Algorithmic

Problem Solving
Le 9 Number Theory

Outline

Number Theory
Primes (Lab 3.8)
Greatest Common Divisor and Least Common Multiple (Lab 3.4)
Modular Arithmetic (Lab 3.5)
Chinese Remainder Theorem (Lab 3.6-3.7)

Definition: x > 1 isa prime if it isn’'t divisible by any integer

other than 1 and itself.

Example: The first 8 primes are 2, 3, 5, 7, 11, 13, 17, 19.

Example: 2,147,483,647 is the largest prime that fits in an int32.
Fundamental theorem of arithmetic: Each x > 1 can be
uniquely represented as a product of primes.

This representation is called the prime factorization of x.

Example: 35 = 57, 54 =2¥3"3,7=7
Algorithms for testing if N is prime.

Naive O(N) algorithm: Try to divide N by 2, 3, ..., N-1.

Improve to O(v/N) by noting that if N isn’t prime, at least one factor must

be VN or less.

VN
log(N)
less than < v/N are known.

Improve to O() by only dividing by primes. Requires that all primes

Sieve of Eratosthenes (Lab 3.8) |

Efficient algorithm for finding all primes < N.
Initialize a bitset is_prime to true for all integers except o and 1.
For each integer i, if is_prime][i], add it to our list of primes and set
is_prime[ik] = false for all k.
Time complexity O(N log N)
: : N . :
If is_prime|[p] = true, we have to mark > integers as not prime.

The number of iterations of the inner loop is

N+N+N+ <N1+1+1+ +1
2 3 5 (1 2 3 N)

We recognize the sum of the harmonic series, which is in O(log N), so the
time complexity isin O(N + Nlog N) = O(N logN).

Multiple optimizations possible

[f we don’t need the primes list, we only have to iterate i = 2, 3, ..., VN.

We can start marking with k = i, since all other multiples will already be
marked.

GCD and LCM (Lab 3.4)

Greatest Common Divider

gcd(a, b) is the largest value g such that a = mg and b = ng for some
m,n € Z.

Note than gcd(m,n) = 1, otherwise g * gcd(m, n) would be a greater
common divider.

Example: gcd(6,9) = 3, gcd(33,121) = 11, gcd(7,15) = 1.

If gcd(a, b) = 1 we say that a and b are coprime (sometimes relatively
prime or mutually prime), since they don'’t share any prime factors.

Least Common Multiple

lem(a, b) is the smallest value [such that [= ma and [= nb for some
m,n € Z.

As a direct consequence of the fundamental theorem of arithmetic,
lcm(a, b) = ab/ gcd(a, b)

Example: lcm(12,9) = 36, Ilcm(2,3) = 6, lem(5,10) = 10
Both are useful when implementing rational arithmetic in Lab
3.4.

Euclidean Algorithm

Theorem: gcd(a,b) = gcd(a — kb, b) forall k € Z.

Proof: Let ¢ be a common divisor of a and b. Then a = mc and b = nc, so
a — kb = mc — knc = (m — kn)c and c is a divisor of a — kb. Similarly, if
d is a common divisor of a — kb and b, then it must also divide a.
Consequently a, b and a — kb have the same common divisors, and in
particular the same gcd.

This observation is at the core of the Euclidean Algorithm:
Without loss of generality, assume a = b.

If b = 0 return a
Otherwise gcd(a, b) = gcd(kb + a%b, b) = gcd(b, a%b)

Example:

gcd(175,145) = gcd(1 * 145 + 30,145) =
gcd(145,30) = gcd(4 * 30 + 25,30) =
gcd(30,25) = ged(1 * 25+ 5,30) =
gcd(25,5) = gcd(5+*5+4+0,5) =
gcd(5,0) =5

Modular Arithmetic (Lab 3.5)

Definition: a is congruent with b modulo m if a + km = b for

some k € Z.
Equivalently: m divides a — b, i.e. km = a — b for some k € Z.
Symbolically: a =, b or a = b (mod m).

