
TDDD95 Algorithmic

Problem Solving

6hp, vt2022

Fredrik Heintz

Dept of Computer and Information Science

Linköping University

2Outline

 What is algorithmic problem solving?

 Why is algorithmic problem solving important?

 What will be studied in this course?

 A method for algorithmic problem solving

 Common algorithmic problem solving approaches

 Common data structures and algorithms

 Pragmatic algorithmic problem solving using Kattis

3What is Algorithmic Problem Solving?

 Algorithmic problem solving is about developing correct and
working algorithms to solve classes of problems.

 The problems are normally very well defined and you know
there is a solution, but they can still be very hard.

Algorithms Programming

Problem
Solving

APS

Those that really understand
and take advantage of

software technology owns
the future!

7Example: The 3n+1 problem

8Example: The 3n+1 problem

9Example: The 3n+1 problem

 Follow the instructions in the problem!

 Memoization to speed it up.

 Table lookup to solve it in constant time.

 Gotchas:
▪ j can be smaller than i.

▪ j can equal i.

▪ The order of i and j in output must be the same as the input, even when j
is smaller than i.

10Course Goals

The goals of the course are you should be able to:

 analyze the efficiency of different approaches to solving a
problem to determine which approaches will be reasonably
efficient in a given situation,

 compare different problems in terms of their difficulty,

 use algorithm design techniques such as greedy algorithms,
dynamic programming, divide and conquer, and combinatorial
search to construct algorithms to solve given problems,

 strategies for testing and debugging algorithms and data
structures,

 quickly and correctly implement a given specification of an
algorithm or data structure,

 communicate and cooperate with other students during
problem solving in groups.

11Examination

 LAB1 4hp
▪ individually solving the 4 lab assignments and

▪ actively participating in at least 3 problem solving sessions.

 UPPG1 2hp,
▪ individually solving the 13 weekly homework exercises, e.g.:

▪ Data structures

▪ Greedy Problems and Dynamic Programming

▪ Graph Algorithms

▪ Search

▪ Math-related Problems

▪ Computational Geometry.

12Exercises

13The Schedule – VT 1

 19/1 How to solve algorithmic problems, intro seminar

 20/1 Practice problem solving session: 13.30-17.00 with discussion

 28/1 Deadline Ex 1 (Greedy and DP 1) – Seminar Ex1 and Data structures

 4/2 Deadline Ex2 (Data structures) – Seminar Ex2 and Arithmetic

 11/2 Deadline Ex3 (Arithmetic) – Seminar Ex3 and Problem solving
approaches

 17/2 Deadline Lab Assignment 1 (Data structures, Greedy/Dynamic,
Arithmetic)

 17/2 Problem solving session (individual based on Lab 1)

 18/2 Deadline Ex4 (Greedy and DP II) – Seminar Ex 4 and Graphs I

 25/2 Deadline Ex5 (Graphs I) – Seminar Ex5 and Graphs II

 4/3 Deadline Ex6 (Graphs II) – Seminar Ex6 and Graphs III

 10/3 Deadline Lab Assignment 2 (Graphs)

 10/3 Problem solving session (individual based on Lab 2)

14The Schedule – VT 2

 28/3 Problem solving session (groups based on Lab 1-2)

 1/4 Deadline Ex 7 (Graphs III) – Seminar Ex7 and Strings I

 8/4 Deadline Ex8 (Strings I) – Seminar Ex8 and Strings II

 13/4 Deadline Ex9 (Strings II) – Seminar Ex9 and Number Theory

 25/4 Deadline Lab Assignment 3 (Strings, String Matching and Number
Theory)

 25/4 Problem solving session (individual based on Lab 3)

 22/4 Deadline Ex10 (Number Theory) – Seminar Ex 11 and Combinatorial
Search

 29/4 Deadline Ex11 (Combinatorial Search) – Seminar Ex12 and
Computational Geometry

 6/5 Deadline Ex12 (Computational Geometry)

 9/5 Deadline Lab Assignment 4 (Computational Geometry)

 9/5 Problem solving session (individual based on Lab 4)

 13/5 Deadline Ex13 (Mixed)

 16/5 Problem solving session (groups based on Lab 3-4)

15Steps in solving algorithmic problems

 Estimate the difficulty
▪ Theory (size of inputs, known algorithms, known theorems, …)

▪ Coding (size of program, many cases, complicated data structures, …)

▪ Have you seen this problem before? Have you solved it before? Do you
have useful code in your code library?

