Algorithmic Problem Solving Le 9 Number Theory

Herman Appelgren
Dept of Computer and Information Science Linköping University

- Exercise 9: Strings II
=A: Suffix Array Re-construction
-B: Code Theft
"-B: Messages from Outer Space
"C:Life Forms
- Number Theory
- Primes (Lab 3.8)
- Greatest Common Divisor and Least Common Multiple (Lab 3.4)
- Modular Arithmetic (Lab 3.5)
- Chinese Remainder Theorem (Lab 3.6-3.7)

Primes

- Definition: $x>1$ is a prime if it isn't divisible by any integer other than 1 and itself.
- Example: The first 8 primes are 2, 3, 5, 7, 11, 13, 17, 19.
- Example: 2,147,483,647 is the largest prime that fits in an int32.
- Fundamental theorem of arithmetic: Each $x>1$ can be uniquely represented as a product of primes.
- This representation is called the prime factorization of x .
- Example: $35=5^{*} 7,54=2^{*} 3^{\wedge} 3,7=7$
- Algorithms for testing if N is prime.
- Naïve $O(N)$ algorithm: Try to divide N by 2, 3, ..., $\mathrm{N}-1$.
- Improve to $O(\sqrt{N})$ by noting that if N isn't prime, at least one factor must be \sqrt{N} or less.
- Improve to $O\left(\frac{\sqrt{N}}{\log (N)}\right)$ by only dividing by primes. Requires that all primes less than $\leq \sqrt{N}$ are known.

Sieve of Eratosthenes (Lab 3.8)

- Efficient algorithm for finding all primes $\leq \mathrm{N}$.
- Initialize a bitset is_prime to true for all integers except o and 1.
- For each integer i, if is_prime[i], add it to our list of primes and set is_prime $[\mathrm{ik}]=$ false for all k.
- Time complexity $O(N \log N)$
- If is_prime[p] = true, we have to mark $\frac{N}{p}$ integers as not prime.
- The number of iterations of the inner loop is

$$
\frac{N}{2}+\frac{N}{3}+\frac{N}{5}+\cdots<N\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{N}\right)
$$

- We recognize the sum of the harmonic series, which is in $O(\log N)$, so the time complexity is in $O(N+N \log N)=O(N \log N)$.
- Multiple optimizations possible
- If we don't need the primes list, we only have to iterate $i=2,3, \ldots, \sqrt{N}$.
- We can start marking with $k=i$, since all other multiples will already be marked.

GCD and LCM (Lab 3.4)

- Greatest Common Divider
- $\operatorname{gcd}(a, b)$ is the largest value g such that $a=m g$ and $b=n g$ for some $m, n \in \mathbb{Z}$.
- Note than $\operatorname{gcd}(m, n)=1$, otherwise $g * \operatorname{gcd}(m, n)$ would be a greater common divider.
- Example: $\operatorname{gcd}(6,9)=3, \operatorname{gcd}(33,121)=11, \operatorname{gcd}(7,15)=1$.
- If $\operatorname{gcd}(a, b)=1$ we say that a and b are coprime (sometimes relatively prime or mutually prime), since they don't share any prime factors.
- Least Common Multiple
- $\operatorname{lcm}(a, b)$ is the smallest value l such that $l=m a$ and $l=n b$ for some $m, n \in \mathbb{Z}$.
- As a direct consequence of the fundamental theorem of arithmetic, $\operatorname{lcm}(a, b)=a b / \operatorname{gcd}(a, b)$
- Example: $\operatorname{lcm}(12,9)=36, \operatorname{lcm}(2,3)=6, \operatorname{lcm}(5,10)=10$
- Both are useful when implementing rational arithmetic in Lab 3.4.

