
Algorithmic

Problem Solving
Le 9 Number Theory

Herman Appelgren

Dept of Computer and Information Science

Linköping University

13Outline

 Exercise 9: Strings II
▪ A: Suffix Array Re-construction

▪ B: Code Theft

▪ B: Messages from Outer Space

▪ C: Life Forms

 Number Theory
▪ Primes (Lab 3.8)

▪ Greatest Common Divisor and Least Common Multiple (Lab 3.4)

▪ Modular Arithmetic (Lab 3.5)

▪ Chinese Remainder Theorem (Lab 3.6-3.7)

14Primes

 Definition: 𝑥 > 1 is a prime if it isn’t divisible by any integer
other than 1 and itself.
▪ Example: The first 8 primes are 2, 3, 5, 7, 11, 13, 17, 19.

▪ Example: 2,147,483,647 is the largest prime that fits in an int32.

 Fundamental theorem of arithmetic: Each 𝑥 > 1 can be
uniquely represented as a product of primes.
▪ This representation is called the prime factorization of x.

▪ Example: 35 = 5*7, 54 = 2*3^3, 7 = 7

 Algorithms for testing if N is prime.
▪ Naïve 𝑂(𝑁) algorithm: Try to divide N by 2, 3, …, N-1.

▪ Improve to 𝑂(𝑁) by noting that if N isn’t prime, at least one factor must

be 𝑁 or less.

▪ Improve to 𝑂(
𝑁

log 𝑁
) by only dividing by primes. Requires that all primes

less than ≤ 𝑁 are known.

15Sieve of Eratosthenes (Lab 3.8)

 Efficient algorithm for finding all primes ≤ N.
▪ Initialize a bitset is_prime to true for all integers except 0 and 1.

▪ For each integer i, if is_prime[i], add it to our list of primes and set
is_prime[ik] = false for all k.

 Time complexity 𝑂(𝑁 log𝑁)

▪ If is_prime[p] = true, we have to mark
𝑁

𝑝
integers as not prime.

▪ The number of iterations of the inner loop is
𝑁

2
+
𝑁

3
+
𝑁

5
+⋯ < 𝑁(

1

1
+
1

2
+
1

3
+⋯+

1

𝑁
)

▪ We recognize the sum of the harmonic series, which is in 𝑂 log𝑁 , so the
time complexity is in 𝑂 𝑁 + 𝑁 log𝑁 = 𝑂(𝑁 log𝑁).

 Multiple optimizations possible

▪ If we don’t need the primes list, we only have to iterate 𝑖 = 2, 3, … , 𝑁.

▪ We can start marking with 𝑘 = 𝑖, since all other multiples will already be
marked.

16GCD and LCM (Lab 3.4)

 Greatest Common Divider
▪ gcd(𝑎, 𝑏) is the largest value 𝑔 such that 𝑎 = 𝑚𝑔 and 𝑏 = 𝑛𝑔 for some
𝑚, 𝑛 ∈ ℤ.

▪ Note than gcd 𝑚, 𝑛 = 1, otherwise 𝑔 ∗ gcd(𝑚, 𝑛) would be a greater
common divider.

▪ Example: gcd 6, 9 = 3, gcd 33, 121 = 11, gcd 7, 15 = 1.

▪ If gcd 𝑎, 𝑏 = 1 we say that 𝑎 and 𝑏 are coprime (sometimes relatively
prime or mutually prime), since they don’t share any prime factors.

 Least Common Multiple
▪ lcm 𝑎, 𝑏 is the smallest value 𝑙 such that 𝑙 = 𝑚𝑎 and 𝑙 = 𝑛𝑏 for some
𝑚, 𝑛 ∈ ℤ.

▪ As a direct consequence of the fundamental theorem of arithmetic,
lcm 𝑎, 𝑏 = 𝑎𝑏/ gcd 𝑎, 𝑏

▪ Example: lcm 12, 9 = 36, lcm 2, 3 = 6, lcm 5, 10 = 10

 Both are useful when implementing rational arithmetic in Lab
3.4.