 Understand the problem!
▪ What is being asked for? What is given? How large can instances be?

▪ Can you draw a diagram to help you understand the problem?

▪ Can you explain the problem in your own words?

▪ Can you come up with good examples to test your understanding?

16Steps in solving algorithmic problems

 Determine the right algorithm or algorithmic approach
▪ Can you solve the problem using brute force?

▪ Can you solve the problem using a greedy approach?

▪ Can you solve the problem using dynamic programming?

▪ Can you solve the problem using search?

▪ Can you solve the problem using a known algorithm in your code library?

▪ Can you modify an existing algorithm? Can you modify the problem to
suite an existing algorithm?

▪ Do you have to come up with your own algorithm?

 Solve the problem! ☺

17Time Limits and Computational Complexity

n Worst AC Complexity Comments

≤ [10..11] O(n!), O(n6) Enumerating permutations

≤ [15..18] O(2n × n2) DP TSP

≤ [18..22] O(2n × n) DP with bitmask technique

≤ 100 O(n4) DP with 3 dimensions and O(n) loop

≤ 450 O(n3) Floyd Warshall’s (APSP)

≤ 2K O(n2 log2 n) 2-nested loops + tree search

≤ 10K O(n2) Bubble/Selection/Insertion sort

≤ 1M O(n log2 n) Merge Sort, Binary search

≤ 100M O(n), O(log2), O(1) Simulation, find average

 The normal time limit for a program is a few seconds.

 You may assume that your program can do about 100M
operations within this time limit.

18Important Problem Solving Approaches

 Simulation/Ad hoc

▪ Do what is stated in the problem

▪ Example: Simulate a robot

 Greedy approaches

▪ Find the optimal solution by extending a partial solution by making locally
optimal decisions

▪ Example: Minimal spanning trees, coin change in certain currencies

 Divide and conquer

▪ Take a large problem and split it up in smaller parts that are solved individually

▪ Example: Merge sort and Quick sort

 Dynamic programming

▪ Find a recursive solution and compute it “backwards” or use memoization

▪ Example: Finding the shortest path in a graph and coin change in all currencies

 Search

▪ Create a search space and use a search algorithm to find a solution

▪ Example: Exhaustive search (breadth or depth first search), binary search,
heuristic search (A*, best first, branch and bound)

19Complete Search a.k.a. Brute Force

 When a problem is small or (almost) all possibilities have to be
tried complete search is a candidate approach.

 To determine the feasibility of complete search estimate the
number of calculations that have to be made in the worst case.

 Iterative complete search uses nested loops to generate every
possible complete solution and filter out the valid ones.
▪ Iterating over all permutations using next_permutation

▪ Iterating over all subsets using bit set technique

 Recursive complete search extends a partial solution with one
element until a complete and valid solution is found.
▪ This approach is often called recursive backtracking.

▪ Pruning is used to significantly improve the efficiency by removing
partial solutions that can not lead to a solution as soon as possible. In the
best case only valid solutions are generated.

20Complete Search a.k.a. Brute Force

21Divide and Conquer

 Divide and conquer is very common and powerful technique
which divides a problem into smaller parts, solves each part
recursively and then puts together the answer from the pieces.

 Many well known algorithms are based on divide and conquer
such as quick sort, merge sort and binary search.

 Binary search is a very versatile and useful technique which can
be used to
▪ find a particular value in a sorted range,

▪ find the parameters of a (convex) function that gives a particular value,

▪ find the minimum/maximum value of a function.

 Binary search can be implemented either using built in
functions (lower_bound/upper_bound), iterating until the
difference between the end points is small enough or iterate a
constant but sufficiently large number of times.

