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Outline

What is algorithmic problem solving?

Why is algorithmic problem solving important?
What will be studied in this course?

A method for algorithmic problem solving
Common algorithmic problem-solving approaches
Common data structures and algorithms

Pragmatic algorithmic problem-solving using Kattis



What is Algorithmic Problem Solving?  ({§

Algorithmic problem solving is about developing correct and
working algorithms to solve classes of problems.

The problems are normally very well defined, and you know
there is a solution, but they can still be very hard.

Algorithms Programming

APS

Problem
Solving
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The 3n + 1 problem

Background

Problem: in Computer Science are aften classifid as belonsies to a cartain class of problams (e.z, NE Unsohvable, Rerursive) In this problem you will be analyzirs a proparty of an
alzorithen whese clas:ification is net kmown fior all pozsible inputs

The Problem
Consider the following alzoritm:
P
prize a
4f n =1 eman STOP

4f = i3 odd then M= 41

aizm M o— 2

Grivven the imgut 22, the following segquence of mumbsrs will be printed 22 1134 1732 26 1340 20 105168421

It i= conjectured that the alzprithm above will temuinate (when 2 1 &= printed) for amy integral imput vaiue. Despite the simplicity of the algorithm, it i mimonm whether this canjechre iz
tmoz. It has been verified, bowever, for all integers n such that 02 p < 1,000,000 (and, in fact, for marmy moee mumbers them this.}

(Ghven am mpet A, it iz possible fo determine the mmeber of mumbsrs printed (mcboding the 1). For a given # this i5 called the cycle-length of m In the example above, the cyrle lensth of
22is 14.

For any two munbers § and j vou are to det=rmine the mayximom cycle lensth over all monbers between | and .

The Input

Tha input will consist of a series of pairs of imezars { and j, cne pair of integers par line All imtzzers will be less than 1000000 and ereater than .
“You should process all pairs of intesers and for each peir detemmire the mayinmen cycle length over all infezers betmeen md incuding i amd .
You can assume that no operation overflons a 32-bit integar

The Output

For each pair of input infagers f and § you should outpt 1, j, and the magimam cycle lensth for integers between and inchuding § and j. These thres members shoald be separated by at
least cne space with all three menbers on one line and with cne Line of eatput for each line of input. The integers § and § pust appear in the eatput in the same order in which they
appeared in the input and sheald be followed by the megimmmm cycle length {on the same line).

Sample Input

1 1o

123 390
2031 310
223 1900

Sample Output

11D 30

123 390 13
201 210 =@
23 1007 174




100 The 51 + 1 problem

Background
_':'|'|:||_|'|j_-\ ._|| |:'|:|2_||I|||'|' I‘".l'-_|'|||'|' e |:f.||'|| |'_:|-1.-\._f:|'|| = |||'_|:||:_'._||:_' Lir a |'|'|'|:|._|| Clel == |:f. |||'|:||_|'|j_-\ S
NP Unsolvable, Becursivel, 1o this |||'|:||_|'|j_ VO W il he alialy AE a properts ol an aleorithim whose

clas=sification 1= not loown for all |II:'-.'-._|I_I' L=,

The Problem
Clonsider the fTollowing aleorithmn;

mput
2 print
3. [ then STOHF
| g 15 ol then wn 3

. else 4 yi )2

Cilven the '_|||.||| 22 the following SECUeCe of numbers will be |.|-'_||||-||

3 -||

SEITA220 134020 105 16121

It 1= |'|:||_:|'|'| nred that the aleorithm above will terminate {when a 1 1= |||"_||||'||j i Al inteeral '_|||||||
value, Despite the shophicity of the algortho, it s vokoown whether this conjecture is troe, It has been
verified, however, for all Totegers o osoch that 00< w < 1OO0, 000 fand, o fact, for Il e nurhers

Lhan this. |
Ciiven an dnput w0t s possible to determine the nmmber of nombers printed belore and ineloding

Lhe 1= |||"_||I|'||_ For a given o this s called the cgede-fe gkl of v, In the exatnple above, the cvele leneth
of 22 = 16,
For anv two nombers ¢ aned vou oare o determine the maximum Cvele length over all numbers

between and nclodineg both ¢ and .




