
TDDD95 Algorithmic 

Problem Solving

6hp, vt2024

Fredrik Heintz

Dept of Computer and Information Science

Linköping University



2Outline

 What is algorithmic problem solving?

 Why is algorithmic problem solving important?

 What will be studied in this course?

 A method for algorithmic problem solving

 Common algorithmic problem-solving approaches

 Common data structures and algorithms

 Pragmatic algorithmic problem-solving using Kattis



3What is Algorithmic Problem Solving?

 Algorithmic problem solving is about developing correct and 
working algorithms to solve classes of problems.

 The problems are normally very well defined, and you know 
there is a solution, but they can still be very hard.

Algorithms Programming

Problem
Solving

APS



Those that really understand 
and take advantage of 

software technology owns 
the future!







7Example: The 3n+1 problem



8Example: The 3n+1 problem



9Example: The 3n+1 problem

 Follow the instructions in the problem!

 Memoization to speed it up.

 Table lookup to solve it in constant time.

 Gotchas:
▪ j can be smaller than i. 

▪ j can equal i. 

▪ The order of i and j in output must be the same as the input, even when j
is smaller than i.



10Course Goals

The goals of the course are you should be able to:

 analyze the efficiency of different approaches to solving a 
problem to determine which approaches will be reasonably 
efficient in a given situation,

 compare different problems in terms of their difficulty,

 use algorithm design techniques such as greedy algorithms, 
dynamic programming, divide and conquer, and combinatorial 
search to construct algorithms to solve given problems,

 strategies for testing and debugging algorithms and data 
structures, and

 quickly and correctly implement a given specification of an 
algorithm or data structure.



11Examination

 LAB1 4hp
▪ individually solving the 4 lab assignments

▪ optionally participating in problem solving sessions

 UPPG1 2hp, 
▪ individually solving the 13 weekly homework exercises, e.g.:

▪ Data structures

▪ Greedy Problems and Dynamic Programming

▪ Graph Algorithms

▪ Search

▪ Math-related Problems

▪ Computational Geometry.



12Examination – Labs 



13Examination – Exercises



14Examination – Course grade 



15The Schedule – VT 1

 17/1 How to solve algorithmic problems, intro seminar

 18/1 Practice problem solving session: 13.15-17.00 with discussion

 26/1 Deadline Ex 1 (Greedy and DP 1) – Seminar Ex1 and Data structures

 2/2 Deadline Ex2 (Data structures) – Seminar Ex2 and Arithmetic

 9/2 Deadline Ex3 (Arithmetic) – Seminar  Ex3 and Problem solving
approaches

 15/2 Deadline Lab Assignment 1 (Data structures, Greedy/Dynamic, 
Arithmetic)

 15/2 Problem solving session (individual based on Lab 1)

 16/2 Deadline Ex4 (Greedy and DP II) – Seminar Ex 4 and Graphs I

 23/2 Deadline Ex5 (Graphs I) – Seminar Ex5 and Graphs II

 1/3 Deadline Ex6 (Graphs II) – Seminar Ex6 and Graphs III

 7/3 Deadline Lab Assignment 2 (Graphs)

 7/3 Problem solving session (individual based on Lab 2)

 8/3 Deadline Ex 7 (Graphs III)  - Seminar Ex7 and Strings I



16The Schedule – VT 2

 27/3 Deadline Ex8 (Strings I) – Seminar Ex8 and Strings II

 3/4 Deadline Ex9 (Strings II) – Seminar  Ex9 and Number Theory

 12/4 Deadline Ex10 (Number Theory) – Seminar Ex 11 and Combinatorial 
Search

 19/4 Deadline Ex11 (Combinatorial Search) – Seminar Ex12 and 
Computational Geometry

 22/4 Deadline Lab Assignment 3 (Strings, String Matching and Number 
Theory)

 22/4 Problem solving session (individual based on Lab 3)

 26/4 Deadline Ex12 (Computational Geometry)

 3/5 Deadline Ex13 (Mixed)

 13/5 Deadline Lab Assignment 4 (Computational Geometry)

 13/5 Problem solving session (individual based on Lab 4)



17Steps in solving algorithmic problems

 Estimate the difficulty
▪ Theory (size of inputs, known algorithms, known theorems, …)

▪ Coding (size of program, many cases, complicated data structures, …)

▪ Have you seen this problem before? Have you solved it before? Do you 
have useful code in your code library?