22

22

Quick-Sort

 Quick-sort is a
randomized sorting
algorithm based on the
divide-and-conquer
paradigm:
▪ Divide: pick a random

element x (called pivot) and
partition S into
▪ L elements less than x

▪ E elements equal x

▪ G elements greater than x

▪ Recur: sort L and G

▪ Conquer: join L, E and G

x

x

L GE

x

23Quick-Sort Example

 Pivot selection

7 2 9 4 → 2 4 7 9

2 → 2

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

3 8 6 1 → 1 3 8 6

3 → 3 8 → 89 4 → 4 9

9 → 9 4 → 4

24Quick-Sort Example

 Partition, recursive call, pivot selection

2 4 3 1 → 2 4 7 9

9 4 → 4 9

9 → 9 4 → 4

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

3 8 6 1 → 1 3 8 6

3 → 3 8 → 82 → 2

25Quick-Sort Example

 Partition, recursive call, base case

2 4 3 1 →→ 2 4 7

1 → 1 9 4 → 4 9

9 → 9 4 → 4

7 2 9 4 3 7 6 1 →→ 1 2 3 4 6 7 8 9

3 8 6 1 → 1 3 8 6

3 → 3 8 → 8

26Quick-Sort Example

 Recursive call, …, base case, join

3 8 6 1 → 1 3 8 6

3 → 3 8 → 8

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

9 → 9 4 → 4

27Quick-Sort Example

 Recursive call, pivot selection

7 9 7 1 → 1 3 8 6

8 → 8

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

9 → 9 4 → 4

9 → 9

28Quick-Sort Example

 Partition, …, recursive call, base case

7 9 7 1 → 1 3 8 6

8 → 8

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

9 → 9 4 → 4

9 → 9

29

29

Quick-Sort Example

 Join, join

7 9 7 → 17 7 9

8 → 8

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 7 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

9 → 9 4 → 4

9 → 9

30Greedy

 An algorithm is said to be greedy if it makes a locally optimal
choice in each step towards the globally optimal solution.

 For a greedy algorithm to give a globally optimal result a
problem must have two properties:
▪ It has optimal sub-structures, i.e. an optimal solution contains the

optimal solutions to sub problems.

▪ It has the greedy choice property, i.e. if we extend a partial solution by
making a locally optimal choice we will get the optimal complete solution
without reconsidering previous choices.

 Classical examples: Coin change in some currencies, interval
coverage and load balancing.

 Greedy algorithms can be very useful as heuristics for example
in branch-and-bound search algorithms.

 In combinatorics matroids and the generalization greedoids
characterize classes of problems with greedy solutions.

