
Algorithmic

Problem Solving
Le 8 Strings II

Herman Appelgren

Dept of Computer and Information Science

Linköping University

14Outline

 Exercise 8: Strings I
▪ A: Exercise Evil Straw Warts Live

▪ B: Dictionary Attack

▪ B: Dominant Strings

▪ C: Intellectual Property

 Suffix Trie & Suffix Tree

 Suffix Array (Lab 3.2)
▪ Construction (Lab 3.2)

▪ Longest Common Prefix extension (Lab 3.3)

15Repetition from last lecture

• Suffixes are substrings at the end of the string.
• Example: “banana” (not proper), "anana", "nana", "ana", "na", "a“, “”.

• Prefixes are substring at the start of the string.
• Example: “banana” (not proper), "banan", "bana", "ban", "ba", "b“, “”.

• A Trie is a rooted tree structure used for storing a set of strings
and optimize prefix searches.

16Suffix Trie

 Check whether S is a substring of T.
▪ Follow the path for S from the root.

▪ If you exhaust S, then S is in T.

 Check whether S is a suffix of T.
▪ Follow the path for S from the root.

▪ If you end at a leaf at the end of S, then
S is a suffix of T.

 Count # of occurrences of S in T.
▪ Follow the path for S from the root.

▪ The result is the sum of the # of suffixes
represented by the leaves under the node
you end up in.

A suffix trie is a trie built for all suffixes of a set of strings

(example by Steven Halim)

17Suffix Trie vs Suffix Tree

 Suffix Tree improves Suffix Trie by compressing internal nodes.

 Suffix Tries are easy to construct, Suffix Trees not so much…

(example by Steven Halim)

18Suffix Tree

 String Multimatching in O(|P| + n_matches)
▪ The matches are contained in the leaves in the subtree rooted at the node

representing the pattern.

 Longest Repeated Substring in O(|T|)
▪ Find the deepest internal node.

 Longest Common Substring in O(|T|)
▪ Find the deepest internal node with leaves from both strings.

19Suffix Array (Lab 3.2)

 The Suffix Array is a sorted array of all suffixes of a string.
▪ Solves most problems Suffix Trees does with comparable time

complexity.

▪ Much easier to implement (but still far from trivial).

▪ One of the most important data structures in this course!

i Suffix

0 abcabcaaa

1 bcabcaaa

2 cabcaaa

3 abcaaa

4 bcaaa

5 caaa

6 aaa

7 aa

8 a

i SA[i] Suffix

0 8 a

1 7 aa

2 6 aaa

3 3 abcaaa

4 0 abcabcaaa

5 4 bcaaa

6 1 bcabcaaa

7 5 caaa

8 2 cabcaaa

Sort =>

 SA[i] = starting index of suffix i
in sorted order.

 Don’t store the suffixes explicitly!
▪ Copying would take O(n^2) time

and memory.
▪ Store single copy of S, extract

suffixes using SA if required.

20Suffix Array – String Matching

 String Matching: Find all occurences of P in T.
▪ Create Suffix Array of T.

▪ Use binary search to find first and last suffix that starts with P.

▪ 2 binary searches, each comparison takes at most O(|P|) => O(|P|log|T|).

▪ Example: T = “abcabcaaa” and P = “ab” or P = “ac”.

i SA[i] Suffix

0 8 a

1 7 aa

2 6 aaa

3 3 abcaaa

4 0 abcabcaaa

5 4 bcaaa

6 1 bcabcaaa

7 5 caaa

8 2 cabcaaa

i SA[i] Suffix

0 8 a

1 7 aa

2 6 aaa

3 3 abcaaa

4 0 abcabcaaa

5 4 bcaaa

6 1 bcabcaaa

7 5 caaa

8 2 cabcaaa

21Suffix Array – Construction

 Naive implementation
▪ Standard sort by comparing suffixes.

▪ Time complexity in O(N^2logN), since comparisons take O(N).

▪ Not feasible even for moderately large strings!

(example by Steven Halim)

22Suffix Array – Construction

 Idea: Sort multiple times, comparing only parts of the string.
▪ In iteration k, only compare the first 2^k characters.

▪ Reuse results to avoid increasing work between iterations.

 Sort suffixes lexicographically based on C1 and C2.