17Euclidean Algorithm

 Theorem: gcd 𝑎, 𝑏 = gcd(𝑎 − 𝑘𝑏, 𝑏) for all 𝑘 ∈ ℤ.
▪ Proof: Let 𝑐 be a common divisor of 𝑎 and 𝑏. Then 𝑎 = 𝑚𝑐 and 𝑏 = 𝑛𝑐, so
𝑎 − 𝑘𝑏 = 𝑚𝑐 − 𝑘𝑛𝑐 = 𝑚 − 𝑘𝑛 𝑐 and 𝑐 is a divisor of 𝑎 − 𝑘𝑏. Similarly, if
𝑑 is a common divisor of 𝑎 − 𝑘𝑏 and 𝑏, then it must also divide 𝑎.
Consequently 𝑎, 𝑏 and 𝑎 − 𝑘𝑏 have the same common divisors, and in
particular the same gcd.

 This observation is at the core of the Euclidean Algorithm:
▪ Without loss of generality, assume 𝑎 ≥ 𝑏.

▪ If 𝑏 = 0 return 𝑎

▪ Otherwise gcd 𝑎, 𝑏 = gcd 𝑘𝑏 + 𝑎%𝑏, 𝑏 = gcd(𝑏, 𝑎%𝑏)

 Example:
▪ gcd 175, 145 = gcd 1 ∗ 145 + 30, 145 =

gcd 145, 30 = gcd 4 ∗ 30 + 25, 30 =
gcd 30, 25 = gcd 1 ∗ 25 + 5, 30 =
gcd 25, 5 = gcd 5 ∗ 5 + 0, 5 =
gcd 5, 0 = 5

18Modular Arithmetic (Lab 3.5)

 Definition: 𝑎 is congruent with 𝑏 modulo 𝑚 if 𝑎 + 𝑘𝑚 = 𝑏 for
some 𝑘 ∈ ℤ.
▪ Equivalently: 𝑚 divides 𝑎 − 𝑏, i.e. 𝑘𝑚 = 𝑎 − 𝑏 for some 𝑘 ∈ ℤ.

▪ Symbolically: 𝑎 ≡𝑚 𝑏 or 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚).

 Arises naturally when modelling cyclic behavior, but is also
central in cryptography and other fields.

 The remainder operator %
▪ 𝑎%𝑚 is the remainder of 𝑎 divided by 𝑚, i.e. the unique number 0 ≤ 𝑟 <
𝑚 such that 𝑎 ≡𝑚 𝑟.

▪ Note that this definition is different from most programming languages,
where −𝑚 ≤ 𝑎%𝑚 < 0 if 𝑎 < 0.

▪ 𝑎 = 𝑎 ∕∕ 𝑚 ∗ 𝑎 + 𝑎%m where ∕∕ is integer division.

 Theorem: If 𝑎 ≡𝑚 𝑏, then 𝑎%𝑚 = 𝑏%𝑚.

19Modular Arithmetic – Add/Sub

 Theorem: If 𝑥 ≡𝑚 𝑎 and 𝑦 ≡𝑚 𝑏, then 𝑥 + 𝑦 ≡𝑚 𝑎 + 𝑏.
▪ Proof: 𝑥 + 𝑘𝑚 = 𝑎 and 𝑦 + 𝑗𝑚 = 𝑏, so 𝑥 + 𝑦 + 𝑘 + 𝑗 𝑚 = 𝑎 + 𝑏.

▪ Similarly for subtraction.

 Thus 𝑎 ± 𝑏 %𝑚 = 𝑎%𝑚 ± 𝑏%𝑚 %𝑚.
▪ By computing the remainder of the operands, we avoid intermediary

values larger than 2𝑚, which reduces the risk for overflow.

20Modular Arithmetic – Mult

 Theorem: If 𝑥 ≡𝑚 𝑎 and y ≡𝑚 𝑏 then 𝑥𝑦 ≡𝑚 𝑎𝑏.
▪ Proof: 𝑥 + 𝑘𝑚 𝑦 + 𝑗𝑚 = 𝑥𝑦 + 𝑘𝑦 + 𝑗𝑥 + 𝑘𝑗𝑚 𝑚 = 𝑎𝑏.