31

Consider an undirected, weight graph

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10

Kruskal’s MST Algorithm

32

Sort the edges by increasing edge weight

edge dv

(D,E) 1

(D,G) 2

(E,G) 3

(C,D) 3

(G,H) 3

(C,F) 3

(B,C) 4

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

Kruskal’s MST Algorithm

33

Select first |V|–1 edges which do not
generate a cycle

edge dv

(D,E) 1

(D,G) 2

(E,G) 3

(C,D) 3

(G,H) 3

(C,F) 3

(B,C) 4

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

Kruskal’s MST Algorithm

34

Select first |V|–1 edges which do not
generate a cycle

edge dv

(D,E) 1

(D,G) 2

(E,G) 3

(C,D) 3

(G,H) 3

(C,F) 3

(B,C) 4

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

Kruskal’s MST Algorithm

35

Select first |V|–1 edges which do not
generate a cycle

edge dv

(D,E) 1

(D,G) 2

(E,G) 3

(C,D) 3

(G,H) 3

(C,F) 3

(B,C) 4

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

Accepting edge (E,G) would create a cycle

Kruskal’s MST Algorithm

36

Select first |V|–1 edges which do not
generate a cycle

edge dv

(D,E) 1

(D,G) 2

(E,G) 3

(C,D) 3

(G,H) 3

(C,F) 3

(B,C) 4

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

Kruskal’s MST Algorithm

37

Select first |V|–1 edges which do not
generate a cycle

edge dv

(D,E) 1

(D,G) 2

(E,G) 3

(C,D) 3

(G,H) 3

(C,F) 3

(B,C) 4

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

Kruskal’s MST Algorithm

38

Select first |V|–1 edges which do not
generate a cycle

edge dv

(D,E) 1

(D,G) 2

(E,G) 3

(C,D) 3

(G,H) 3

(C,F) 3

(B,C) 4

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

Kruskal’s MST Algorithm

39

Select first |V|–1 edges which do not
generate a cycle

edge dv

(D,E) 1

(D,G) 2

(E,G) 3

(C,D) 3

(G,H) 3

(C,F) 3

(B,C) 4

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

Kruskal’s MST Algorithm

40

Select first |V|–1 edges which do not
generate a cycle

edge dv

(D,E) 1

(D,G) 2

(E,G) 3

(C,D) 3

(G,H) 3

(C,F) 3

(B,C) 4

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

Kruskal’s MST Algorithm

41

Select first |V|–1 edges which do not
generate a cycle

edge dv

(D,E) 1

(D,G) 2

(E,G) 3

(C,D) 3

(G,H) 3

(C,F) 3

(B,C) 4

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

Kruskal’s MST Algorithm

42

Select first |V|–1 edges which do not
generate a cycle

edge dv

(D,E) 1

(D,G) 2

(E,G) 3

(C,D) 3

(G,H) 3

(C,F) 3

(B,C) 4

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

Kruskal’s MST Algorithm

43

Select first |V|–1 edges which do not
generate a cycle

edge dv

(D,E) 1

(D,G) 2

(E,G) 3

(C,D) 3

(G,H) 3

(C,F) 3

(B,C) 4

5

1

A

H

B

F

E

D

C

G
3

2

4

6

3
4

3

4

8

4

3

10 edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

Kruskal’s MST Algorithm

44

Select first |V|–1 edges which do not
generate a cycle

edge dv

(D,E) 1

(D,G) 2

(E,G) 3

(C,D) 3

(G,H) 3

(C,F) 3

(B,C) 4

5

1

A

H

B

F

E

D

C

G

2

3

3

3

edge dv

(B,E) 4

(B,F) 4

(B,H) 4

(A,H) 5

(D,F) 6

(A,B) 8

(A,F) 10

Done

Total Cost = dv = 21

4

}not
considere
d

Kruskal’s MST Algorithm

45Dynamic Programming

 Dynamic Programming is a problem solving approach which
computes the answer for every possible state exactly once.

 For DP to be suitable a problem must have two properties:
▪ It has optimal sub-structures, i.e. an optimal solution contains the

optimal solutions to sub problems.

▪ Overlapping sub-problems, i.e. the same subproblem occurs many times.

 Top-down (memoization) vs Bottom-up
▪ Top-down: no need to consider the order of computations, only compute

states actually used, natural transition from complete search,

▪ Bottom-up: no recursion, computes every state, table size can be reduced
if only the previous row of states is used then only two rows are required.

 Displaying the optimal solution
▪ Store the previous state for each solution

▪ Use the DP table and the optimal sub-structures property to compute the
path.

46Classical DP Problems

 Max 1D sum

 Max 2D sum

 Longest increasing subsequence (LIS)
▪ Longest decreasing subsequence (LDS)

 0-1 Knapsack (subset sum)

 Coin Change (general version)

 Travelling Salesman Problem (TSP)

1D RSQ 2D RSQ LIS Knapsack CoinChange TSP

State (i) (i,j) (i) (id,remW) (v) (pos,mask)

Space O(n) O(n2) O(n) O(nS) O(V) O(n2n)

Transition subarray submatrix all j<i take/ignore all n coins all n cities

Time O(1) O(1) O(n2) O(nS) O(nV) O(2nn2)