 Iteration 1: Set C1[i] and C2[i] to ASCII values of first two chars.

i SA[i] Suffix C1[i] C2[i]

0 0 abcabcaaa 97 98

1 1 bcabcaaa 98 99

2 2 cabcaaa 99 97

3 3 abcaaa 97 98

4 4 bcaaa 98 99

5 5 caaa 99 97

6 6 aaa 97 97

7 7 aa 97 97

8 8 a 97 0

=>

i SA[i] Suffix C1[i] C2[i]

0 8 a 97 0

1 6 aaa 97 97

2 7 aa 97 97

3 0 abcabcaaa 97 98

4 3 abcaaa 97 98

5 1 bcabcaaa 98 99

6 4 bcaaa 98 99

7 2 cabcaaa 99 97

8 5 caaa 99 97

23Suffix Array – Construction

 Iteration 2: Sort by the first four characters.
▪ We already know the relative order of the second pair of characters from each

suffix, since they are the first two characters of another suffix!

 C1[i] = rank of suffix starting at SA[i].

 C2[i] = rank of suffix starting at SA[i] + 2, or 0 if SA[i] + 2 >= n.

=>

i SA[i] Suffix C1[i] C2[i]

0 8 a 1 0

1 6 aaa 2 1

2 7 aa 2 0

3 0 abcabcaaa 3 5

4 3 abcaaa 3 5

5 1 bcabcaaa 4 3

6 4 bcaaa 4 2

7 2 cabcaaa 5 4

8 5 caaa 5 2

i SA[i] Suffix C1[i] C2[i]

0 8 a 97 0

1 6 aaa 97 97

2 7 aa 97 97

3 0 abcabcaaa 97 98

4 3 abcaaa 97 98

5 1 bcabcaaa 98 99

6 4 bcaaa 98 99

7 2 cabcaaa 99 97

8 5 caaa 99 97

24Suffix Array – Construction

 Sort based on new C1 and C2.

=>

i SA[i] Suffix C1[i] C2[i]

0 8 a 1 0

1 7 aa 2 0

2 6 aaa 2 1

3 0 abcabcaaa 3 5

4 3 abcaaa 3 5

5 4 bcaaa 4 2

6 1 bcabcaaa 4 3

7 5 caaa 5 2

8 2 cabcaaa 5 4

i SA[i] Suffix C1[i] C2[i]

0 8 a 1 0

1 6 aaa 2 1

2 7 aa 2 0

3 0 abcabcaaa 3 5

4 3 abcaaa 3 5

5 1 bcabcaaa 4 3

6 4 bcaaa 4 2

7 2 cabcaaa 5 4

8 5 caaa 5 2

25Suffix Array – Construction

 Iteration 3: Sort by the first eight character.

 Update C1 and C2 in the same way, but now with step length 4.

=>

i SA[i] Suffix C1[i] C2[i]

0 8 a 1 0

1 7 aa 2 0

2 6 aaa 3 0

3 0 abcabcaaa 4 5

4 3 abcaaa 4 2

5 4 bcaaa 5 1

6 1 bcabcaaa 6 7

7 5 caaa 7 0

8 2 cbacaaa 8 3

i SA[i] Suffix C1[i] C2[i]

0 8 a 1 0

1 7 aa 2 0

2 6 aaa 2 1

3 0 abcabcaaa 3 5

4 3 abcaaa 3 5

5 4 bcaaa 4 2

6 1 bcabcaaa 4 3

7 5 caaa 5 2

8 2 cbacaaa 5 4

26Suffix Array – Construction

 Sort based on new C1 and C2.

=>

i SA[i] Suffix C1[i] C2[i]

0 8 a 1 0

1 7 aa 2 0

2 6 aaa 3 0

3 3 abcaaa 4 2

4 0 abcabcaaa 4 5

5 4 bcaaa 5 1

6 1 bcabcaaa 6 7

7 5 caaa 7 0

8 2 cbacaaa 8 3

i SA[i] Suffix C1[i] C2[i]

0 8 a 1 0

1 7 aa 2 0

2 6 aaa 3 0

3 0 abcabcaaa 4 5

4 3 abcaaa 4 2

5 4 bcaaa 5 1

6 1 bcabcaaa 6 7

7 5 caaa 7 0

8 2 cbacaaa 8 3

27Suffix Array – Construction

 Iteration 4: Sort by first sixteen characters (i.e. entire string).

 Update C1 and C2 with step length 8

 All strings have unique C1, so we terminate without sorting.

=>

i SA[i] Suffix C1[i] C2[i]

0 8 a 1 0

1 7 aa 2 0

2 6 aaa 3 0

3 3 abcaaa 4 0

4 0 abcabcaaa 5 1

5 4 bcaaa 6 0

6 1 bcabcaaa 7 0

7 5 caaa 8 0

8 2 cbacaaa 9 0

i SA[i] Suffix C1[i] C2[i]

0 8 a 1 0

1 7 aa 2 0

2 6 aaa 3 0

3 3 abcaaa 4 2

4 0 abcabcaaa 4 5

5 4 bcaaa 5 1

6 1 bcabcaaa 6 7

7 5 caaa 7 0

8 2 cbacaaa 8 3

28Suffix Array – Construction

 Time complexity
▪ At most O(logn) iterations needed.