 Understand the problem!
▪ What is being asked for? What is given? How large can instances be?

▪ Can you draw a diagram to help you understand the problem?

▪ Can you explain the problem in your own words?

▪ Can you come up with good examples to test your understanding?



18Steps in solving algorithmic problems

 Determine the right algorithm or algorithmic approach
▪ Can you solve the problem using brute force?

▪ Can you solve the problem using a greedy approach? 

▪ Can you solve the problem using dynamic programming?

▪ Can you solve the problem using search?

▪ Can you solve the problem using a known algorithm in your code library?

▪ Can you modify an existing algorithm? Can you modify the problem to 
suite an existing algorithm?

▪ Do you have to come up with your own algorithm?

 Solve the problem! ☺



19Time Limits and Computational Complexity

n Worst AC Complexity Comments

≤ [10..11] O(n!), O(n6) Enumerating permutations

≤ [15..18] O(2n × n2) DP TSP

≤ [18..22] O(2n × n) DP with bitmask technique

≤ 100 O(n4) DP with 3 dimensions and O(n) loop

≤ 450 O(n3) Floyd Warshall’s (APSP)

≤ 2K O(n2 log2 n) 2-nested loops + tree search

≤ 10K O(n2) Bubble/Selection/Insertion sort

≤ 1M O(n log2 n) Merge Sort, Binary search

≤ 100M O(n), O(log2), O(1) Simulation, find average

 The normal time limit for a program is a few seconds.

 You may assume that your program can do about 100M 
operations within this time limit.



20Important Problem Solving Approaches

 Simulation/Ad hoc

▪ Do what is stated in the problem

▪ Example: Simulate a robot

 Greedy approaches

▪ Find the optimal solution by extending a partial solution by making locally 
optimal decisions

▪ Example: Minimal spanning trees, coin change in certain currencies

 Divide and conquer

▪ Take a large problem and split it up in smaller parts that are solved individually

▪ Example: Merge sort and Quick sort

 Dynamic programming

▪ Find a recursive solution and compute it “backwards” or use memoization

▪ Example: Finding the shortest path in a graph and coin change in all currencies

 Search

▪ Create a search space and use a search algorithm to find a solution

▪ Example: Exhaustive search (breadth or depth first search), binary search, 
heuristic search (A*, best first, branch and bound)



21Complete Search a.k.a. Brute Force

 When a problem is small or (almost) all possibilities have to be 
tried complete search is a candidate approach.

 To determine the feasibility of complete search estimate the 
number of calculations that have to be made in the worst case.

 Iterative complete search uses nested loops to generate every 
possible complete solution and filter out the valid ones.
▪ Iterating over all permutations  using next_permutation

▪ Iterating over all subsets using bit set technique

 Recursive complete search extends a partial solution with one 
element until a complete and valid solution is found. 
▪ This approach is often called recursive backtracking.

▪ Pruning is used to significantly improve the efficiency by removing 
partial solutions that can not lead to a solution as soon as possible. In the 
best case only valid solutions are generated.



22Complete Search a.k.a. Brute Force



23Divide and Conquer

 Divide and conquer is very common and powerful technique 
which divides a problem into smaller parts, solves each part 
recursively and then puts together the answer from the pieces.

 Many well known algorithms are based on divide and conquer 
such as quick sort, merge sort and binary search.

 Binary search is a very versatile and useful technique which can 
be used to
▪ find a particular value in a sorted range,

▪ find the parameters of a (convex) function that gives a particular value,

▪ find the minimum/maximum value of a function.

 Binary search can be implemented either using built in 
functions (lower_bound/upper_bound), iterating until the 
difference between the end points is small enough or iterate a 
constant but sufficiently large number of times.



24

24

Quick-Sort

 Quick-sort is a 
randomized sorting 
algorithm based on the 
divide-and-conquer 
paradigm:
▪ Divide: pick a random 