Example: The 3n+1 problem

The Input

1 he '_||||||| will consist of a series of ||:|'_|'-\ of tntegers ¢ and s ||:|'_|' of ntegers [per e, Al integers
il be less than 10000 and greater than 00,
You shouold process all pairs of integers and for each pair deternmine the maximomn cvele lenegth over

all integers between and ichoding © and .

The OQutput

Foreach pair ol input tntegers ¢ and §ovon shoold outpoat e poand the maxcimom evele length for integers
between and nelading @ and These three numbers shouald be -1.|'||;||':|||'|| ||_'. al least one space witle all
Chree numbers on one loe and with one line of oot [ o each line of '.II|'II|. The tntegers ¢ and 1=l
AP pear m e |:|||||||| e the same order o which ||||'_'- :||||||':||'|'|| e -_||||||| and shoold be followed ||_'-

Lhe maximumn evele length fon the same line],

sample Input

1 10

100 200

201 210

200 1000

Sample Output

1 1¢ 20

100 200 12k
201 210 89
200 1000 174



Example: The 3n+1 problem

Follow the instructions in the problem!
Memoization to speed it up.

Table lookup to solve it in constant time.
Gotchas:

j can be smaller than i.
j can equal i.

The order of i and j in output must be the same as the input, even when j
is smaller than i.



Course Goals

The goals of the course are you should be able to:

analyze the efficiency of different approaches to solving a
problem to determine which approaches will be reasonably
efficient in a given situation,

compare different problems in terms of their difficulty,

use algorithm design techniques such as greedy algorithms,
dynamic programming, divide and conquer, and combinatorial
search to construct algorithms to solve given problems,

strategies for testing and debugging algorithms and data
structures, and

quickly and correctly implement a given specification of an
algorithm or data structure.



Examination

LAB1 4hp
individually solving the 4 lab assignments

optionally participating in problem solving sessions

UPPG1 2hp,

individually solving the 13 weekly homework exercises, e.g.:
Data structures
Greedy Problems and Dynamic Programming
Graph Algorithms
Search
Math-related Problems
Computational Geometry.



Examination - Labs

Examination

The course is graded on a scale 3-5, and the course grade depends on your grade for the LAB1 and UPG1 parts. The labs and

exercises should be solved individually. You are welcome to discuss the problems with other students, but your implementation
should be individual.

LABI

To pass the LAB1 part of the course, you must fulfill the following requirements:
1. Accumulate a sufficient number of LAB1 points. This also determines your LAB1 grade.

You accumulate points in LAB1 by solving labs and participating in problem solving sessions. Each problem you or your group solves
in a problem solving session gives you 2 points, but you may only use the result from your two best individual sessions. Additionally, you
obtain 1-2 point for solving each task from the lab assignments. The maximum possible number of points is therefore 8 (lab 1) + 3*9
(labs 2-4) + 12*2 (sessions) = 59. Your LAB1 grade is a function of your total points.

Points Grade LABI

20 3
30 4
40 5

We use Webreg to track your progress for labs and sessions.



Examination — Exercises

UPGI

To pass the UPGL1 part of the course, you must fulfill the following requirements:

1. Solve at least one problem from each of the 13 exercise sets, before or after the corresponding deadline.
2. Accumulate a sufficient number of UPG1 points. This also determines your UPG1 grade.

The problems come in three difficulty classes: A, B, and C. You are awarded 1 point in the corresponding difficulty class for each problem
you solve before its deadline, and 0.5 points if you solve it after the deadline. The table below specifies how many points you must
accumulate for the different UPG1 grades.

A B C Grade UPGI
13 0 0 3
13 7 0 4
13 7 6 5

You may of course replace easier problems with harder problems. For example, if you have 6 A points and 7 B points, you have 13
points at difficulty A or above, but not an additional 7 points at difficulty B or above. You would therefore get grade 3.

The exercises aren't tracked in Webreg. Instead, your total points will be calculated at the end of the course. If you want to check your
current status, the easiest way is to calculate your points from your course summary, which you can access by going to your Kattis
profile and pressing the course link. Alternatively, you can send an email to the course assistant.



Examination — Course grade

Course grade

To pass the course, you must obtain at least grade 3 in both LAB1 and UPG1. Your full course grade is then determined as (LAB1 grade
+ UPG1 grade) / 2.