▪ With comparison based sort, total time complexity is O(n(logn)^2).

 Improvement: Both C1 and C2 are integers, so we can use
integer-specific sorting algorithms!

29Integer Sorting

 Counting Sort of single integers
▪ Let count[i] = number of elements with value i.

▪ Then, elements with value i should be placed on indicies [sum(count[j <
i]), sum(count[j <= i])) in sorted order.

30Integer Sorting

 Radix Sort of integer tuples.
▪ Counting Sort is stable.

▪ To sort the tuples lexicographically, first sort the last integer using
Counting Sort, then the second to last, …

C1[i] C2[i]

1 0

2 1

2 0

3 5

3 5

4 4

4 2

5 4

5 2

C1[i] C2[i]

1 0

2 0

2 1

4 2

5 2

4 4

5 4

3 5

3 5

C1[i] C2[i]

1 0

2 0

2 1

3 5

3 5

4 2

4 4

5 2

5 4

=> =>

31Suffix Array – Construction

 Suffix Array in O(n^2logn)
▪ Naïve construction by direct comparison of suffixes.

▪ Useful baseline, but no course credits.

 Suffix Array in O(n(logn)^2)
▪ Comparison-based sorting algorithm operating on bigrams.

▪ Sufficient for course credits, but might need optimization to pass time
limits, especially for exercises/sessions.

 Suffix Array in O(nlogn)
▪ Radix sort of bigrams.

▪ Solves all relevant course problems handily.

 Suffix Array in O(n)
▪ Interesting if you want a challenge. Ask Leif for directions.

 Suffix Tree in O(n)
▪ Very challenging, but doable. See e.g. Ukkonen’s algorithm.

32Suffix Array – Implementation

 There are multiple arrays of indices with different meaning.
Make sure you understand their purpose!

 Troubleshooting advice
▪ Most bugs arise when comparing suffixes towards the end of the text.

▪ To troubleshoot, print the array on a nice format, e.g. the one used in the
previous slides. Makes it easy to manually check correctness.

▪ Good testcases are strings with repeating subpatterns, but natural
sentences are often sufficient.

 Some implementations append a terminating character
▪ Removes some special cases, since all “real” suffixes then has a preceding

entry in the table

▪ Might make other parts of the code less intuitive.

33Suffix Array – Longest Common Prefix (Lab 3.3)

 To solve many Suffix Array problems, we need the Longest
Common Prefix extension.
▪ LCP[i] is the length of longest prefix shared between SA[i] and SA[i – 1].

i SA[i] LCP[i] Suffix

0 6 0 aab

1 7 1 ab

2 3 2 abcaab

3 0 4 abcabcaab

4 8 0 b

5 4 1 bcaab

6 1 3 bcabcaab

7 5 0 caab

8 2 2 cabcaab

34Suffix Array – Longest Repeated Substring

 Find the longest substring that occurs at least twice in the text.
▪ Recall: Every substring is a prefix of a suffix.

▪ The longest repeated substring is simply the largest LCP entry.

i SA[i] LCP[i] Suffix

0 6 0 aab

1 7 1 ab

2 3 2 abcaab

3 0 4 abcabcaab

4 8 0 b

5 4 1 bcaab

6 1 3 bcabcaab

7 5 0 caab

8 2 2 cabcaab

35Suffix Array – Longest Common Substring

 Find the longest substring
contained in both T1 and T2.
▪ Concatenate the strings, separated by a

character not contained in T1 or T2.

▪ Find the largest LCP value corresponding
to a prefix from different texts.

▪ Example: “abcabca” and “aabcb”

owner LCP Suffix

T1 0 #aabcb

T1 0 a#aabcb

T2 1 aabcb

T1 1 abca#aabcb

T1 4 abcabca#aabcb

T2 3 abcb

T2 0 b

T1 1 bca#aabcb

T1 3 bcabca#aabcb

T2 2 bcb

T1 0 ca#aabcb

T1 2 cabca#aabcb

T2 1 cb

36Suffix Array – Longest Common Substring

 Generalizes to more than two texts.
▪ Concatenate the texts.

▪ Don’t count the separators towards LCP,
or use unique separators!

▪ If m is the smallest LCP value in a range
corresponding to suffixes from all texts,
then there is a common substring of
length m.

▪ Find the largest such m.