Arises naturally when modelling cyclic behavior, but is also
central in cryptography and other fields.

The remainder operator %

a%m is the remainder of a divided by m, i.e. the unique number 0 < r <
msuch thata =, .

Note that this definition is different from most programming languages,
where —-m < a%m < 0ifa < 0.

a=a//mxa+ a%m where // is integer division.

Theorem: If a =,,, b, then a%m = b%m.

Modular Arithmetic - Add/Sub |

Theorem: If x =,, aandy =,, b,thenx +y =, a + b.

Proof:x + km=aandy+ jm=b,sox+y+ (k+jm=a+ b.
Similarly for subtraction.
Thus (a + b)%m = (a%m + b%m)%m.

By computing the remainder of the operands, we avoid intermediary
values larger than 2m, which reduces the risk for overflow.

Modular Arithmetic — Mult

Theorem: If x =,, aand y =,,, b then xy =, ab.
Proof: (x + km)(y + jm) = xy + (ky + jx + kjm)m = ab.
We can thus use the same trick for multiplication, but the

intermediary value is now on the order of m#. Can we do
better?

Modular Arithmetic — Mult

Idea: Use that ab = a(2k + d) = 2ak + ad where k € Zand d €
{0,1}.
Example: What is (64 * 25)%377

64 * 25 =3, 64%37 * 25 = 27 x 25
This reduces the product, but it would still e.g. overflow an int8, even though
the final remainder will fit nicely.

We recursively partition 25:
27 %25 =27+« 212+ 1) =227 %12 + 27
27 x12=27%(2+%64+0) =2x27%6
27 x6 =27+« (2*3+0)=2%27 3
27 *3=27+«2*1+1)=2%27+ 27
2%27 =54 =5,17
Now we backtrack and compute remainder along the way
27 *3 =227+ 27 =3, 17+ 27 =44 =5, 7
27 x6 =2%27 %3 =3, 27 =14
27 12 =227 %6 =3, 2+ 14 = 28
27 25 = 2% 27 %124+ 27 =3, 2% 28+ 27 =56 + 27 =3, 19 + 27
=46 =3, 9

Using this algorithm, no intermediary values are larger than 2m, i.e.
same as for addition/subtraction.

Modular Arithmetic - Exp

Modular exponentiation a’? % m isn’t included in the lab, but
is still a useful algorithm.

First attempt: Apply modular multiplication b times.
Pro: No intermediary values above 2m.
Con: O(b) time complexity.
Improvement: Binary Exponentiation
We use that b = by2° + b;21 + --- + b,,2™ where b; € {0,1}and n =
llog, b].
This gives us a®? = a = P02’ 4 gh12" s ... % gPn2" In other

words, a? is the product of n factors, each being the square of the one
before, where b; tells us if factor i should be included.

bo2°+---+by 2™ b2°

We thus have log, b factors, each taking log, m time to compute using
modular multiplication, and similar to multiply them with each other.

Since we only use modular multiplication repeatedly, we still don’t need
intermediary values larger than 2m.

Modular Arithmetic - Inverse

How about division?

: . , 1. :
Straight-forward definition doesn’t work, since — is not an integer unless
a=1.

.1 _
Instead, we define - = a l'suchthata*a™! =, 1.
Note that a~! depends on both a and m!

The definition meansthata *a~1 + km = 1 forsome k € Z.

This is a diofantine equation with unknowns a™! and k.

Extended Euclidean Algorithm

Diofantine equations are of the form ax + by = c where a, b and ¢
are constants and x and y are unknown. All values involved are
integers.

There are either no solutions or an infinite number of solutions.

No solutions if gcd(a, b) doesn’t divide c, since both sides must be divisible
by the same numbers.

If x4, yo is a solution, then x, + bk/ gcd(a, b),y, — ak/gcd(a, b) are also
solutlorllﬁcfor 1?11 k € Z, since a(xo + bk/gcd(a b)) + b(yo — ak/gcd(a, b)) =

axy + + by, = axy + by, = c.

gcd(a,b)
If we addltlonally require either x or y fall within a range (typically 0 < x <
b/ gcd(a, b)), then the solution is unique.