UPPGI

LABI

(Va0 IS

Wlh|H|W

N




The Schedule - VT 1

21/1 How to solve algorithmic problems, intro seminar

22/1 Practice problem solving session: 13.15-17.00 with discussion
30/1 Deadline Ex 1 (Greedy and DP 1) - Seminar Ex1 and Data structures
6/2 Deadline Ex2 (Data structures) — Seminar Ex2 and Arithmetic

13/2 Deadline Ex3 (Arithmetic) - Seminar Ex3 and Problem solving
approaches

19/2 Deadline Lab Assignment 1 (Data structures, Greedy/Dynamic,
Arithmetic)

19/2 Problem solving session (individual based on Lab 1)

20/2 Deadline Ex4 (Greedy and DP II) - Seminar Ex 4 and Graphs I
27/2 Deadline Exs5 (Graphs I) — Seminar Ex5 and Graphs II

6/3 Deadline Ex6 (Graphs II) — Seminar Ex6 and Graphs III

11/3 Deadline Ex 7 (Graphs III) - Seminar Ex7 and Strings I



The Schedule - VT 2

30/3 Deadline Lab Assignment 2 (Graphs)

30/3 Problem solving session (individual based on Lab 2)
10/4 Deadline Ex8 (Strings I) - Seminar Ex8 and Strings II
17/4 Deadline Exg (Strings II) - Seminar Exg and Number Theory

24/4 Deadline Exio (Number Theory) - Seminar Ex 11 and Combinatorial
Search

27/4 Deadline Lab Assignment 3 (Strings, String Matching and Number
Theory)

27/4 Problem solving session (individual based on Lab 3)

29/4 Deadline Exn (Combinatorial Search) - Seminar Exi2 and
Computational Geometry

8/5 Deadline Exi12 (Computational Geometry)

13/5 Deadline Ex13 (Combinatorics and Probability Theory)
25/5 Deadline Lab Assignment 4 (Computational Geometry)
25/5 Problem solving session (individual based on Lab 4)



Steps in solving algorithmic problems

Estimate the difficulty

Theory (size of inputs, known algorithms, known theorems, ...)
Coding (size of program, many cases, complicated data structures, ...)

Have you seen this problem before? Have you solved it before? Do you
have useful code in your code library?

Understand the problem!

What is being asked for? What is given? How large can instances be?
Can you draw a diagram to help you understand the problem?
Can you explain the problem in your own words?

Can you come up with good examples to test your understanding?



Steps in solving algorithmic problems

Determine the right algorithm or algorithmic approach
Can you solve the problem using brute force?
Can you solve the problem using a greedy approach?
Can you solve the problem using dynamic programming?
Can you solve the problem using search?
Can you solve the problem using a known algorithm in your code library?

Can you modify an existing algorithm? Can you modify the problem to
suite an existing algorithm?

Do you have to come up with your own algorithm?

Solve the problem! ©



Time Limits and Computational Complexity )

The normal time limit for a program is a few seconds.

You may assume that your program can do about 100M
operations within this time limit.

< [10..11] O(n!), O(n°)
< [15..18] O(2" x n?)
< [18..22] O(2" x n)

<100 O(n4)
< 450 O(n3)
< 2K O(n?log, n)
< 10K O(n2)
<1M O(n log, n)

< 100M O(n), O(log,), O(1)

Enumerating permutations

DP TSP

DP with bitmask technique

DP with 3 dimensions and O(n) loop
Floyd Warshall’s (APSP)

2-nested loops + tree search
Bubble/Selection/Insertion sort
Merge Sort, Binary search

Simulation, find average



Important Problem Solving Approaches |

Simulation/Ad hoc
Do what is stated in the problem
Example: Simulate a robot

Greedy approaches

Find the optimal solution by extending a partial solution by making locally
optimal decisions

Example: Minimal spanning trees, coin change in certain currencies

Divide and conquer
Take a large problem and split it up in smaller parts that are solved individually
Example: Merge sort and Quick sort

Dynamic programming
Find a recursive solution and compute it “backwards” or use memoization

Example: Finding the shortest path in a graph and coin change in all currencies

Search
Create a search space and use a search algorithm to find a solution

Example: Exhaustive search (breadth or depth first search), binary search,
heuristic search (A*, best first, branch and bound)



Complete Search a.k.a. Brute Force |

When a problem is small or (almost) all possibilities have to be
tried complete search is a candidate approach.

