Algorithmic

Problem Solving
Le 8 Strings I

Outline

—CIntellectual Property
Suffix Trie & Suffix Tree
Suffix Array (Lab 3.2)

Construction (Lab 3.2)
Longest Common Prefix extension (Lab 3.3)

Repetition from last lecture

Suffixes are substrings at the end of the string.

nmn n nm n nm 1m_< «»

« » n n n
Example: “banana” (not proper), "anana", "nana", "ana", "na", "a"

Prefixes are substring at the start of the string.

Example: “banana” (not proper), "banan", "bana", "ban", "ba", "b", .

A Trie is a rooted tree structure used for storing a set of strings
and optimize prefix searches.

Suffix Trie

A suffix trie is a trie built for all suffixes of a set of strings

Check whether S is a substring of T.
Follow the path for S from the root.
If you exhaust S, then Sisin T.

Check whether S is a suffix of T.
Follow the path for S from the root.
If you end at a leaf at the end of S, then
S is a suffix of T.

Count # of occurrences of Sin T.
Follow the path for S from the root.

The result is the sum of the # of suffixes
represented by the leaves under the node
you end up in.

(example by Steven Halim)

edge rc:ot SO;ted
label “AAM\C "

O O
z N A A
9 ® O O
piiith a il

label is = e
‘AR’ X/
in Dictionary

Suffix Trie vs Suffix Tree

Suffix Tree improves Suffix Trie by compressing internal nodes.

Suffix Tries are easy to construct, Suffix Trees not so much...

A/ 5 ofthis
) /vertex

e O is ‘GA

$
‘TAGACAS' is an
edge label—>

_ o> 00>

. merge vertices
| with only 1 child

-@-}-G_y-cj“_)éh__]"“h

1 2 terminating o
vertex

(example by Steven Halim)

Suffix Tree

String Multimatching in O(|P| + n_matches)

The matches are contained in the leaves in the subtree rooted at the node
representing the pattern.

Longest Repeated Substring in O(|T]|)

Find the deepest internal node.

Longest Common Substring in O(|T}|)

Find the deepest internal node with leaves from both strings.

Suffix Array (Lab 3.2)

The Suffix Array is a sorted array of all suffixes of a string.

Solves most problems Suffix Trees does with comparable time
complexity.

Much easier to implement (but still far from trivial).

One of the most important data structures in this course!

o abcabcaaa 0 8 a
1 bcabcaaa 1 7 aa

SA[i] = starting index of suffix i 5> cabcaaa 5 6 aaa

in sorted order.

Don't store the suffixes explicitly! 3 abcaaa Sort => 3 3 abcaaa
Copying would take O(n”2) time 4 bcaaa 4 0 abcabcaaa
and memory.

Store single copy of S, extract caaa bcaaa
suffixes using SA if required. > > 4
6 aaa 6 1 bcabcaaa
7 44 7 5 caaa
8 a 8 2 cabcaaa

Suffix Array - String Matching

String Matching: Find all occurences of P in T.
Create Suffix Array of T.
Use binary search to find first and last suffix that starts with P.
2 binary searches, each comparison takes at most O(|P|) => O(|P|log|T|).
Example: T = “abcabcaaa” and P = “ab” or P = “ac”.

0 3 a 0 8 a

1 7 aa 1 7 aa

2 6 aaa 2 6 aaa

3 3 abcaaa 3 3 abcaaa

4 o abcabcaaa ¢====== 4 o abcabcaaa
5 4 bcaaa &= 5 4 bcaaa

6 1 bcabcaaa (=== 6 1 bcabcaaa
7 5 caaa 7 5 caaa

8 2 cabcaaa 8 2 cabcaaa

Suffix Array — Construction

Naive implementation
Standard sort by comparing suffixes.
Time complexity in O(N”2logN), since comparisons take O(N).

Not feasible even for moderately large strings!

#include <algorithm>
#include <cstdio>
#include <cstring>

using namespace std;

char T[MAX_N]; int SA[MAX_N];

bool cmp(int a, int b) { return strcmp(T + a, T + b) < 0; }

int main() {
int n = (int)strlen(gets(T)):;
for (int 1 = 0; i < n; i++) SA[i] = i;

sort(SA, SA + n, cmp); What is the time complexity? [
} . : e do better?

