
Algorithmic

Problem Solving
6hp, vt2020

Fredrik Heintz

Dept of Computer and Information Science

Linköping University

2Outline

 What is algorithmic problem solving?

 Why is algorithmic problem solving important?

 What will be studied in this course?

 A method for algorithmic problem solving

 Common algorithmic problem solving approaches

 Common data structures and algorithms

 Pragmatic algorithmic problem solving using Kattis

3What is Algorithmic Problem Solving?

 Algorithmic problem solving is about developing correct and
working algorithms to solve classes of problems.

 The problems are normally very well defined and you know
there is a solution, but they can still be very hard.

Algorithms Programming

Problem
Solving

APS

Those that really understand
and take advantage of

software technology owns
the future!

7Example: The 3n+1 problem

8Example: The 3n+1 problem

9Example: The 3n+1 problem

 Follow the instructions in the problem!

 Memoization to speed it up.

 Table lookup to solve it in constant time.

 Gotchas:
▪ j can be smaller than i.

▪ j can equal i.

▪ The order of i and j in output must be the same as the input, even when j
is smaller than i.

10Course Goals

The goals of the course are you should be able to:

 analyze the efficiency of different approaches to solving a
problem to determine which approaches will be reasonably
efficient in a given situation,

 compare different problems in terms of their difficulty,

 use algorithm design techniques such as greedy algorithms,
dynamic programming, divide and conquer, and combinatorial
search to construct algorithms to solve given problems,

 strategies for testing and debugging algorithms and data
structures,

 quickly and correctly implement a given specification of an
algorithm or data structure,

 communicate and cooperate with other students during
problem solving in groups.

11Examination

 LAB1 4hp
▪ individually solving the 4 lab assignments and

▪ actively participating in at least 3 problem solving sessions.

 UPPG1 2hp,
▪ individually solving the 14 weekly homework exercises, e.g.:

▪ Data structures

▪ Greedy Problems and Dynamic Programming

▪ Graph Algorithms

▪ Search

▪ Math-related Problems

▪ Computational Geometry.

12The Schedule – VT 1

 23/1 Practice problem solving session: 13.30-17.00 with discussion

 24/1 Deadline Ex 1 (Greedy and DP 1) – Seminar Ex1 and Data structures

 31/1 Deadline Ex2 (Data structures) – Seminar Ex2 and Arithmetic

 7/2 Deadline Ex3 (Arithmetic) – Seminar Ex3 and Problem solving
approaches

 13/2 Deadline Lab Assignment 1 (Data structures, Greedy/Dynamic,
Arithmetic)

 13/2 Problem solving session (individual based on Lab 1)

 14/2 Deadline Ex4 (Greedy and DP II) – Seminar Ex 4 and Graphs I

 21/2 Deadline Ex5 (Graphs I) – Seminar Ex5 and Graphs II

 28/2 Deadline Ex6 (Graphs II) – Seminar Ex6 and Graphs III

 5/3 Deadline Lab Assignment 2 (Graphs)

 5/3 Problem solving session (individual based on Lab 2)

 6/3 Deadline Ex7 (Graphs III) – Seminar Ex7

13The Schedule – VT 2

 6/3 Deadline Ex 8 (Mixed problems) – Seminar Ex8 and Strings I

 30/3 Problem solving session (groups based on Lab 1-2)

 3/4 Deadline Ex9 (Strings I) – Seminar Ex9 and Strings II

 17/4 Deadline Ex10 (Strings II) – Seminar Ex10 and Combinatorial Search

 20/4 Deadline Lab Assignment 3 (Strings, String Matching and Number
Theory)

 20/4 Problem solving session (individual based on Lab 3)

 24/4 Deadline Ex11 (Search) – Seminar Ex 11 and Number Theory

 21/2 Deadline Ex12 (Number Theory) – Seminar Ex12 and Computational
Geometry

 28/2 Deadline Ex13 (Computational Geometry) – Seminar Ex13 and
Combinatorics

 18/5 Deadline Lab Assignment 4 (Computational Geometry)

 18/5 Problem solving session (individual based on Lab 4)

 20/5 Deadline Ex14 (Combinatorics) – Seminar Ex14

 25/5 Problem solving session (groups based on Lab 3-4)

14Steps in solving algorithmic problems

 Estimate the difficulty
▪ Theory (size of inputs, known algorithms, known theorems, …)

▪ Coding (size of program, many cases, complicated data structures, …)

▪ Have you seen this problem before? Have you solved it before? Do you
have useful code in your code library?

 Understand the problem!
▪ What is being asked for? What is given? How large can instances be?

▪ Can you draw a diagram to help you understand the problem?

▪ Can you explain the problem in your own words?

▪ Can you come up with good examples to test your understanding?

15Steps in solving algorithmic problems

 Determine the right algorithm or algorithmic approach
▪ Can you solve the problem using brute force?

▪ Can you solve the problem using a greedy approach?

▪ Can you solve the problem using dynamic programming?

▪ Can you solve the problem using search?

▪ Can you solve the problem using a known algorithm in your code library?

▪ Can you modify an existing algorithm? Can you modify the problem to
suite an existing algorithm?

▪ Do you have to come up with your own algorithm?