element x (called pivot) and 
partition S into 
▪ L elements less than x

▪ E elements equal x

▪ G elements greater than x

▪ Recur: sort L and G

▪ Conquer: join L, E and G

x

x

L GE

x



25Quick-Sort Example

 Pivot selection

7  2  9  4  → 2  4  7  9

2 → 2

7  2  9  4 3  7  6 1 → 1  2  3  4  6  7  8  9

3  8  6  1  → 1  3  8  6

7 → 7 8 → 89  4  → 4  9

3 → 3 4 → 4



26Quick-Sort Example

 Partition, recursive call, pivot selection

2 4  3  1 → 2  4  7  9

9  4  → 4  9

3 → 3 4 → 4

7  2  9  4  3  7  6 1 → 1  2  3  4  6  7  8  9

3  8  6  1  → 1  3  8  6

7 → 7 8 → 82 → 2



27Quick-Sort Example

 Partition, recursive call, base case

2 4  3  1 →→ 2  4  7  

1 → 1 9  4  → 4  9

3 → 3 4 → 4

7  2  9  4 3  7  6 1 →→ 1  2  3  4  6  7  8  9

3  8  6  1  → 1  3  8  6

7 → 7 8 → 8



28Quick-Sort Example

 Recursive call, …, base case, join

3  8  6  1  → 1  3  8  6

7 → 7 8 → 8

7  2  9  4 3  7  6 1 → 1  2  3  4  6  7  8  9

2 4  3  1 → 1  2 3  4

1 → 1 4  3 → 3 4

3 → 3 4 → 4



29Quick-Sort Example

 Recursive call, pivot selection

7  9  7 1  → 1  3  8  6

7 → 7

7  2  9  4 3  7  6 1 → 1  2  3  4  6  7  8  9

2 4  3  1 → 1  2 3  4

1 → 1 4  3 → 3 4

3 → 3 4 → 4

9 → 9



30Quick-Sort Example

 Partition, …, recursive call, base case

7  9  7 1  → 1  3  8  6

7 → 7

7  2  9  4 3  7  6 1 → 1  2  3  4  6  7  8  9

2 4  3  1 → 1  2 3  4

1 → 1 4  3 → 3 4

3 → 3 4 → 4

9 → 9



31

31

Quick-Sort Example

 Join, join

7 9  7 → 17 7 9

7 → 7

7  2  9  4  3  7  6 1  → 1  2  3  4  6 7  7  9

2 4  3  1 → 1  2 3  4

1 → 1 4  3 → 3 4

3 → 3 4 → 4

9 → 9



32Greedy

 An algorithm is said to be greedy if it makes a locally optimal 
choice in each step towards the globally optimal solution.

 For a greedy algorithm to give a globally optimal result a 
problem must have two properties:
▪ It has optimal sub-structures, i.e. an optimal solution contains the 

optimal solutions to sub problems.

▪ It has the greedy choice property, i.e. if we extend a partial solution by 
making a locally optimal choice we will get the optimal complete solution 
without reconsidering previous choices.

 Classical examples: Coin change in some currencies, interval 
coverage and load balancing.

 Greedy algorithms can be very useful as heuristics for example 
in branch-and-bound search algorithms.

 In combinatorics matroids and the generalization greedoids
characterize classes of problems with greedy solutions.