To determine the feasibility of complete search estimate the
number of calculations that have to be made in the worst case.

Iterative complete search uses nested loops to generate every
possible complete solution and filter out the valid ones.
[terating over all permutations using next_permutation

[terating over all subsets using bit set technique

Recursive complete search extends a partial solution with one
element until a complete and valid solution is found.
This approach is often called recursive backtracking.

Pruning is used to significantly improve the efficiency by removing
partial solutions that can not lead to a solution as soon as possible. In the
best case only valid solutions are generated.



Complete Search a.k.a. Brute Force |

We have three different integers, x, y and z, which satisfy the following three relations:

e xty+z=4
e xyz=25
o Xyt +=C

You are asked to write a program that solves for x, y and z for given values of 4, B and C.



Divide and Conquer

Divide and conquer is very common and powerful technique
which divides a problem into smaller parts, solves each part
recursively and then puts together the answer from the pieces.

Many well known algorithms are based on divide and conquer
such as quick sort, merge sort and binary search.

Binary search is a very versatile and useful technique which can
be used to

find a particular value in a sorted range,

find the parameters of a (convex) function that gives a particular value,

find the minimum/maximum value of a function.

Binary search can be implemented either using built in
functions (lower_bound/upper_bound), iterating until the
difference between the end points is small enough or iterate a
constant but sufficiently large number of times.



Quick-Sort

Quick-sortisa
randomized sorting
algorithm based on the
divide-and-conquer
paradigm:

Divide: pick a random

element x (called pivot) and X]
partition § into \ JE ] J

L elements less than x I E G

E elements equal x

G elements greater than x
Recur: sort L and G

Conquer:join L, E and G X

24



Quick-Sort Example

Pivot selection

[729437§1 ]




Quick-Sort Example

Partition, recursive call, pivot selection

[729437§1 ]




Quick-Sort Example

Partition, recursive call, base case

[72943791 ]




Quick-Sort Example

Recursive call, ..., base case, join

[729437§1 ]




Quick-Sort Example

Recursive call, pivot selection

[729437§1 ]
[;431—”;34 ] E ]
11 [43—>34] Yind/ 1 9>9




Quick-Sort Example

Partition, ..., recursive call, base case

[729437§1 ]
/\
[%43191;34 ] [791 ]

4323 9>

33 (404




Quick-Sort Example

Join, join

729437612>12346779

[;431—”;34 ] [791—)719 ]

43230

33 (404

31



An algorithm is said to be greedy if it makes a locally optimal
choice in each step towards the globally optimal solution.

For a greedy algorithm to give a globally optimal result a
problem must have two properties:

[t has optimal sub-structures, i.e. an optimal solution contains the
optimal solutions to sub problems.

It has the greedy choice property; i.e. if we extend a partial solution by
making a locally optimal choice we will get the optimal complete solution
without reconsidering previous choices.
Classical examples: Coin change in some currencies, interval
coverage and load balancing.

Greedy algorithms can be very useful as heuristics for example
in branch-and-bound search algorithms.

In combinatorics matroids and the generalization greedoids
characterize classes of problems with greedy solutions.



Kruskal’s MST Algorithm

Consider an undirected, weight graph




Kruskal’s MST Algorithm

Sort the edges by increasing edge weight

edge | d, edge | d,
(D,E) | 1 (B.E) | 4
(D,G) | 2 (B,F) | 4
(E,G) | 3 (BH) | 4
(CD)| 3 (AH) | 5
(GH) | 3 (D,F) | 6
(CF) | 3 (AB) | 8
(B,.C) | 4 (AF) | 10




Kruskal’s MST Algorithm

Select first |V|-1 edges which do not
generate a cycle

edge | d, edge | d,
ME)| 1] V (B.E) | 4
(D,G) | 2 (B,F) | 4
(E,G) | 3 (BH) | 4
(C,D) | 3 (AH) | 5
(GH) | 3 (D,F) | 6
(CF) | 3 (AB) | 8
(B,C) | 4 (AF) | 10




