gcd(int a, int b) { return (b == 0 ? a : gcd(b, a % b)); }

 Least Common Multiplier
▪ LCM(a, b) = (a*b) / GCD(a, b)

▪ int lcm(int a, int b) { return (a / gcd(a, b)) * b; }

▪ // Why is it good practice to write the lcm code this way?

 GCD/LCM of more than 2 numbers:
▪ GCD(a, b, c) = GCD(a, GCD(b, c))



5Arithmetic

 Representing rational numbers.
▪ Pairs of integers a,b where GCD(a,b) = 1.

 Representing rational numbers modulo m.
▪ The only difficult operation is inverse, ax = 1 (mod m), where an inverse 

exists if and only if a and m are co-prime (gcd(a,m)=1).

▪ Can be found using the Extended Euclidean Algorithm
ax = 1 (mod m) => ax – 1 = qm => ax – qm = 1
(d, x, y) = EGCD(a,m) => x is the solution iff d = 1.



6Karatsuba’s algorithm (Lab 1.6)

 Using the classical pen and paper algorithm two n
digit integers can be multiplied in O(n2) operations.  
Karatsuba came up with a faster algorithm.

 Let A and B be two integers with

▪ A = A110
k + A0, A0 < 10k

▪ B = B110
k + B0, B0 < 10k

▪ C = A*B = (A110
k + A0)(B110

k + B0) 

= A1B110
2k + (A1B0 + A0 B1)10

k + A0B0

Instead this can be computed with 3 multiplications

▪ T0 = A0B0

▪ T1 = (A1 + A0)(B1 + B0) 

▪ T2 = A1B1

▪ C = T210
2k + (T1 - T0 - T2)10

k + T0



7Karatsuba’s algorithm (Lab 1.6)

 Compute 1234 * 4321

 Subproblems: 

▪ a1 = 12 * 43

▪ d1 = 34 * 21

▪ e1 = (12 + 34) * (43 + 21) – a1 – d1 = 46 * 64 – a1 – d1

 Need to recurse…

 First subproblem: a1 = 12 * 43

▪ a2 = 1 * 4 = 4 ; d2 = 2 * 3 = 6 ; e2 = (1+2)(4+3) – a2 – d2 = 11

▪ Answer: 4 * 102 + 11 * 101 + 6 = 516

 Second subproblem d1 = 34 * 21

▪ Answer: 6 * 102 + 11 * 101 + 4 = 714

 Third subproblem: e1 = 46 * 64 – a1 – d1 

▪ Answer: 4 * 102 + 52 * 101 + 24 - 714 - 516 = 1714

 Final Answer: 

▪ 1234 * 4321 = 516 * 104 + 1714 * 102 + 714 = 5,332,114



8Complexity of Karatsuba’s Algorithm

 Let T(n) be the time to compute the product of two n-digit 
numbers using Karatsuba’s algorithm.  
Assume n = 2k. T(n) = (nlg(3)), lg(3)  1.58

 T(n)  3T(n/2) + cn

 3(3T(n/4) + c(n/2)) + cn = 32T(n/22) + cn(3/2 + 1)

 32(3T(n/23) + c(n/4)) + cn(3/2 + 1)

= 33T(n/23) + cn(32/22 + 3/2 + 1)

…

 3iT(n/2i) + cn(3i-1/2i-1 + … + 3/2 + 1)

...

 c3k + cn[((3/2)k - 1)/(3/2 -1)]    --- Assuming T(1)  c

 c3k + 2c(3k - 2k)  3c3lg(n) = 3cnlg(3)



9Fast Fourier Transform (Lab 1.6)

 See separate presentation.



10Systems of Linear Equations (Lab 1.7 and 1.8)
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11Solutions of Linear Equations

52

3

:equations following  theosolution t a is 
2

1

21

21

2

1

=+

=+









=









xx

xx

x

x



12Solutions of Linear Equations

 A set of equations is inconsistent if there exists no 
solution to the system of equations:     

ntinconsiste are equations These

542

32

21

21

=+

=+

xx

xx



13Solutions of Linear Equations

 Some systems of equations may have infinite number of 
solutions
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14Graphical Solution of Systems of Linear Equations
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15Cramer’s Rule is Not Practical

way efficient  in computed are tsdeterminan  theif used be canIt 

needed. are tionsmultiplica 102.38 system, 30by  30a  solve To

tions.multiplica 1)N!-1)(N(N requires system Nby  N solve To

. systems largefor  practicalnot  is  RulesCramer'

 

2

21

11

51

31

,1

21

11

25

13

system  thesolve  toused be can  RulesCramer'

35

21



+

==== xx



16Naive Gaussian Elimination

 The method consists of two steps:
▪ Forward Elimination: the system is reduced to upper triangular 

form. A sequence of elementary operations is used. 

▪ Backward Substitution: Solve the system starting from the last 
variable.
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17Elementary Row Operations

 Adding a multiple of one row to another.

 Swap two rows.

 Multiply any row by a non-zero constant.



18Example: Forward Elimination
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19Example: Forward Elimination
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20Example: Forward Elimination



















−

−

−
=





































−

−

−

−





















−

−
=





































−−

−

−

−

3

9

6

16

3000

5200

2240

4226

34

19

26

16

18146

39133

106812

4226

:nEliminatio  Forward  theofSummary 

4

3

2

1

4

3

2

1

x

x

x

x

x

x

x

x



21Example: Backward Substitution
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22Determinant

13detdet

1300

410

321

A' 

213

232

321

A

:Example

tdeterminan affect thenot  do operations elementary The

operations Elementary

−==

















−−=⎯⎯⎯⎯⎯⎯ →⎯

















=

(A')(A)



23
How Many Solutions Does a 

System of Equations AX=B Have?
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24How Good is the Solution?
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25Other algorithms and data structures

 Segment tree for finding all intervals that 
contain a query point in O(log n + k), where 
k is the number of intervals.



26Overview

 Arithmetic

 Arbitrarily big integers (BigInt)

 Integer multiplication with Karatsuba (Lab 1.6)

 Multiplication of polynomials with FFT (Lab 1.6)

 Linear equations – Gaussian Elimination (Lab 1.7-1.8)

 Other methods
▪ Segment tree for finding all intervals that contain a query point