 We can thus use the same trick for multiplication, but the
intermediary value is now on the order of 𝑚2. Can we do
better?

21Modular Arithmetic – Mult

 Idea: Use that 𝑎𝑏 = 𝑎 2𝑘 + 𝑑 = 2𝑎𝑘 + 𝑎𝑑 where 𝑘 ∈ ℤ and 𝑑 ∈
{0, 1}.

 Example: What is 64 ∗ 25 %37?

▪ 64 ∗ 25 ≡37 64%37 ∗ 25 = 27 ∗ 25
This reduces the product, but it would still e.g. overflow an int8, even though
the final remainder will fit nicely.

▪ We recursively partition 25:
27 ∗ 25 = 27 ∗ 2 ∗ 12 + 1 = 2 ∗ 27 ∗ 12 + 27
27 ∗ 12 = 27 ∗ 2 ∗ 6 + 0 = 2 ∗ 27 ∗ 6
27 ∗ 6 = 27 ∗ 2 ∗ 3 + 0 = 2 ∗ 27 ∗ 3
27 ∗ 3 = 27 ∗ 2 ∗ 1 + 1 = 2 ∗ 27 + 27
2 ∗ 27 = 54 ≡37 17

▪ Now we backtrack and compute remainder along the way
27 ∗ 3 = 2 ∗ 27 + 27 ≡37 17 + 27 = 44 ≡37 7
27 ∗ 6 = 2 ∗ 27 ∗ 3 ≡37 2 ∗ 7 = 14
27 ∗ 12 = 2 ∗ 27 ∗ 6 ≡37 2 ∗ 14 = 28
27 ∗ 25 = 2 ∗ 27 ∗ 12 + 27 ≡37 2 ∗ 28 + 27 = 56 + 27 ≡37 19 + 27
= 46 ≡37 9

 Using this algorithm, no intermediary values are larger than 2𝑚, i.e.
same as for addition/subtraction.

22Modular Arithmetic – Exp

 Modular exponentiation 𝑎𝑏 %𝑚 isn’t included in the lab, but
is still a useful algorithm.

 First attempt: Apply modular multiplication 𝑏 times.
▪ Pro: No intermediary values above 2𝑚.

▪ Con: 𝑂(𝑏) time complexity.

 Improvement: Binary Exponentiation

▪ We use that 𝑏 = 𝑏02
0 + 𝑏12

1 +⋯+ 𝑏𝑛2
𝑛 where 𝑏𝑖 ∈ {0, 1} and 𝑛 =

log2 𝑏 .

▪ This gives us 𝑎𝑏 = 𝑎𝑏02
0+⋯+𝑏𝑛2

𝑛
= 𝑎𝑏02

0
∗ 𝑎𝑏12

1
∗ ⋯∗ 𝑎𝑏𝑛2

𝑛
. In other

words, 𝑎𝑏 is the product of 𝑛 factors, each being the square of the one
before, where 𝑏𝑖 tells us if factor 𝑖 should be included.

▪ We thus have log2 𝑏 factors, each taking log2𝑚 time to compute using
modular multiplication, and similar to multiply them with each other.

▪ Since we only use modular multiplication repeatedly, we still don’t need
intermediary values larger than 2𝑚.

23Modular Arithmetic – Inverse

 How about division?

▪ Straight-forward definition doesn’t work, since
1

𝑎
is not an integer unless

𝑎 = 1.

▪ Instead, we define
1

𝑎
= 𝑎−1 such that 𝑎 ∗ 𝑎−1 ≡𝑚 1.

▪ Note that 𝑎−1 depends on both 𝑎 and 𝑚!

 The definition means that 𝑎 ∗ 𝑎−1 + 𝑘𝑚 = 1 for some 𝑘 ∈ ℤ.
▪ This is a diofantine equation with unknowns 𝑎−1 and 𝑘.

24Extended Euclidean Algorithm

 Diofantine equations are of the form 𝑎𝑥 + 𝑏𝑦 = 𝑐 where 𝑎, 𝑏 and 𝑐
are constants and 𝑥 and 𝑦 are unknown. All values involved are
integers.