47Common Data Structures

48Important Data Structures and Algorithms

 Data structures
▪ Standard library data structures

▪ Vector, stack, queue, heap, priority queue, sets, maps

▪ Other data structures

▪ Graph (adjacency list and adjacency matrix), Union/find, Segment tree,
Fenwick tree, Trie

 Sorting
▪ Quick sort, Merge sort, Radix sort, Bucket sort

 Strings
▪ String matching (Knuth Morris Pratt, Aho-Corasick), pattern matching,

trie, suffix trees, suffix arrays, recursive decent parsing

49Important Data Structures and Algorithms

 Dynamic programming
▪ Longest common subsequence, Longest increasing subsequence, 0/1

Knapsack, Coin Change, Matrix Chain Multiplication, Subset sum,
Partitioning

 Graphs
▪ Traversal (pre-, in- and post-order), finding cycles, finding connected

components, finding articulation points, topological sort, flood fill, Euler
cycle/Euler path, SSSP - Single source shortest path (Dijkstra, Bellman-
Ford), APSP – All pairs shortest path (Floyd Warshall), transitive closure
(Floyd Warshall), MST – Minimum spanning tree (Prim, Kruskal (using
Union/find)), Maximal Bipartite Matching, Maximum flow, Maximum
flow minimal cost, Minimal cut

 Search
▪ Exhaustive search (depth-first, breadth-first search, backtracking),

binary search (divide and conquer), greedy search (hill climbing),
heuristic search (A*, branch and bound), search trees

50Important Data Structures and Algorithms

 Mathematics
▪ Number theory (prime numbers, greatest common divisor (GCD),

modulus), big integers, combinatorics (count permutations), number
series (Fibonacci numbers, Catalan numbers, binomial coefficients),
probabilities, linear algebra (matrix inversion, linear equations systems),
finding roots to polynomial equations, diofantic equations, optimization
(simplex)

 Computational geometry
▪ Representations of points, lines, line segments, polygons, finding

intersections, point localization, triangulation, Voronoi diagrams, area
and volume calculations, convex hull (Graham scan), sweep line
algorithms

55Kattis (https://liu.kattis.com)

56How Kattis checks a program

Compiles?

Crashes?

Incorrect
output?

Too slow?

Compilation
Error

Runtime
Error

Time Limit
Exceeded

Wrong
Answer

Accepted

For each test case

57UVA Online Judge

http://uva.onlinejudge.org/

58Programming languages

 Allowed languages are C, C++, Java, and Python.

 C++ or Java is strongly recommended, use the language that
you are most familiar with and want to learn more about.

 Get to know their standard libraries.

 Get to know input and output. Remember that I/O in Java is
very slow, use Kattio. Remember that cout/cerr also is relatively
slow, learn how to use scanf/printf if you use C++.

 Learn to use an appropriate IDE such as eclipse, emacs, or vim

 Create a problem template to speed up problem solving and to
create a common format for your problems.

59Pragmatic Algorithmic Problem Solving

60Testing and debugging

 Always create an example input (.in) and example output (.out) file with
verbatim copies of the example input and output from the problem
statement!

 For most problems it is enough to diff your output with the example output:
./prog < prog.in | diff - prog.out

 Create additional tests, such as:

▪ Extreme inputs, i.e. smallest and largest values (0, 1, “”, empty line, 2^31-1)

▪ Small inputs that you can compute by hand

▪ Potentially tricky cases such as when all inputs are equal, in the case of floating
points numbers when you have to round both up and down

▪ Very large cases, randomly generated to test that your program computes an
answer fast enough (even though you might not know the correct answer).

 Use a correct but slow algorithm to compute answers.

 Print intermediate information, such as values of relevant variables.
cout << “a=“ << a << “; b=“ << b << endl;
Remember to remove the debug output before submitting! (or use cerr)

61Summary

 What is algorithmic problem solving?

 Why is algorithmic problem solving important?

 What will be studied in this course?

 A method for algorithmic problem solving

 Common algorithmic problem solving approaches

 Common data structures and algorithms

 Pragmatic algorithmic problem solving using Kattis