Euclidean Algorithm

- Theorem: $\operatorname{gcd}(a, b)=\operatorname{gcd}(a-k b, b)$ for all $k \in \mathbb{Z}$.
- Proof: Let c be a common divisor of a and b. Then $a=m c$ and $b=n c$, so $a-k b=m c-k n c=(m-k n) c$ and c is a divisor of $a-k b$. Similarly, if d is a common divisor of $a-k b$ and b, then it must also divide a.
Consequently a, b and $a-k b$ have the same common divisors, and in particular the same gcd.
- This observation is at the core of the Euclidean Algorithm:
- Without loss of generality, assume $a \geq b$.
- If $b=0$ return a
- Otherwise $\operatorname{gcd}(a, b)=\operatorname{gcd}(k b+a \% b, b)=\operatorname{gcd}(b, a \% b)$
- Example:
- $\operatorname{gcd}(175,145)=\operatorname{gcd}(1 * 145+30,145)=$ $\operatorname{gcd}(145,30)=\operatorname{gcd}(4 * 30+25,30)=$ $\operatorname{gcd}(30,25)=\operatorname{gcd}(1 * 25+5,30)=$ $\operatorname{gcd}(25,5)=\operatorname{gcd}(5 * 5+0,5)=$ $\operatorname{gcd}(5,0)=5$

Modular Arithmetic (Lab 3.5)

- Definition: a is congruent with b modulo m if $a+k m=b$ for some $k \in \mathbb{Z}$.
- Equivalently: m divides $a-b$, i.e. $k m=a-b$ for some $k \in \mathbb{Z}$.
- Symbolically: $a \equiv_{m} b$ or $a \equiv b(\bmod m)$.
- Arises naturally when modelling cyclic behavior, but is also central in cryptography and other fields.
- The remainder operator \%
- $a \% m$ is the remainder of a divided by m, i.e. the unique number $0 \leq r<$ m such that $a \equiv_{m} r$.
- Note that this definition is different from most programming languages, where $-m \leq a \% m<0$ if $a<0$.
- $a=a / / m * a+a \% m$ where $/ /$ is integer division.
- Theorem: If $a \equiv_{m} b$, then $a \% m=b \% m$.

Modular Arithmetic - Add/Sub

- Theorem: If $x \equiv_{m} a$ and $y \equiv_{m} b$, then $x+y \equiv_{m} a+b$.
- Proof: $x+k m=a$ and $y+j m=b$, so $x+y+(k+j) m=a+b$.
- Similarly for subtraction.
- Thus $(a \pm b) \% m=(a \% m \pm b \% m) \% m$.
- By computing the remainder of the operands, we avoid intermediary values larger than $2 m$, which reduces the risk for overflow.

Modular Arithmetic - Mult

- Theorem: If $x \equiv_{m} a$ and $y \equiv_{m} b$ then $x y \equiv_{m} a b$.
" Proof: $(x+k m)(y+j m)=x y+(k y+j x+k j m) m=a b$.
- We can thus use the same trick for multiplication, but the intermediary value is now on the order of m^{2}. Can we do better?

Modular Arithmetic - Mult

- Idea: Use that $a b=a(2 k+d)=2 a k+a d$ where $k \in \mathbb{Z}$ and $d \in$ $\{0,1\}$.
- Example: What is $(64 * 25) \% 37$?
- $64 * 25 \equiv_{37} 64 \% 37 * 25=27 * 25$

This reduces the product, but it would still e.g. overflow an int8, even though the final remainder will fit nicely.

- We recursively partition 25:

$$
\begin{aligned}
& 27 * 25=27 *(2 * 12+1)=2 * 27 * 12+27 \\
& 27 * 12=27 *(2 * 6+0)=2 * 27 * 6 \\
& 27 * 6=27 *(2 * 3+0)=2 * 27 * 3 \\
& 27 * 3=27 *(2 * 1+1)=2 * 27+27 \\
& 2 * 27=54 \equiv_{37} 17
\end{aligned}
$$

- Now we backtrack and compute remainder along the way

$$
\begin{aligned}
& 27 * 3=2 * 27+27 \equiv_{37} 17+27=44 \equiv_{37} 7 \\
& 27 * 6=2 * 27 * 3 \equiv_{37} 2 * 7=14 \\
& 27 * 12=2 * 27 * 6 \equiv_{37} 2 * 14=28 \\
& 27 * 25=2 * 27 * 12+27 \equiv_{37} 2 * 28+27=56+27 \equiv_{37} 19+27 \\
& =46 \equiv_{37} 9
\end{aligned}
$$

- Using this algorithm, no intermediary values are larger than $2 m$, i.e. same as for addition/subtraction.