Overall O(N? log

(example by Steven Halim)

Suffix Array — Construction

Idea: Sort multiple times, comparing only parts of the string.
In iteration k, only compare the first 2"k characters.
Reuse results to avoid increasing work between iterations.

Sort suffixes lexicographically based on C1and Ca.
[teration 1: Set Ci|i] and C2[i] to ASCII values of first two chars.

o o abcabcaaa 97 08 o 8 a 97 0

1 1 bcabcaaa 08 99 1 6 aaa 97 97
2 2 cabcaaa 99 97 2 7 aa 97 97
3 3 abcaaa 97 08 3 o abcabcaaa 97 08
4 4 bcaaa 08 99 = 4 3 abcaaa 97 08
5 5 caaa 99 97 5 1 bcabcaaa 08 09
6 6 aaa 97 97 6 4 bcaaa 08 99
7 7 A 97 97 7 2 cabcaaa 99 97
8 8 a 97 0 8 5 caaa 99 97

Suffix Array — Construction

[teration 2: Sort by the first four characters.

We already know the relative order of the second pair of characters from each
suffix, since they are the first two characters of another suffix!

Ci1i] = rank of suffix starting at SA[i].
Cz[i] = rank of suffix starting at SA[i] + 2, or 0 if SA[i] + 2 >=n.

o 8 a 97 0 o 8 a 1 0
1 6 aaa 97 97 1 6 aaa 2 1
2 7 aa 97 97 2 7 aa 2 0
3 o abcabcaaa 97 08 3 o abcabcaaa 3 5
4 3 abcaaa 97 08 = 4 3 abcaaa 3 5
5 1 bcabcaaa 08 99 5 1 bcabcaaa 4 3
6 4 bcaaa 08 99 6 4 bcaaa 4 2
7 2 cabcaaa 99 97 7 2 cabcaaa 5 4
8 5 caaa 99 97 8 5 caaa 5 2

Suffix Array — Construction

Sort based on new C1 and Ca.

N

cod O U1 K~ W

W O 3 O &

N

aaa
aa
abcabcaaa
abcaaa
bcabcaaa
bcaaa
cabcaaa

Cdaa

N

vi 1 B~ B~ W W

M W U1 U1 O

NS

N

o O U1 K~ W

A~ W O O N @

Ul

a
aa

aaa
abcabcaaa
abcaaa
bcaaa
bcabcaaa
caaa

cabcaaa

vi U1 A~ B~ W W

N W N U1 Ul

N

Suffix Array — Construction

[teration 3: Sort by the first eight character.

g

Update C1 and C2 in the same way, but now with step length 4.

N

cod O U1 K~ W

= A~ W O O N O

N Ul

a
aa

aaa
abcabcaaa
abcaaa
bcaaa
bcabcaaa
caaa

cbacaaa

N

vi 1 B~ B~ W W

N W N U1 Ul

N

N

o O U1 K~ W

= A~ W O O N O

N Ul

a
aa

aaa
abcabcaaa
abcaaa
bcaaa
bcabcaaa
caaa

cbacaaa

N

o O U1 K~ KW

p— N Ul o @) @)

W O

Suffix Array — Construction

Sort based on new C1 and Ca.

N

cod O U1 K~ W

A~ W O O N o

Ul

a
aa

aaa
abcabcaaa
abcaaa
bcaaa
bcabcaaa
caaa

cbacaaa

N

co O U1 A~ N~ W

~ N U1 O © O

w O

N

o O U1 K~ W

A O W OO NN @

Ul

a
aa

aaa
abcaaa
abcabcaaa
bcaaa
bcabcaaa
caaa

cbacaaa

N

o O U1 K~ KW

N O O O

Ul

W O

Suffix Array — Construction

&

Iteration 4: Sort by first sixteen characters (i.e. entire string).

Update C1 and C2 with step length 8

All strings have unique C1, so we terminate without sorting.