 There are either no solutions or an infinite number of solutions.
▪ No solutions if gcd(𝑎, 𝑏) doesn’t divide 𝑐, since both sides must be divisible

by the same numbers.
▪ If 𝑥0, 𝑦0 is a solution, then 𝑥0 + 𝑏𝑘/ gcd 𝑎, 𝑏 , 𝑦0 − 𝑎𝑘/gcd(𝑎, 𝑏) are also

solutions for all 𝑘 ∈ ℤ, since 𝑎 𝑥0 + 𝑏𝑘/gcd(𝑎, 𝑏) + 𝑏 𝑦0 − 𝑎𝑘/gcd(𝑎, 𝑏) =
𝑎𝑥0 +

𝑎𝑏𝑘−𝑎𝑏𝑘

gcd(𝑎,𝑏)
+ 𝑏𝑦0 = 𝑎𝑥0 + 𝑏𝑦0 = 𝑐.

▪ If we additionally require either 𝑥 or 𝑦 fall within a range (typically 0 ≤ 𝑥 <
𝑏/ gcd 𝑎, 𝑏), then the solution is unique.

 The Extended Euclidean Algorithm solves diofantine equations.
▪ Without loss of generality, assume 𝑎 ≥ 𝑏.
▪ if 𝑏 = 0

if 𝑎 divides 𝑐 return 𝑥 = 𝑐 ∕∕ 𝑎, 𝑦 = 0
else return Impossible

else
𝑥0, 𝑦0 = 𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑_𝑒𝑢𝑐𝑙𝑖𝑑(𝑏, 𝑎%𝑏)
return 𝑥 = 𝑦0, 𝑦 = 𝑥0 − 𝑦0 ∗ 𝑎 ∕∕ 𝑏

25Extended Euclidean Algorithm

 Example: 175𝑥 + 145𝑦 = 15

▪ Call recursively
extended_euclid(175, 145)
extended_euclid(145, 30)
extended_euclid(30, 25)
extended_euclid(25, 5)
extended_euclid(5, 0): 5 divides 15, so 𝑥 = 3, 𝑦 = 0 ⇒ 5 ∗ 3 + 0 ∗ 0 = 15

▪ Reconstruct solution when backtracking
extended_euclid(25, 5): 𝑥 = 0, 𝑦 = 3 − 0 = 3 ⇒ 25 ∗ 0 + 5 ∗ 3 = 15
extended_euclid(30, 25): 𝑥 = 3, 𝑦 = 0 − 3 ∗ 30 ∕∕ 25 = −3 ⇒

⇒ 30 ∗ 3 + 25 ∗ −3 = 90 − 75 = 15
extended_euclid(145, 30): 𝑥 = −3, 𝑦 = 3 − −3 ∗ 29 ∕∕ 6 = 15 ⇒

⇒ 145 ∗ −3 + 30 ∗ 15 = −435 + 450 = 15
extended_euclid(175, 145): 𝑥 = 15, 𝑦 = −3 − 15 ∗ 175 ∕∕ 145 = −18 ⇒

⇒ 175 ∗ 15 + 145 ∗ −18 = 2625 − 2610 = 15

 All solutions are given by 𝑥 = 15 + 29𝑘, 𝑦 = −18 − 35𝑘 for 𝑘 ∈ ℤ.

▪ E.g. 𝑘 = 1 ⇒ 𝑥 = 44, 𝑦 = −53 ⇒
⇒ 175𝑥 + 145𝑦 = 175 ∗ 44 + 145 ∗ −53 = 7,700 − 7,685 = 15

26Systems of Congruences (Lab 3.7)

 Problem: Find all 𝑥 that satisfy the two congruences
𝑥 ≡ 𝑎 (𝑚𝑜𝑑 𝑚) and 𝑥 ≡ 𝑏 (𝑚𝑜𝑑 𝑛).
▪ Equivalently, 𝑥 + 𝑗𝑚 = 𝑎 and 𝑥 + 𝑘𝑛 = 𝑏 for some 𝑗, 𝑘 ∈ ℤ.