33

Consider an undirected, weight graph

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10

Kruskal’s MST Algorithm



34

Sort the edges by increasing edge weight

edge dv

(D,E) 1

(D,G) 2

(E,G) 3

(C,D) 3

(G,H) 3 

(C,F) 3

(B,C) 4

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

Kruskal’s MST Algorithm



35

Select first |V|–1 edges which do not 
generate a cycle

edge dv

(D,E) 1 

(D,G) 2

(E,G) 3

(C,D) 3

(G,H) 3 

(C,F) 3

(B,C) 4

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

Kruskal’s MST Algorithm



36

Select first |V|–1 edges which do not 
generate a cycle

edge dv

(D,E) 1 

(D,G) 2 

(E,G) 3

(C,D) 3

(G,H) 3 

(C,F) 3

(B,C) 4

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

Kruskal’s MST Algorithm



37

Select first |V|–1 edges which do not 
generate a cycle

edge dv

(D,E) 1 

(D,G) 2 

(E,G) 3 

(C,D) 3

(G,H) 3 

(C,F) 3

(B,C) 4

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

Accepting edge (E,G) would create a cycle

Kruskal’s MST Algorithm



38

Select first |V|–1 edges which do not 
generate a cycle

edge dv

(D,E) 1 

(D,G) 2 

(E,G) 3 

(C,D) 3 

(G,H) 3 

(C,F) 3

(B,C) 4

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

Kruskal’s MST Algorithm



39

Select first |V|–1 edges which do not 
generate a cycle

edge dv

(D,E) 1 

(D,G) 2 

(E,G) 3 

(C,D) 3 

(G,H) 3 

(C,F) 3

(B,C) 4

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

Kruskal’s MST Algorithm



40

Select first |V|–1 edges which do not 
generate a cycle

edge dv

(D,E) 1 

(D,G) 2 

(E,G) 3 

(C,D) 3 

(G,H) 3 

(C,F) 3 

(B,C) 4

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

Kruskal’s MST Algorithm



41

Select first |V|–1 edges which do not 
generate a cycle

edge dv

(D,E) 1 

(D,G) 2 

(E,G) 3 

(C,D) 3 

(G,H) 3 

(C,F) 3 

(B,C) 4 

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

Kruskal’s MST Algorithm



42

Select first |V|–1 edges which do not 
generate a cycle

edge dv

(D,E) 1 

(D,G) 2 

(E,G) 3 

(C,D) 3 

(G,H) 3 

(C,F) 3 

(B,C) 4 

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4 

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

Kruskal’s MST Algorithm



43

Select first |V|–1 edges which do not 
generate a cycle

edge dv

(D,E) 1 

(D,G) 2 

(E,G) 3 

(C,D) 3 

(G,H) 3 

(C,F) 3 

(B,C) 4 

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4 

(B,F) 4 

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

Kruskal’s MST Algorithm



44

Select first |V|–1 edges which do not 
generate a cycle

edge dv

(D,E) 1 

(D,G) 2 

(E,G) 3 

(C,D) 3 

(G,H) 3 

(C,F) 3 

(B,C) 4 

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4 

(B,F) 4 

(B,H) 4 

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

Kruskal’s MST Algorithm



45

Select first |V|–1 edges which do not 
generate a cycle

edge dv

(D,E) 1 

(D,G) 2 

(E,G) 3 

(C,D) 3 

(G,H) 3 

(C,F) 3 

(B,C) 4 

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4 

(B,F) 4 

(B,H) 4 

(A,H) 5 

(D,F) 6

(A,B) 8

(A,F) 10

Kruskal’s MST Algorithm



46

Select first |V|–1 edges which do not 
generate a cycle

edge dv

(D,E) 1 

(D,G) 2 

(E,G) 3 

(C,D) 3 

(G,H) 3 

(C,F) 3 

(B,C) 4 

5

1

A

H

B

F

E

D

C

G

2

3

3

3

edge dv

(B,E) 4 

(B,F) 4 

(B,H) 4 

(A,H) 5 

(D,F) 6

(A,B) 8

(A,F) 10

Done

Total Cost =  dv = 21

4

}not 
considere
d

Kruskal’s MST Algorithm



47Dynamic Programming

 Dynamic Programming is a problem-solving approach which 
computes the answer for every possible state exactly once.

 For DP to be suitable a problem must have two properties:
▪ It has optimal sub-structures, i.e., an optimal solution contains the 

optimal solutions to sub problems.

▪ Overlapping sub-problems, i.e. the same subproblem occurs many times.

 Top-down (memoization) vs Bottom-up
▪ Top-down: no need to consider the order of computations, only compute 

states actually used, natural transition from complete search, 

▪ Bottom-up: no recursion, computes every state, table size can be reduced 
if only the previous row of states is used then only two rows are required.

 Displaying the optimal solution
▪ Store the previous state for each solution

▪ Use the DP table and the optimal sub-structures property to compute the 
path.



48Subset Sum

Given:

 an integer bound W, and

 a collection of n items, each with a positive, integer weight wi,

find a subset S of items that:

Motivation: You have a CPU with W free cycles and want to choose 
the set of jobs (each taking wi time) that minimizes the number of 
idle cycles.



49Subset Sum

Notation:

 Let S* be an optimal choice of items (e.g. a set {1,4,8}).

 Let OPT(n, W) be the value of the optimal solution.

 We design a dynamic programming algorithm to compute 
OPT(n, W).

Subproblems:

 To compute OPT(n, W): We need the optimal value for 
subproblems consisting of the first j items for every knapsack size 
0 <= w <= W.

 Denote the optimal value of these subproblems by OPT(j, w).



50Subset Sum



51Subset Sum



52Subset Sum



53Subset Sum



54Subset Sum



55Subset Sum

SubsetSum(n, W):

Initialize M[0,r] = 0 for each r = 0,...,W

Initialize M[j,0] = 0 for each j = 1,...,n

for j = 1,...,n: for every row

For r = 0,...,W: for every column

If w[j] > r: case where item can't fit

M[j,r] = M[j-1,r]

M[j,r] = max( which is best?