Kruskal’s MST Algorithm

Select first |V|-1 edges which do not
generate a cycle

edge | d, edge | d,
ME)| 1] V (B.E) | 4
DG | 2| Vv (B,F) | 4
(E,.G) | 3 (BH) | 4
(C,D) | 3 (AH) | 5
(G,H) | 3 (D,F) | 6
(C,F) | 3 (AB) | 8
(B,C) | 4 (AF) | 10




Kruskal’s MST Algorithm

Select first |V|-1 edges which do not
generate a cycle

edge | d, edge | d,
ME)| 1] V (B.E) | 4
DG | 2| Vv (B,F) | 4
EG | 3| x (BH) | 4
(C,D) | 3 (AH) | 5
(G,H) | 3 (D,F) | 6
(C,F) | 3 (AB) | 8
(B,C) | 4 (AF) | 10

Accepting edge (E,G) would create a cycle



Kruskal’s MST Algorithm

Select first |V|-1 edges which do not
generate a cycle

edge | d, edge | d,
ME)| 1] V (B.E) | 4
DG | 2| Vv (B,F) | 4
(EG) | 3| x (B,H) | 4
CD)| 3| v (AH) | 5
(G,H) | 3 (D,F) | 6
(C,F) | 3 (AB) | 8
(B,C) | 4 (AF) | 10




Kruskal’s MST Algorithm

Select first |V|-1 edges which do not
generate a cycle

edge | d, edge | d,
ME)| 1] V (B.E) | 4
DG | 2| Vv (B,F) | 4
(EG) | 3| x (B,H) | 4
CD)| 3| v (AH) | 5
GH |3 | V (D,F) | 6
(C,F) | 3 (AB) | 8
(B,C) | 4 (AF) | 10




Kruskal’s MST Algorithm

Select first |V|-1 edges which do not
generate a cycle

edge | d, edge | d,
ME)| 1] V (B.E) | 4
DG | 2| Vv (B,F) | 4
(EG) | 3| x (B,H) | 4
CD)| 3| v (AH) | 5
GH |3 | V (D,F) | 6
(CF)|3]| v (AB) | 8
(B,C) | 4 (AF) | 10




Kruskal’s MST Algorithm

Select first |V|-1 edges which do not
generate a cycle

edge | d, edge | d,
ME)| 1] V (B.E) | 4
DG | 2| Vv (B,F) | 4
(EG) | 3| x (B,H) | 4
CD)| 3| v (AH) | 5
GH |3 | V (D,F) | 6
(CF)|3]| v (AB) | 8
B,C)| 4| Vv (AF) | 10




Kruskal’s MST Algorithm

Select first |V|-1 edges which do not
generate a cycle

edge | d, edge | d,
ME)| 1] V (B.E) | 4
DG | 2| Vv (B,F) | 4
(EG) | 3| x (B,H) | 4
CD)| 3| v (AH) | 5
GH |3 | V (D,F) | 6
(CF)|3]| v (AB) | 8
B,C)| 4| Vv (AF) | 10




Kruskal’s MST Algorithm

Select first |V|-1 edges which do not

generate a cycle

edge | d, edge | d,
ME) | 1| V BE) | 4| x
DG | 2| Vv BF) | 4 | x
(EG) | 3| »« (B,H) | 4
CD)| 3| v (AH) | 5
GH |3 | V (D,F) | 6
(CF)|3]| v (AB) | 8
B,C)| 4| Vv (AF) | 10




Kruskal’s MST Algorithm

Select first |V|-1 edges which do not
generate a cycle

edge | d, edge | d,
ME) | 1| V BE) | 4| x
DG | 2| Vv BF) | 4 | x
(E.G) | 3 4 (B,H) | 4 V4
CD)| 3| v (AH) | 5
GH |3 | V (D,F) | 6
(CF)|3]| v (AB) | 8
B,C)| 4| Vv (AF) | 10




Kruskal’s MST Algorithm

Select first |V|-1 edges which do not

generate a cycle

edge | d, edge | d,
ME) | 1| V BE) | 4| x
DG | 2| Vv BF) | 4 | x
(E.G) | 3 4 (B,H) | 4 V4
CcD)|3]| v AH | 5| V
GH |3 | V (D,F) | 6
(CF)|3]| v (AB) | 8
B,C)| 4| Vv (AF) | 10




