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2Outline

 This week’s exercises: Aspen Avenue (*), Help!,
Ljutnja, Spiderman’s Workout

 Basic data structures

 Interval Cover (lab 1.1)

 Knapsack (lab 1.2)

 Union-Find (lab 1.4)

 Fenwick Tree (lab 1.5)



3Remember

 Remember to submit solutions using your LiU
account, and go to 
liu.kattis.com/courses/AAPS/AAPS20 and press 
“I am a student taking this course and I want 
to register for it on Kattis”



14Time Limits and Computational Complexity

 The normal time limit for a program is a few 
seconds.

 You may assume that your program can do 
approximately 100M operations within this time 
limit.

 The Kattis time limits are often defined so that 
you don’t have to consider micro-optimizations 
and advanced I/O efficiency.

 If your approach is very near this 100M limit, it is 
likely there’s a more efficient one (even if you can 
get AC with optimizations in some cases).



15Time Limits and Computational Complexity

n Worst AC Complexity Comments

≤ [10..11] O(n!), O(n6) Enumerating permutations

≤ [15..18] O(2n × n2) DP TSP

≤ [18..22] O(2n × n) DP with bitmask technique

≤ 100 O(n4) DP with 3 dimensions and O(n) loop

≤ 450 O(n3) Floyd Warshall’s (APSP)

≤ 2K O(n2 log2 n) 2-nested loops + tree search

≤ 10K O(n2) Bubble/Selection/Insertion sort

≤ 1M O(n log2 n) Merge sort

≤ 100M O(n), O(log2), O(1) Simulation, find average, binary search



16Basic Data Structures

 Linear data structures

 Pair, tuple (C++11)

 static array

 vector (ArrayList or Vector)

 bitset (BitSet)

 stack (Stack)

 queue (Queue)

 deque (Deque)

 Linked list data structures

 list (LinkedList)

 Tree-like data structures

 priority queue (PriorityQueue)

 C++ max heap, Java min heap

 set (TreeSet), multiset

 map (TreeMap), multimap

 unordered_map (HashMap/HashSet/HashTable), unordered_multimap (C++11)



17Example Problem: UVA 10107

 UVA 10107: Compute the median of n integers

▪ vector<int> that is sorted allows to take out the median 
in O(1) time.

▪ Linked list, insert in the right place to keep sorted
(basically insertion sort).

▪ Balanced tree, keep sorted (basically heap sort), find 
median element using binary search.



18Example Problem: UVA 902

 UVA 902: Find the most frequent string of length
n in a text t

▪ Create a map<string, id> counting the frequency of each
substring of length n, O(t log tn).



19Interval Cover (Greedy)

(pseudocode by Wendin et al.)

 Exercise 1: Why is this greedy algorithm optimal?

 Exercise 2: How can this be improved to O(n log n)?



20Knapsack (DP)

 Given a capacity C, and some objects that each 
have a (possibly unique) weight and value, find 
the highest valued set of objects that you can 
carry.

 Can be solved with dynamic programming.



21Knapsack (DP)

 Subproblem = “should I put the item with 
index i in the knapsack if I carry w weight”?

 Decision state = “(i, w)”.

 Store the solutions for each such subproblem 
in an array dp[|objects|][max weight].

 Time complexity: O(|objects| x max weight).

The knapsack problem generalizes MANY well-
known optimization problems.



22Disjoint Set (Union-Find)

 The disjoint set is a data structure for storing 
a set of disjoint sets where it is very efficient 
~O(1) to find which set an element belongs to 
and to merge (“unify”) two sets.

 The disjoint sets are represented by a forest of 
trees, where the root of a tree is the 
representative element for that set.



24Disjoint Set (Union-Find)

 To improve the performance use path-
compression.

 Example usage: Finding connected 
components in an undirected graph or 
Kruskal’s algorithm for finding a Minimum 
Spanning Tree.

 In Almost Union-Find you implemented an 
extended version of the data structure which 
also supports delete and move.



25Fenwick Tree

 A Fenwick tree is an efficient data structure for 
computing range sum queries with updates, both in 
O(log n). 

 Naively, O(n), so this is a great improvement.

 A Fenwick tree only stores range sums, not the 
original values.

 Basic idea: Each integer can be represented as sum of 
powers of two. In the same way, cumulative frequency 
can be represented as sum of sets of subfrequencies. 
In our case, each set contains some successive number 
of non-overlapping frequencies.



26Fenwick Tree

 If the data is static then the range sums can be precomputed in 
O(n) (rsq[i] = rsq[i-1] + A[i]).

 The cost of building a Fenwick Tree is O(m log n), where m is 
the number of data points.

 A Fenwick Tree only stores range sums, not the original values, 
which makes it very space efficient, O(n).

 A Fenwick Tree is a binary tree where element i stores the range 
sum query for [i-LSOne(i)+1, i-LSOne(i)+2, …, i], where 
LSOne(i) is the least significant one in the binary 
representation of i.

 The range sum for any range [i,j] can be computed as rsq(j) –
rsq(i-1).

 Fenwick Trees can be extended to d-dimensional data with 
query and update operations in O(2d logd n).



29Fenwick Tree

 Tip 1: Read the original paper by Fenwick! It is 
very concise and highly explanatory. 

 Tip 2: Implementing the Fenwick tree only takes a 
few lines of code: Look at implementations online 
for inspiration (LSB)!

 Tip 3: Learn how to use the Fenwick tree.

 Also known as BIT (binary indexed tree).



30Segment Tree

 A Segment Tree is an efficient data structure for computing 
range queries with range updates, both in O(log n).

 Example range queries are range min/max queries and range 
sum queries.

 If the data is static then the range min/max queries can be 
precomputed in O(n log n).

 A Segment Tree is a binary tree where the root has index 1 and 
the index of the left/right child of index p is 2p/2p+1.

 RMQ(i,i) = A[i]. 

 For RMQ(i,j), let p1=RMQ(i, (i+j)/2) and p2=RMQ((i+j)/2+1, j), 
RMQ(i,j)=p1 if A[p1]≤A[p2], otherwise p2.



31Fenwick Tree vs Segment Tree

Feature Segment Tree Fenwick Tree

Build tree from array O(n) O(n log n)

Dynamic RMin/RMaxQ Ok Limited

Dynamic RSQ Ok Ok

Query Complexity O(log n) O(log n)

Point update complexity O(log n) O(log n)

Length of code Longer Shorter

,



32Tips

 Debugging: If you get stuck for too long, ask me 
for test data that breaks your algorithm. You will 
learn a lot by trying to understand why certain 
“more complex” input data kills your program.

 If you’re still stuck, take a break or try another 
problem.



33Tips

 If you are using C++: 
#include <bits/stdc++.h> can be very helpful 
during problem-solving sessions.



34Summary

 Learn to use basic data structures in standard libraries such as 
vector, map, stack, queue, priority queue and set.

 Use a Union-Find data structure to represent collections of 
disjoint sets when you need to efficiently check membership 
and merge sets. Can be extended to handle move and delete.

 Use a Fenwick Tree to compute range sum queries when the 
data needs to be updated between queries. Can be extended to 
d-dimensional data.

 Use a Segment Tree to compute range min/max queries when 
the data needs to be updated between queries.