▪ Subtract them to get 𝑗𝑚 − 𝑘𝑛 = 𝑎 − 𝑏.

▪ This is a diofantine equation with 𝑗, 𝑘 unknown. It is solvable if gcd(𝑚, 𝑛)
divides 𝑎 − 𝑏, otherwise no solution exists.

▪ Find 𝑗, 𝑘 using Extended Euclidean, then 𝑥 = 𝑎 − 𝑗𝑚.

▪ 𝑗 is unique modulo
𝑛

gcd(𝑚,𝑛)
, so 𝑥 is unique modulo

𝑚𝑛

gcd(𝑚,𝑛)
= lcm 𝑚, 𝑛 .

The two congruences taken together are therefore equivalent to
𝑥 ≡ 𝑎 − 𝑗𝑚 (𝑚𝑜𝑑 lcm 𝑚, 𝑛).

 For more than two congruences, solve them pairwise and
“compress” them using the solution above.

27Chinese Remainder Theorem (Lab 3.6)

 The Chinese Remainder Theorem: Given a system of

congruences 𝑥 ≡ 𝑎𝑖 𝑚𝑜𝑑 𝑚𝑖 , 𝑖 = 1…𝑛, where gcd 𝑚𝑖 , 𝑚𝑗 =

1 when 𝑖 ≠ 𝑗. Then one solution is given by 𝑥 = σ𝑎𝑖𝑀𝑖𝑦𝑖 where

𝑀 = ς𝑚𝑖, 𝑀𝑖 = 𝑀/𝑚𝑖 and 𝑦𝑖 = 𝑀𝑖
−1(𝑚𝑜𝑑 𝑚𝑖).

▪ Proof: All except the ith term of 𝑥 contains a factor 𝑚𝑖, and 𝑀𝑖𝑦𝑖 =
1 (𝑚𝑜𝑑 𝑚𝑖). Consequently
𝑥 ≡ 0 +⋯+ 𝑎𝑖𝑀𝑖𝑦𝑖 + 0 +⋯+ 0 ≡ 𝑎𝑖 ∗ 1 ≡ 𝑎𝑖 (𝑚𝑜𝑑 𝑚𝑖).

▪ The solution is unique modulo 𝑀 (proof omitted).

▪ This is an important special case of the general approach presented

before. Since gcd 𝑚𝑖 , 𝑚𝑗 = 1 it is always solvable and

lcm 𝑚𝑖, 𝑚𝑗 = 𝑚𝑖𝑚𝑗

28Chinese Remainder Theorem

 Example: 𝑥 ≡2 0, 𝑥 ≡3 2, 𝑥 ≡5 0 and 𝑥 ≡7 3.
▪ 𝑀 = 2 ∗ 3 ∗ 5 ∗ 7 = 210

𝑦1 = 105 −1 𝑚𝑜𝑑 2 = 1
𝑦2 = 70 −1 𝑚𝑜𝑑 3 = 1
𝑦3 = 42 −1 𝑚𝑜𝑑 5 = 3
𝑦4 = 30 −1 𝑚𝑜𝑑 7 = 4

▪ 𝑥 = 0 ∗
210

2
∗ 1 + 2 ∗

210

3
∗ 1 + 0 ∗

210

5
∗ 3 + 3 ∗

210

7
∗ 4 =

= 0 + 140 + 0 + 360 = 500 ≡𝑀 80

▪ Verify: 80 = 2 ∗ 40, 80 = 3 ∗ 78 + 2, 80 = 16 ∗ 5, 80 = 11 ∗ 7 + 3

29Summary

 Exercise 9: Strings II
▪ A: Suffix Array Re-construction

▪ B: Code Theft

▪ B: Messages from Outer Space

▪ C: Life Forms

 Number Theory
▪ Primes (Lab 3.8)

▪ Greatest Common Divisor and Least Common Multiple (Lab 3.4)

▪ Modular Arithmetic (Lab 3.5)

▪ Chinese Remainder Theorem (Lab 3.6-3.7)