Modular Arithmetic - Exp

- Modular exponentiation $a^{b} \% m$ isn't included in the lab, but is still a useful algorithm.
- First attempt: Apply modular multiplication b times.
- Pro: No intermediary values above $2 m$.
- Con: $O(b)$ time complexity.
- Improvement: Binary Exponentiation
- We use that $b=b_{0} 2^{0}+b_{1} 2^{1}+\cdots+b_{n} 2^{n}$ where $b_{i} \in\{0,1\}$ and $n=$ $\left\lfloor\log _{2} b\right\rfloor$.
- This gives us $a^{b}=a^{b_{0} 2^{0}+\cdots+b_{n} 2^{n}}=a^{b_{0} 2^{0}} * a^{b_{1} 2^{1}} * \cdots * a^{b_{n} 2^{n}}$. In other words, a^{b} is the product of n factors, each being the square of the one before, where b_{i} tells us if factor i should be included.
- We thus have $\log _{2} b$ factors, each taking $\log _{2} m$ time to compute using modular multiplication, and similar to multiply them with each other.
- Since we only use modular multiplication repeatedly, we still don't need intermediary values larger than $2 m$.

Modular Arithmetic - Inverse

- How about division?
- Straight-forward definition doesn't work, since $\frac{1}{a}$ is not an integer unless $a=1$.
- Instead, we define $\frac{1}{a}=a^{-1}$ such that $a * a^{-1} \equiv_{m} 1$.
- Note that a^{-1} depends on both a and m !
- The definition means that $a * a^{-1}+k m=1$ for some $k \in \mathbb{Z}$.
- This is a diofantine equation with unknowns a^{-1} and k.

Extended Euclidean Algorithm

- Diofantine equations are of the form $a x+b y=c$ where a, b and c are constants and x and y are unknown. All values involved are integers.
- There are either no solutions or an infinite number of solutions.
- No solutions if $\operatorname{gcd}(a, b)$ doesn't divide c, since both sides must be divisible by the same numbers.
- If x_{0}, y_{0} is a solution, then $x_{0}+b k / \operatorname{gcd}(a, b), y_{0}-a k / \operatorname{gcd}(a, b)$ are also solutions for all $k \in \mathbb{Z}$, since $a\left(x_{0}+b k / \operatorname{gcd}(a, b)\right)+b\left(y_{0}-a k / \operatorname{gcd}(a, b)\right)=$ $a x_{0}+\frac{a b k-a b k}{\operatorname{gcd}(a, b)}+b y_{0}=a x_{0}+b y_{0}=c$.
- If we additionally require either x or y fall within a range (typically $0 \leq x<$ $b / \operatorname{gcd}(a, b))$, then the solution is unique.
- The Extended Euclidean Algorithm solves diofantine equations.
- Without loss of generality, assume $a \geq b$.
- if $b=0$
if a divides c return $x=c / / a, y=0$
else return Impossible else
$x_{0}, y_{0}=$ extended_euclid $(b, a \% b)$
return $x=y_{0}, y=x_{0}-y_{0} * a / / b$

Extended Euclidean Algorithm

- Example: $175 x+145 y=15$
- Call recursively extended_euclid(175, 145)
extended_euclid $(145,30)$
extended_euclid $(30,25)$
extended_euclid $(25,5)$
extended_euclid(5, o): 5 divides 15 , so $x=3, y=0 \Rightarrow 5 * 3+0 * 0=15$
- Reconstruct solution when backtracking extended_euclid $(25,5): x=0, y=3-0=3 \Rightarrow 25 * 0+5 * 3=15$ extended_euclid $(30,25): x=3, y=0-3 * 30 / / 25=-3 \Rightarrow$

$$
\Rightarrow 30 * 3+25 *(-3)=90-75=15
$$

extended_euclid $(145,30): x=-3, y=3-(-3) * 29 / / 6=15 \Rightarrow$

$$
\Rightarrow 145 *(-3)+30 * 15=-435+450=15
$$

extended_euclid(175, 145): $x=15, y=-3-15 * 175 / / 145=-18 \Rightarrow$

$$
\Rightarrow 175 * 15+145 *(-18)=2625-2610=15
$$

- All solutions are given by $x=15+29 k, y=-18-35 k$ for $k \in \mathbb{Z}$.
- E.g. $k=1 \Rightarrow x=44, y=-53 \Rightarrow$
$\Rightarrow 175 x+145 y=175 * 44+145 *(-53)=7,700-7,685=15$