N

cod O U1 K~ W

= $H~ O W O N

N Ul

a
aa

aaa
abcaaa
abcabcaaa
bcaaa
bcabcaaa
caaa

cbacaaa

N

co O U1 A~ N~ W

© O O

= Ul

w O

N

o O U1 K~ W

= A O W OVl

N Ul

a
aa

aaa
abcaaa
abcabcaaa
bcaaa
bcabcaaa
caaa

cbacaaa

N

O OO O U1 A~ W

= O O O O

© O O O

Suffix Array — Construction

Time complexity
At most O(logn) iterations needed.

With comparison based sort, total time complexity is O(n(logn)”2).

Improvement: Both C1and Cz are integers, so we can use
integer-specific sorting algorithms!

Integer Sorting

Counting Sort of single integers
Let count|i] = number of elements with value i.

Then, elements with value i should be placed on indicies [sum(count]j <
i]), sum(count[j <= i])) in sorted order.

> C <int>&
*max_element(v.begin(), v.end());
> (m+ 1, 0);
(T V) ++count[ua1]
> (m+ 1, 0);
=1; 1 < count. SFCIOHESaDEE]
idx[1] = idx[1 - 1] + count[i - 1];

< > gv.s1ze(}};

Y
res[idx[val]] = val;
++idx[val]l;

res:

Integer Sorting

Radix Sort of integer tuples.
Counting Sort is stable.

To sort the tuples lexicographically, first sort the last integer using
Counting Sort, then the second to last, ...

1 0] 1 O 1 0}
2 1 2 0) 2 0}
2 o 2 1 2 1
3 5 N 4 2 N 3 5
3 5 5 2 3 5
4 4 4 4 4 2
4 2 5 4 4 4
5 4 3 5 5 2
5 2 3 5 5 4

Suffix Array — Construction

Suffix Array in O(n”2logn)
Naive construction by direct comparison of suffixes.
Useful baseline, but no course credits.
Suffix Array in O(n(logn)”2)
Comparison-based sorting algorithm operating on bigrams.

Sufficient for course credits, but might need optimization to pass time
limits, especially for exercises/sessions.

Suffix Array in O(nlogn)
Radix sort of bigrams.
Solves all relevant course problems handily.

Suffix Array in O(n)

Interesting if you want a challenge. Ask Leif for directions.

Suffix Tree in O(n)
Very challenging, but doable. See e.g. Ukkonen’s algorithm.

Suffix Array — Implementation |

There are multiple arrays of indices with different meaning.
Make sure you understand their purpose!

Troubleshooting advice

Most bugs arise when comparing suffixes towards the end of the text.

To troubleshoot, print the array on a nice format, e.g. the one used in the
previous slides. Makes it easy to manually check correctness.

Good testcases are strings with repeating subpatterns, but natural
sentences are often sufficient.
Some implementations append a terminating character

Removes some special cases, since all “real” suffixes then has a preceding
entry in the table

Might make other parts of the code less intuitive.

Suffix Array — Longest Common Prefix (Lab 3.3)

To solve many Suffix Array problems, we need the Longest
Common Prefix extension.
LCPJi] is the length of longest prefix shared between SA[i] and SA[i - 1].

0 6 0 aab

1 7 1 ab

2 3 2 abcaab

3) 4 abcabcaab
4 8 0 b

5 4 1 bcaab

6 1 3 bcabcaab
7 5 0 caab

8 2 2 cabcaab

Suffix Array — Longest Repeated Substring k

Find the longest substring that occurs at least twice in the text.
Recall: Every substring is a prefix of a suffix.

The longest repeated substring is simply the largest LCP entry.

0 6 0 aab

1 7 1 ab

2 3 2 abcaab

3) 4 abcabcaab
4 8 0 b

5 4 1 bcaab

6 1 3 bcabcaab
7 5 0 caab

8 2 2 cabcaab

Suffix Array — Longest Common Substring

Find the longest substring
contained in both T1and Ta2.

Concatenate the strings, separated by a
character not contained in T1 or T2.

Find the largest LCP value corresponding
to a prefix from different texts.

Example: “abcabca” and “aabcb”

#aabcb
a#aabcb
aabcb
abca#aabcb
abcabca#aabcb
abcb

b

bca#aabcb
bcabca#aabcb
bcb

ca#aabcb
cabca#aabcb
cb

Suffix Array — Longest Common Substring

Generalizes to more than two texts.
Concatenate the texts.

Don’t count the separators towards LCP,
or use unique separators!