▪ Example: “ab”, “abc”, “a”, “aaab”

owner LCP Suffix

T2 0 #a#aaab

T3 0 #aaab

T1 0 #abc#a#aaab

T3 0 a#aaab

T4 1 aaab

T4 2 aab

T4 1 ab

T1 2 ab#abc#a#aaab

T2 2 abc#a#aaab

T4 0 b

T1 1 b#abc#a#aaab

T2 1 bc#a#aaab

T2 0 c#a#aaab

37Suffix Array – Computing LCP

 The naïve algorithm (comparing each suffix pair) is quadratic,
which is unacceptably slow!

i SA[i] LCP[i] Suffix

3 0 4 abcabcaab

6 1 3 bcabcaab

8 2 2 cabcaab

2 3 1 abcaab

5 4 0 bcaab

7 5 0 caab

0 6 0 aab

1 7 1 ab

4 8 0 b

 It is actually easier to compute
LCP in unsorted order.
▪ Note that in this order, LCP never

decreases by more than one.

▪ Thus, when computing LCP[i], we can
start at LCP[i - 1] – 1.

▪ Since LCP decrements at most once
per suffix and cannot exceed n, this
reduces the time complexity to O(n).

38Suffix Array – Computing LCP

i SA[i] LCP[i] Suffix

3 0 4 abcabcaab

6 1 bcabcaab

8 2 cabcaab

2 3 abcaab

5 4 bcaab

7 5 caab

0 6 aab

1 7 ab

4 8 b

i SA[i] LCP[i] Suffix

3 0 4 abcabcaab

6 1 3 bcabcaab

8 2 cabcaab

2 3 abcaab

5 4 bcaab

7 5 caab

0 6 aab

1 7 ab

4 8 b

The first suffix has index 3 in sorted order.
Find index 2 (O(1) if precomputed in O(n))
First 4 characters match.

The second suffix has index 6
Find index 5
No need to recheck first 3 characters

39Suffix Array – Computing LCP

i SA[i] LCP[i] Suffix

3 0 4 abcabcaab

6 1 3 bcabcaab

8 2 2 cabcaab

2 3 abcaab

5 4 bcaab

7 5 caab

0 6 aab

1 7 ab

4 8 b

i SA[i] LCP[i] Suffix

3 0 4 abcabcaab

6 1 3 bcabcaab

8 2 2 cabcaab

2 3 2 abcaab

5 4 bcaab

7 5 caab

0 6 aab

1 7 ab

4 8 b

The third suffix has index 8 in sorted order
Find index 7
No need to recheck first 2 characters

The fourth suffix has index 2
Find index 1
No need to recheck first character

40Suffix Array – Computing LCP

i SA[i] LCP[i] Suffix

3 0 4 abcabcaab

6 1 3 bcabcaab

8 2 2 cabcaab

2 3 2 abcaab

5 4 1 bcaab

7 5 caab

0 6 aab

1 7 ab

4 8 b

i SA[i] LCP[i] Suffix

3 0 4 abcabcaab

6 1 3 bcabcaab

8 2 2 cabcaab

2 3 2 abcaab

5 4 1 bcaab

7 5 0 caab

0 6 aab

1 7 ab

4 8 b

The fifth suffix has index 5 in sorted order
Find index 4
No need to check first character

41Suffix Array – Computing LCP

i SA[i] LCP[i] Suffix

3 0 4 abcabcaab

6 1 3 bcabcaab

8 2 2 cabcaab

2 3 2 abcaab

5 4 1 bcaab

7 5 0 caab

0 6 0 aab

1 7 ab

4 8 b

i SA[i] LCP[i] Suffix

3 0 4 abcabcaab

6 1 3 bcabcaab

8 2 2 cabcaab

2 3 2 abcaab

5 4 1 bcaab

7 5 0 caab

0 6 0 aab

1 7 1 ab

4 8 b

The 7th suffix has index 0 in sorted order
Has no preceeding suffix, so LCP = 0

42Suffix Array – Computing LCP

i SA[i] LCP[i] Suffix

3 0 4 abcabcaab

6 1 3 bcabcaab

8 2 2 cabcaab

2 3 2 abcaab

5 4 1 bcaab

7 5 0 caab

0 6 0 aab

1 7 1 ab

4 8 0 b

i SA[i] LCP[i] Suffix

0 6 0 aab

1 7 1 ab

2 3 2 abcaab

3 0 4 abcabcaab

4 8 0 b

5 4 1 bcaab

6 1 3 bcabcaab

7 5 0 caab

8 2 2 cabcaab

Change to sorted suffix order

43Outline

 Exercise 8: Strings I
▪ A: Exercise Evil Straw Warts Live

▪ B: Dictionary Attack

▪ B: Dominant Strings

▪ C: Intellectual Property

 Suffix Trie & Suffix Tree

 Suffix Array (Lab 3.2)
▪ Construction (Lab 3.2)

▪ Longest Common Prefix extension (Lab 3.3)