Systems of Congruences (Lab 3.7) 26

- Problem: Find all x that satisfy the two congruences $x \equiv a(\bmod m)$ and $x \equiv b(\bmod n)$.
- Equivalently, $x+j m=a$ and $x+k n=b$ for some $j, k \in \mathbb{Z}$.
- Subtract them to get $j m-k n=a-b$.
- This is a diofantine equation with j, k unknown. It is solvable if $\operatorname{gcd}(m, n)$ divides $a-b$, otherwise no solution exists.
- Find j, k using Extended Euclidean, then $x=a-j m$.
- j is unique modulo $\frac{n}{\operatorname{gcd}(m, n)}$, $\operatorname{so} x$ is unique modulo $\frac{m n}{\operatorname{gcd}(m, n)}=\operatorname{lcm}(m, n)$.

The two congruences taken together are therefore equivalent to $x \equiv a-j m(\bmod \operatorname{lcm}(m, n))$.

- For more than two congruences, solve them pairwise and "compress" them using the solution above.

Chinese Remainder Theorem (Lab 3.6)

27

- The Chinese Remainder Theorem: Given a system of congruences $x \equiv a_{i}\left(\bmod m_{i}\right), i=1 \ldots n$, where $\operatorname{gcd}\left(m_{i}, m_{j}\right)=$ 1 when $i \neq j$. Then one solution is given by $x=\sum a_{i} M_{i} y_{i}$ where $M=\Pi m_{i}, M_{i}=M / m_{i}$ and $y_{i}=M_{i}^{-1}\left(\bmod m_{i}\right)$.
- Proof: All except the ith term of x contains a factor m_{i}, and $M_{i} y_{i}=$ $1\left(\bmod m_{i}\right)$. Consequently $x \equiv 0+\cdots+a_{i} M_{i} y_{i}+0+\cdots+0 \equiv a_{i} * 1 \equiv a_{i}\left(\bmod m_{i}\right)$.
- The solution is unique modulo M (proof omitted).
- This is an important special case of the general approach presented before. Since $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ it is always solvable and

$$
\operatorname{lcm}\left(m_{i}, m_{j}\right)=m_{i} m_{j}
$$

Chinese Remainder Theorem

Example: $x \equiv_{2} 0, x \equiv_{3} 2, x \equiv_{5} 0$ and $x \equiv_{7} 3$.

- $M=2 * 3 * 5 * 7=210$

$$
\begin{aligned}
& y_{1}=(105)^{-1}(\bmod 2)=1 \\
& y_{2}=(70)^{-1}(\bmod 3)=1 \\
& y_{3}=(42)^{-1}(\bmod 5)=3 \\
& y_{4}=(30)^{-1}(\bmod 7)=4
\end{aligned}
$$

- $x=0 * \frac{210}{2} * 1+2 * \frac{210}{3} * 1+0 * \frac{210}{5} * 3+3 * \frac{210}{7} * 4=$

$$
=0+140+0+360=500 \equiv_{M} 80
$$

- Verify: $80=2 * 40,80=3 * 78+2,80=16 * 5,80=11 * 7+3$
- Exercise 9: Strings II
- A: Suffix Array Re-construction
- B: Code Theft
- B: Messages from Outer Space
- C: Life Forms
- Number Theory
- Primes (Lab 3.8)
- Greatest Common Divisor and Least Common Multiple (Lab 3.4)
- Modular Arithmetic (Lab 3.5)
- Chinese Remainder Theorem (Lab 3.6-3.7)