M[j-1,r],

w[j] + M[j-1, W-w[j]]

)

return M[n,W]



56Subset Sum



57Subset Sum

8, 5, 4, 2



58General DP Principles

1. Optimal value of the original problem can be 
computed easily from some subproblems. 

2. There are only a polynomial # of subproblems.

3. There is a “natural” ordering of the subproblems from 
smallest to largest such that you can obtain the 
solution for a subproblem by only looking at smaller 
subproblems.



59General DP Principles

1. Optimal value of the original problem can be 
computed easily from some subproblems. 

OPT(j, w) = max of two subproblems

2. There are only a polynomial # of subproblems.
{(j, w)} for j = 1, …, n and w = 0, …, W

3. There is a “natural” ordering of the subproblems from 
smallest to largest such that you can obtain the 
solution for a subproblem by only looking at smaller 
subproblems.

Considering items {1, 2, 3} is a smaller problem
than considering items {1, 2, 3, 4}



60Classical DP Problems

 Max 1D sum

 Max 2D sum

 Longest increasing subsequence (LIS)
▪ Longest decreasing subsequence (LDS)

 0-1 Knapsack (subset sum)

 Coin Change (general version)

 Travelling Salesman Problem (TSP)

1D RSQ 2D RSQ LIS Knapsack CoinChange TSP

State (i) (i,j) (i) (id,remW) (v) (pos,mask)

Space O(n) O(n2) O(n) O(nS) O(V) O(n2n)

Transition subarray submatrix all j<i take/ignore all n coins all n cities

Time O(1) O(1) O(n2) O(nS) O(nV) O(2nn2)



61Common Data Structures



62Important Data Structures and Algorithms

 Data structures
▪ Standard library data structures

▪ Vector, stack, queue, heap, priority queue, sets, maps

▪ Other data structures

▪ Graph (adjacency list and adjacency matrix), Union/find, Segment tree, 
Fenwick tree, Trie

 Sorting
▪ Quick sort, Merge sort, Radix sort, Bucket sort

 Strings
▪ String matching (Knuth Morris Pratt, Aho-Corasick), pattern matching, 

trie, suffix trees, suffix arrays, recursive decent parsing



63Important Data Structures and Algorithms

 Dynamic programming
▪ Longest common subsequence, Longest increasing subsequence, 0/1 

Knapsack, Coin Change, Matrix Chain Multiplication, Subset sum, 
Partitioning

 Graphs
▪ Traversal (pre-, in- and post-order), finding cycles, finding connected 

components, finding articulation points, topological sort, flood fill, Euler 
cycle/Euler path, SSSP - Single source shortest path (Dijkstra, Bellman-
Ford), APSP – All pairs shortest path (Floyd Warshall), transitive closure 
(Floyd Warshall), MST – Minimum spanning tree (Prim, Kruskal (using 
Union/find)), Maximal Bipartite Matching, Maximum flow, Maximum 
flow minimal cost, Minimal cut

 Search
▪ Exhaustive search (depth-first, breadth-first search, backtracking), 

binary search (divide and conquer), greedy search (hill climbing), 
heuristic search (A*, branch and bound), search trees



64Important Data Structures and Algorithms

 Mathematics
▪ Number theory (prime numbers, greatest common divisor (GCD), 

modulus), big integers, combinatorics (count permutations), number 
series (Fibonacci numbers, Catalan numbers, binomial coefficients), 
probabilities, linear algebra (matrix inversion, linear equations systems), 
finding roots to polynomial equations, diofantic equations, optimization 
(simplex)

 Computational geometry
▪ Representations of points, lines, line segments, polygons, finding 

intersections, point localization, triangulation, Voronoi diagrams, area 
and volume calculations, convex hull (Graham scan), sweep line 
algorithms



69Kattis (https://liu.kattis.com)



70How Kattis checks a program

Compiles?

Crashes?

Incorrect
output?

Too slow?

Compilation
Error

Runtime
Error

Time Limit
Exceeded

Wrong
Answer

Accepted

For each test case



71UVA Online Judge

http://uva.onlinejudge.org/



72Programming languages

 Allowed languages are C, C++, Java, and Python.

 C++ or Java is strongly recommended, use the language that 
you are most familiar with and want to learn more about.

 Get to know their standard libraries.

 Get to know input and output. Remember that I/O in Java is 
very slow, use Kattio. Remember that cout/cerr also is relatively 
slow, learn how to use scanf/printf if you use C++.