The Extended Euclidean Algorithm solves diofantine equations.

Without loss of generality, assume a > b.
ifb=20
if a dividescreturnx =c //a,y =0
else return Impossible
else
Xo, Vo = extended_euclid(b, a%b)
return x = y,, Yy =Xx9 — Yo *a // b

Extended Euclidean Algorithm

Example: 175x + 145y = 15

Call recursively
extended_euclid(175, 145)

extended_euclid(145, 30)

extended_euclid(30, 25)

extended_euclid(2s, 5)

extended_euclid(s, 0): 5 divides15,s0x =3,y =0=>5%*34+0%0 =15

Reconstruct solution when backtracking
extended_euclid(25,5):x =0,y =3—-0=3=25*x0+5%x3 =15
extended_euclid(30, 25): x =3,y =0—-3%30//25=-3=
= 30*x3+25%(—-3)=90—-75=15
extended_euclid(145,30): x = -3,y =3—-(-3)*29 //6 =15 =
= 145 % (—=3) + 30 * 15 = —435 + 450 = 15
extended_euclid(175, 145): x = 15,y = -3 —-15% 175 // 145 = -18 =
= 175 %15 4+ 145 x (—18) = 2625 — 2610 = 15

All solutions are given by x = 15 + 29k,y = —18 — 35k for k € Z.

Egk=1=>x=44,y=-53>
= 175x + 145y = 175 * 44 + 145 x (=53) = 7,700 — 7,685 = 15

Systems of Congruences (Lab 3.7)(f&

Problem: Find all x that satisfy the two congruences
x = a (mod m) and x = b (mod n).
Equivalently, x + jm = aand x + kn = b for some j, k € Z.

Subtract them to get jm — kn = a — b.

This is a diofantine equation with j, k unknown. It is solvable if gcd(m, n)
divides a — b, otherwise no solution exists.

Find j, k using Extended Euclidean, then x = a — jm.

n mn

j is unique modulo , S0 x is unique modulo = lcm(m, n).

gcd(m,n) gcd(mn)
The two congruences taken together are therefore equivalent to
x = a — jm (mod lcm(m, n)).
For more than two congruences, solve them pairwise and
« » . .
compress’ them using the solution above.

Chinese Remainder Theorem (Lab 3.6) (X

The Chinese Remainder Theorem: Given a system of
congruences x = a; (mod m;),i = 1...n, where gcd(mi,mj) =
1 when i # j. Then one solution is given by x =), a;M;y; where
M = [Im;, M; = M/m; and y; = M; *(mod m;).

Proof: All except the ith term of x contains a factor m;, and M;y; =

1 (mod m;). Consequently

X = 0++alMlyl+0++O Eai*l = Qa; (modml-).

The solution is unique modulo M (proof omitted).

This is an important special case of the general approach presented
before. Since gcd(m;, m;) = 1 it is always solvable and
lcm(ml-, mj) = m;m;

Chinese Remainder Theorem

Example: x =, 0, x =5 2, x = 0O and x =, 3.
M=2x3x5x7=210
y; = (105)71 (mod 2) = 1
y, = (70)71 (mod 3) = 1
ys = (42)71 (mod 5) = 3
vy = (30)71 (mod 7) = 4

x=0*22£*1+2*23£*1+0*%*3+3*¥*4=

=0+140+ 0+ 360 =500 =y 80
Verify: 80 =2 %40,80 =3%78+4+2,80=16%5,80=11%7+3

Summary

Exercise 9: Strings II
A: Suffix Array Re-construction
B: Code Theft

B: Messages from Outer Space
C: Life Forms

Number Theory
Primes (Lab 3.8)

Greatest Common Divisor and Least Common Multiple (Lab 3.4)
Modular Arithmetic (Lab 3.5)

Chinese Remainder Theorem (Lab 3.6-3.7)