 Solve the problem! ☺

16Time Limits and Computational Complexity

n Worst AC Complexity Comments

≤ [10..11] O(n!), O(n6) Enumerating permutations

≤ [15..18] O(2n × n2) DP TSP

≤ [18..22] O(2n × n) DP with bitmask technique

≤ 100 O(n4) DP with 3 dimensions and O(n) loop

≤ 450 O(n3) Floyd Warshall’s (APSP)

≤ 2K O(n2 log2 n) 2-nested loops + tree search

≤ 10K O(n2) Bubble/Selection/Insertion sort

≤ 1M O(n log2 n) Merge Sort, Binary search

≤ 100M O(n), O(log2), O(1) Simulation, find average

 The normal time limit for a program is a few seconds.

 You may assume that your program can do about 100M
operations within this time limit.

17Important Problem Solving Approaches

 Simulation/Ad hoc

▪ Do what is stated in the problem

▪ Example: Simulate a robot

 Greedy approaches

▪ Find the optimal solution by extending a partial solution by making locally
optimal decisions

▪ Example: Minimal spanning trees, coin change in certain currencies

 Divide and conquer

▪ Take a large problem and split it up in smaller parts that are solved individually

▪ Example: Merge sort and Quick sort

 Dynamic programming

▪ Find a recursive solution and compute it “backwards” or use memoization

▪ Example: Finding the shortest path in a graph and coin change in all currencies

 Search

▪ Create a search space and use a search algorithm to find a solution

▪ Example: Exhaustive search (breadth or depth first search), binary search,
heuristic search (A*, best first, branch and bound)

18Important Data Structures and Algorithms

 Data structures
▪ Standard library data structures

▪ Vector, stack, queue, heap, priority queue, sets, maps

▪ Other data structures

▪ Graph (adjacency list and adjacency matrix), Union/find, Segment tree,
Fenwick tree, Trie

 Sorting
▪ Quick sort, Merge sort, Radix sort, Bucket sort

 Strings
▪ String matching (Knuth Morris Pratt, Aho-Corasick), pattern matching,

trie, suffix trees, suffix arrays, recursive decent parsing

19Important Data Structures and Algorithms

 Dynamic programming
▪ Longest common subsequence, Longest increasing subsequence, 0/1

Knapsack, Coin Change, Matrix Chain Multiplication, Subset sum,
Partitioning

 Graphs
▪ Traversal (pre-, in- and post-order), finding cycles, finding connected

components, finding articulation points, topological sort, flood fill, Euler
cycle/Euler path, SSSP - Single source shortest path (Dijkstra, Bellman-
Ford), APSP – All pairs shortest path (Floyd Warshall), transitive closure
(Floyd Warshall), MST – Minimum spanning tree (Prim, Kruskal (using
Union/find)), Maximal Bipartite Matching, Maximum flow, Maximum
flow minimal cost, Minimal cut

 Search
▪ Exhaustive search (depth-first, breadth-first search, backtracking),

binary search (divide and conquer), greedy search (hill climbing),
heuristic search (A*, branch and bound), search trees

20Important Data Structures and Algorithms

 Mathematics
▪ Number theory (prime numbers, greatest common divisor (GCD),

modulus), big integers, combinatorics (count permutations), number
series (Fibonacci numbers, Catalan numbers, binomial coefficients),
probabilities, linear algebra (matrix inversion, linear equations systems),
finding roots to polynomial equations, diofantic equations, optimization
(simplex)

 Computational geometry
▪ Representations of points, lines, line segments, polygons, finding

intersections, point localization, triangulation, Voronoi diagrams, area
and volume calculations, convex hull (Graham scan), sweep line
algorithms

25Kattis (https://liu.kattis.com)

26How Kattis checks a program

Compiles?

Crashes?

Incorrect
output?

Too slow?

Compilation
Error

Runtime
Error

Time Limit
Exceeded

Wrong
Answer

Accepted

For each test case

27UVA Online Judge

http://uva.onlinejudge.org/

28Programming languages

 Allowed languages are C, C++, Java, and Python.

 C++ or Java is strongly recommended, use the language that
you are most familiar with and want to learn more about.

 Get to know their standard libraries.

 Get to know input and output. Remember that I/O in Java is
very slow, use Kattio. Remember that cout/cerr also is relatively
slow, learn how to use scanf/printf if you use C++.

 Learn to use an appropriate IDE such as eclipse, emacs, or vim

 Create a problem template to speed up problem solving and to
create a common format for your problems.

29Pragmatic Algorithmic Problem Solving

30Testing and debugging

 Always create an example input (.in) and example output (.out) file with
verbatim copies of the example input and output from the problem
statement!

 For most problems it is enough to diff your output with the example output:
./prog < prog.in | diff - prog.out

 Create additional tests, such as:

▪ Extreme inputs, i.e. smallest and largest values (0, 1, “”, empty line, 2^31-1)

▪ Small inputs that you can compute by hand

▪ Potentially tricky cases such as when all inputs are equal, in the case of floating
points numbers when you have to round both up and down

▪ Very large cases, randomly generated to test that your program computes an
answer fast enough (even though you might not know the correct answer).

 Use a correct but slow algorithm to compute answers.

 Print intermediate information, such as values of relevant variables.
cout << “a=“ << a << “; b=“ << b << endl;
Remember to remove the debug output before submitting! (or use cerr)

31Summary

 What is algorithmic problem solving?

 Why is algorithmic problem solving important?

 What will be studied in this course?

 A method for algorithmic problem solving

 Common algorithmic problem solving approaches

 Common data structures and algorithms

 Pragmatic algorithmic problem solving using Kattis