 Learn to use an appropriate IDE such as eclipse, emacs, or vim

 Create a problem template to speed up problem solving and to 
create a common format for your problems.



73Pragmatic Algorithmic Problem Solving



74Testing and debugging

 Always create an example input (.in) and example output (.out) file with 
verbatim copies of the example input and output from the problem 
statement!

 For most problems it is enough to diff your output with the example output:
./prog < prog.in | diff - prog.out

 Create additional tests, such as:

▪ Extreme inputs, i.e. smallest and largest values (0, 1, “”, empty line, 2^31-1)

▪ Small inputs that you can compute by hand

▪ Potentially tricky cases such as when all inputs are equal, in the case of floating 
points numbers when you have to round both up and down

▪ Very large cases, randomly generated to test that your program computes an 
answer fast enough (even though you might not know the correct answer).

 Use a correct but slow algorithm to compute answers.

 Print intermediate information, such as values of relevant variables.
cout << “a=“ << a << “; b=“ << b << endl;
Remember to remove the debug output before submitting! (or use cerr)



75Summary

 What is algorithmic problem solving?

 Why is algorithmic problem solving important?

 What will be studied in this course?

 A method for algorithmic problem solving

 Common algorithmic problem-solving approaches

 Common data structures and algorithms

 Pragmatic algorithmic problem-solving using Kattis


	Slide 1: TDDD95 Algorithmic Problem Solving 6hp, vt2024
	Slide 2: Outline
	Slide 3: What is Algorithmic Problem Solving?
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Example: The 3n+1 problem
	Slide 8: Example: The 3n+1 problem
	Slide 9: Example: The 3n+1 problem
	Slide 10: Course Goals
	Slide 11: Examination
	Slide 12: Examination – Labs 
	Slide 13: Examination – Exercises
	Slide 14: Examination – Course grade 
	Slide 15: The Schedule – VT 1
	Slide 16: The Schedule – VT 2
	Slide 17: Steps in solving algorithmic problems
	Slide 18: Steps in solving algorithmic problems
	Slide 19: Time Limits and Computational Complexity
	Slide 20: Important Problem Solving Approaches
	Slide 21: Complete Search a.k.a. Brute Force
	Slide 22: Complete Search a.k.a. Brute Force
	Slide 23: Divide and Conquer
	Slide 24: Quick-Sort
	Slide 25: Quick-Sort Example
	Slide 26: Quick-Sort Example
	Slide 27: Quick-Sort Example
	Slide 28: Quick-Sort Example
	Slide 29: Quick-Sort Example
	Slide 30: Quick-Sort Example
	Slide 31: Quick-Sort Example
	Slide 32: Greedy
	Slide 33: Kruskal’s MST Algorithm
	Slide 34: Kruskal’s MST Algorithm
	Slide 35: Kruskal’s MST Algorithm
	Slide 36: Kruskal’s MST Algorithm
	Slide 37: Kruskal’s MST Algorithm
	Slide 38: Kruskal’s MST Algorithm
	Slide 39: Kruskal’s MST Algorithm
	Slide 40: Kruskal’s MST Algorithm
	Slide 41: Kruskal’s MST Algorithm
	Slide 42: Kruskal’s MST Algorithm
	Slide 43: Kruskal’s MST Algorithm
	Slide 44: Kruskal’s MST Algorithm
	Slide 45: Kruskal’s MST Algorithm
	Slide 46: Kruskal’s MST Algorithm
	Slide 47: Dynamic Programming
	Slide 48: Subset Sum
	Slide 49: Subset Sum
	Slide 50: Subset Sum
	Slide 51: Subset Sum
	Slide 52: Subset Sum
	Slide 53: Subset Sum
	Slide 54: Subset Sum
	Slide 55: Subset Sum
	Slide 56: Subset Sum
	Slide 57: Subset Sum
	Slide 58: General DP Principles
	Slide 59: General DP Principles
	Slide 60: Classical DP Problems
	Slide 61: Common Data Structures
	Slide 62: Important Data Structures and Algorithms
	Slide 63: Important Data Structures and Algorithms
	Slide 64: Important Data Structures and Algorithms
	Slide 69: Kattis (https://liu.kattis.com)
	Slide 70: How Kattis checks a program
	Slide 71: UVA Online Judge
	Slide 72: Programming languages
	Slide 73: Pragmatic Algorithmic Problem Solving
	Slide 74: Testing and debugging
	Slide 75: Summary