If m is the smallest LCP value in a range
corresponding to suffixes from all texts,
then there is a common substring of
length m.

Find the largest such m.

Example: “ab”, “abc”, “a”, “aaab”

#a#aaab
#aaab
#abc#a#aaab
a#aaab

aaab

aab

ab
ab#abc#at#taaab
abc#at#taaab

b
b#abc#a#aaab
bc#a#taaab

c#a#aaab

Suffix Array - Computing LCP

The naive algorithm (comparing each suffix pair) is quadratic,
which is unacceptably slow!

[t is actually easier to compute

LCP in unsorted order. 3 o 4 abcabcaab
Note that in this order, LCP never 6 1 3 bcabcaab
decreases by more than one. 8 2 2 cabcaab
Thus, when computing LCP[i], we can 2 3 1 abcaab
start at LCP[i - 1] - 1. 5 4 o beaab
Since LCP decrements at most once 7 5 o caab
per suffix and cannot exceed n, this

;) 0 6 o) aab
reduces the time complexity to O(n).
1 7 1 ab
4 8 0 b

Suffix Array - Computing LCP

The first suffix has index 3 in sorted order. The second suffix has index 6
Find index 2 (O(1) if precomputed in O(n)) Find index 5

First 4 characters match. No need to recheck first 3 characters
IEMIEMATS OETIEHEETTS
abcabcaab abcabcaab
6 1 bcabcaab 6 1 3 bcabcaab
8 2 cabcaab 8 2 cabcaab
2 3 abcaab 2 3 abcaab
5 4 bcaab 5 4 bcaab
7 5 caab 7 5 caab
) 6 aab o) 6 aab
1 7 ab 1 7 ab
4 8 b 4 8 b

Suffix Array - Computing LCP

The third suffix has index 8 in sorted order The fourth suffix has index 2
Find index 7 Find index 1
No need to recheck first 2 characters No need to recheck first character

IS e T

abcabcaab abcabcaab
6 1 bcabcaab 6 1 bcabcaab
8 2 cabcaab 8 2 cabcaab
2 3 abcaab 2 3 abcaab
5 4 bcaab 5 4 bcaab
7 5 caab 7 5 caab
0 6 aab 0 6 aab
1 7 ab 1 7 ab
4 8 b 4 8 b

Suffix Array - Computing LCP

The fifth suffix has index 5 in sorted order
Find index 4
No need to check first character

IS e T

abcabcaab abcabcaab
6 1 3 bcabcaab 6 1 3 bcabcaab
8 2 2 cabcaab 8 2 2 cabcaab
2 3 2 abcaab 2 3 2 abcaab
5 4 1 bcaab 5 4 1 bcaab
7 5 caab 7 5 o) caab
) 6 aab o) 6 aab
1 7 ab 1 7 ab
4 8 b 4 8 b

Suffix Array - Computing LCP

The 7th suffix has index o in sorted order
Has no preceeding suffix, so LCP = o

IS e T

abcabcaab abcabcaab
6 1 3 bcabcaab 6 1 3 bcabcaab
8 2 2 cabcaab 8 2 2 cabcaab
2 3 2 abcaab 2 3 2 abcaab
5 4 1 bcaab 5 4 1 bcaab
7 5 0 caab 7 5 o) caab
) 6) aab o) 6 o) aab
1 7 ab 1 7 1 ab
4 8 b 4 8 b

Suffix Array - Computing LCP

Change to sorted suffix order

IS O T

abcabcaab 6
6 1 3 bcabcaab 1 7 1 ab
8 2 2 cabcaab 2 3 2 abcaab
2 3 2 abcaab 3) 4 abcabcaab
5 4 1 bcaab 4 8 0 b
7 5 0 caab 5 4 1 bcaab
) 6) aab 6 1 3 bcabcaab
1 7 1 ab 7 5) caab
4 8 0 b 8 2 2 cabcaab

Outline

Exercise 8: Strings I
A: Exercise Evil Straw Warts Live
B: Dictionary Attack
B: Dominant Strings
C: Intellectual Property

Suffix Trie & Suffix Tree
Suffix Array (Lab 3.2)

Construction (Lab 3.2)
Longest Common Prefix extension (Lab 3.3)