Kruskal’s MST Algorithm

Select first |V|-1 edges which do not
generate a cycle

edge | d, edge | d,
‘ 3 ME) | 1] Vv (BE) | 4 | x
i , DG | 2| Vv BF) | 4 |
(E.G) | 3 4 (B,H) | 4 V4
‘\ i CcD)|3]| v AH| 5| v
3 > GH |3 ] v (D.F) | 6 }not
‘ (CF) | 3 \/ (AB)| 8 considere
BC) | 4| v (AF) | 10 d
Done

Total Cost = X d, = 21



Dynamic Programming

Dynamic Programming is a problem-solving approach which
computes the answer for every possible state exactly once.

For DP to be suitable a problem must have two properties:

It has optimal sub-structures, i.e., an optimal solution contains the
optimal solutions to sub problems.

Overlapping sub-problems, i.e. the same subproblem occurs many times.
Top-down (memoization) vs Bottom-up

Top-down: no need to consider the order of computations, only compute
states actually used, natural transition from complete search,

Bottom-up: no recursion, computes every state, table size can be reduced
if only the previous row of states is used then only two rows are required.

Displaying the optimal solution
Store the previous state for each solution

Use the DP table and the optimal sub-structures property to compute the
path.



Subset Sum

Given:
an integer bound W, and

a collection of n items, each with a positive, integer weight w,,
find a subset S of items that:

maximizes ) ..s w; while keeping ) ;- w; < W.

Motivation: You have a CPU with W free cycles and want to choose

the set of jobs (each taking w; time) that minimizes the number of
idle cycles.



Subset Sum

Notation:
Let S* be an optimal choice of items (e.g. a set {1,4,8}).
Let OPT(n, W) be the value of the optimal solution.

We desigh a dynamic programming algorithm to compute
OPT(n, W).

Subproblems:

To compute OPT(n, W): We need the optimal value for
subproblems consisting of the first j items for every knapsack size
O<=w<=W.

Denote the optimal value of these subproblems by OPT(j, w).



Subset Sum

Recurrence: How do we compute OPT (), w) in terms of solutions
to smaller subproblems?

OPT(j — 1, W) if j & S

OPT(j, W) = max _ s
wj+OPT(j -1, W —w;) ifjeS”

OPT(0, W) =0 If no items, 0
OPT(j,0)=0 If no space, 0

Special case: if w; > W then OPT(j, W) = OPT(j — 1, W).



Subset Sum

The table of solutions

OPT(n, W)
-/

OPT(4, 11)

./

First j ltems
a

(@ el el ee il el el Beol Be il el e

O1010(O0OJO(OJOJO[Of[OfO(|O

1 2 3 4 5 6 7 8 9 10 11 12
Remaining Available Weight

o



Subset Sum

Filling in a box using smaller problems

OPT(j-1, W-Wj)

9 |0

g8 | O (

710
ge 0 \ e N _OP/T(J.’W)
= 5|0 B
B a0 . OPT(j-1, W)
BEIE \\//

2 |0

110

olOlO]JOfOJOJOJOJO]lOJOfO]J0]O0

o

1 2 3 4 5 6 7 8 9 10 11 12
Remaining Available Weight



Subset Sum
Remembering Which Subproblem Was Used

When we fill in the gray box, we also record which subproblem was

chosen Iin the maximum:

OPT(j-1, W-Wj)

T

f

/

|

/
3

*/

< OPT(j-1, W)

Firstj ltems
a
O|lO | O] O|OC|]O]|O]j] O]l O] O

01]010(O0J0OJ0]010J0|0([O]O

1 2 3 4 5 6 7 8 9 10 11 12
Remaining Available Weight

o



Filling in the Matrix

Fill matrix from bottom to top, left to right.

'S
oO|J]Oo|lo|lo|lo]lOo|lo]lOo]l O] ©

0100 ]10(0

0

0

0

0

0

NAARARARARAR

o

When you are filling in box, you only need to look at boxes you've

already filled in.

2 3 4 5 6

7

8

9

10

11

12




Subset Sum

SubsetSum(n, W):
Initialize M[O,r] = O for eachr=0,...W
Initialize M[j,0] =0 foreachj=1,...,n

forj=1,...n: for every row
Forr=0,...W: for every column
If w[j] >r: case where item can't fit
M[j,r] = M[j-1,r]
M[j,r] = max( which is best?
MI[j-1,r],
w(j] + M[j-1, W-w(j]]
)
return M[n,W]



Finding The Choice of ltems

Follow the arrows backward starting at the top right:

R

First | ltems

I
ol Heol el el Nel el ol ol ol i)

0

0

0

0

0

0

0

0

0

0

o

1 2

3

4

5

6

7

8

9

Remaining Available Weight

Which items does this path imply?

10 11

12



Finding The Choice of ltems

Follow the arrows backward starting at the top right:

R

First | ltems

I
ol Heol el el Nel el ol ol ol i)

0

0

0

0

0

0

0

0

0

0

o

1 2

3

4

5

6

7

8

9

Remaining Available Weight

Which items does this path imply? 8,5, 4, 2

10 11

12



General DP Principles

Optimal value of the original problem can be
computed easily from some subproblems.

There are only a polynomial # of subproblems.

There is a “natural” ordering of the subproblems from
smallest to largest such that you can obtain the
solution for a subproblem by only looking at smaller
subproblems.



General DP Principles

Optimal value of the original problem can be

computed easily from some subprol

OPT(j, w) = max of two subprobl

There are only a polynomial # of sul
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There is a “natural” ordering of the subproblems from
smallest to largest such that you can obtain the
solution for a subproblem by only looking at smaller

subproblems.

Considering items {1, 2, 3} is a smaller problem
than considering items {1, 2, 3, 4}



Classical DP Problems

Max 1D sum
Max 2D sum
Longest increasing subsequence (LIS)

Longest decreasing subsequence (LDS)
0-1 Knapsack (subset sum)
Coin Change (general version)

Travelling Salesman Problem (TSP)

State (i) (i,j) (i) (id,remW)
Space O(n) O(n3) O(n) O(nS)
Transition subarray submatrix allj<i take/ignore
Time O@1) O@1) O(n2) O(nS)

(V)

O(V)

all n coins
O(nV)

(pos,mask)
O(n2")

all n cities
O(2"n?)



Common Data Structures
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hash
keys function
00
01
John Smith
02
03
Lisa Smith
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Sandra Dee \»
14

15

KEYS VALUES
Jan 327.2
Feb 368.2
Mar 197.6
Apr 1784
May 100.0
Jun 69.9
Jul 323
Aug 373
Sep 19.0
Oct 37.0
MNow 73.2
Dec 110.9
Annual 1551.0

buckets

521-8976
521-1234
521-9655

—» 373

Dequeue
Enqueue




Important Data Structures and Algorithms

Data structures

Standard library data structures
Vector, stack, queue, heap, priority queue, sets, maps

Other data structures

Graph (adjacency list and adjacency matrix), Union/find, Segment tree,
Fenwick tree, Trie

Sorting
Quick sort, Merge sort, Radix sort, Bucket sort
Strings

String matching (Knuth Morris Pratt, Aho-Corasick), pattern matching,
trie, suffix trees, suffix arrays, recursive decent parsing



Important Data Structures and Algorithms

Dynamic programming

Longest common subsequence, Longest increasing subsequence, o/1

Knapsack, Coin Change, Matrix Chain Multiplication, Subset sum,
Partitioning

Graphs

Traversal (pre-, in- and post-order), finding cycles, finding connected
components, finding articulation points, topological sort, flood fill, Euler
cycle/Euler path, SSSP - Single source shortest path (Dijkstra, Bellman-
Ford), APSP - All pairs shortest path (Floyd Warshall), transitive closure
(Floyd Warshall), MST - Minimum spanning tree (Prim, Kruskal (using
Union/find)), Maximal Bipartite Matching, Maximum flow, Maximum
flow minimal cost, Minimal cut

Search

Exhaustive search (depth-first, breadth-first search, backtracking),
binary search (divide and conquer), greedy search (hill climbing),
heuristic search (A*, branch and bound), search trees



Important Data Structures and Algorithms

Mathematics

Number theory (prime numbers, greatest common divisor (GCD),
modulus), big integers, combinatorics (count permutations), number
series (Fibonacci numbers, Catalan numbers, binomial coefficients),
probabilities, linear algebra (matrix inversion, linear equations systems),
finding roots to polynomial equations, diofantic equations, optimization
(simplex)

Computational geometry

Representations of points, lines, line segments, polygons, finding
intersections, point localization, triangulation, Voronoi diagrams, area
and volume calculations, convex hull (Graham scan), sweep line
algorithms
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How Kattis checks a program

Compilation
Tac? | p
[Complles. | > .
For each test case
W Runtime
[ Crashes? | > .
Too slow? ) 5 Time Limit
: J Exceeded
Incorrect w S Wrong
output? J Answer

Accepted



UVA Online Judge

UVa

Unline Judge

| Custom Search | Search

Main Menu

My Account

Contact Us

TOOLS on the Old Uva OJ Site
ACM-ICPC Live Archive
Logout

Online Judge
Quick Submit
Migrate submissions
My Submissions
My Statistics
My uHunt with Virtual Contest Service

Browse Problems

http://uva.onlinejudge.org/

UVa OJ fundraising campaing

As you may already discovered by the widget shown on the left, we have started a fundraising campaing
to create a whole new UVa Online Judge. Please, take a couple of minutes to read the reasons for this on

the campaing website, by clicking on the widget.

Welcome to the UVa Online Judge

Here you will find hundreds of problems. They are like
the ones used during programming contests, and are
available in HTML and PDF formats. You can submit

your sources in a variety of languages, trying to solve
any of the problems available in our database.

See the new Contest Rankings section at the Live
Rankings link.

Mow you can use the new Quick access, info and
search option on the left menu for and easier
navigation. (The tool will be updated next days

Categorized set of problems

This book contains a
o Froorita i 2 collection of rElE'v'ElI'IIt data
B e structures, algorithms,
and programming tips
written for University
students who want to be
more competitive in the
ACM International
Collegiate Programming
Contest {ICPC), high
school students who are
aspiring to be competitive
in the International
Olympiad in Informatics




Programming languages

Preferred languages are C, C++, Java, and Python.

C++ or Java is strongly recommended, use the language that
you are most familiar with and want to learn more about.

Get to know their standard libraries.

Get to know input and output. Remember that I/O in Java is
very slow, use Kattio. Remember that cout/cerr also is relatively
slow, learn how to use scanf/printf if you use C++.

Learn to use an appropriate IDE such as eclipse, emacs, or vim

Create a problem template to speed up problem solving and to
create a common format for your problems.



Pragmatic Algorithmic Problem Solving |

7% == Hodet G+ —- %7

II.I'**

ke MAME  C++  "Approach"
Started:
Finished:

Total time:

Submizzion 1z

Comments?

¥ E X ¥ ¥ E X ¥ E ¥ ¥

Leszons learned:
i

#include <algorithm:
#include <cazsert>
#include <cmath
#include <cstdios
#include <cstdlibs
#include <cstrings
#include <functional>
#include <iomanipl
#include <iostream:
#include <zstream:
#include <map>
#include <set>
#include <queuer
#include <stack>
#include <strings>
#include <utilitys>
#include <vector:

uzing namezpace std:
typedef vector<int> wit

int
main{int arac, char* arge[])

[] return G2



Testing and debugging

Always create an example input (.in) and example output (.out) file with
verbatim copies of the example input and output from the problem
statement!

For most problems it is enough to diff your output with the example output:
./prog < prog.in | diff - prog.out
Create additional tests, such as:

Extreme inputs, i.e. smallest and largest values (o, 1, “, empty line, 2"31-1)

Small inputs that you can compute by hand

Potentially tricky cases such as when all inputs are equal, in the case of floating
points numbers when you have to round both up and down

Very large cases, randomly generated to test that your program computes an
answer fast enough (even though you might not know the correct answer).
Use a correct but slow algorithm to compute answers.

Print intermediate information, such as values of relevant variables.

€«

cout << “a="“ <<a << “ b=* << b <<endl;
Remember to remove the debug output before submitting! (or use cerr)



Summary

What is algorithmic problem solving?

Why is algorithmic problem solving important?
What will be studied in this course?

A method for algorithmic problem solving
Common algorithmic problem-solving approaches
Common data structures and algorithms

Pragmatic algorithmic problem-solving using Kattis
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