
Algorithmic

Problem Solving
Le 8 Strings II

Herman Appelgren

Dept of Computer and Information Science

Linköping University

14Outline

 Exercise 8: Strings I
▪ A: Exercise Evil Straw Warts Live

▪ B: Dictionary Attack

▪ B: Dominant Strings

▪ C: Intellectual Property

 Suffix Trie & Suffix Tree

 Suffix Array (Lab 3.2)
▪ Construction (Lab 3.2)

▪ Longest Common Prefix extension (Lab 3.3)

15Repetition from last lecture

• Suffixes are substrings at the end of the string.
• Example: “banana” (not proper), "anana", "nana", "ana", "na", "a“, “”.

• Prefixes are substring at the start of the string.
• Example: “banana” (not proper), "banan", "bana", "ban", "ba", "b“, “”.

• A Trie is a rooted tree structure used for storing a set of strings
and optimize prefix searches.

16Suffix Trie

 Check whether S is a substring of T.
▪ Follow the path for S from the root.

▪ If you exhaust S, then S is in T.

 Check whether S is a suffix of T.
▪ Follow the path for S from the root.

▪ If you end at a leaf at the end of S, then
S is a suffix of T.

 Count # of occurrences of S in T.
▪ Follow the path for S from the root.

▪ The result is the sum of the # of suffixes
represented by the leaves under the node
you end up in.

A suffix trie is a trie built for all suffixes of a set of strings

(example by Steven Halim)

17Suffix Trie vs Suffix Tree

 Suffix Tree improves Suffix Trie by compressing internal nodes.

 Suffix Tries are easy to construct, Suffix Trees not so much…

(example by Steven Halim)

18Suffix Tree

 String Multimatching in O(|P| + n_matches)
▪ The matches are contained in the leaves in the subtree rooted at the node

representing the pattern.

 Longest Repeated Substring in O(|T|)
▪ Find the deepest internal node.

 Longest Common Substring in O(|T|)
▪ Find the deepest internal node with leaves from both strings.

19Suffix Array (Lab 3.2)

 The Suffix Array is a sorted array of all suffixes of a string.
▪ Solves most problems Suffix Trees does with comparable time

complexity.

▪ Much easier to implement (but still far from trivial).

▪ One of the most important data structures in this course!

i Suffix

0 abcabcaaa

1 bcabcaaa

2 cabcaaa

3 abcaaa

4 bcaaa

5 caaa

6 aaa

7 aa

8 a

i SA[i] Suffix

0 8 a

1 7 aa

2 6 aaa

3 3 abcaaa

4 0 abcabcaaa

5 4 bcaaa

6 1 bcabcaaa

7 5 caaa

8 2 cabcaaa

Sort =>

 SA[i] = starting index of suffix i
in sorted order.

 Don’t store the suffixes explicitly!
▪ Copying would take O(n^2) time

and memory.
▪ Store single copy of S, extract

suffixes using SA if required.

20Suffix Array – String Matching

 String Matching: Find all occurences of P in T.
▪ Create Suffix Array of T.

▪ Use binary search to find first and last suffix that starts with P.

▪ 2 binary searches, each comparison takes at most O(|P|) => O(|P|log|T|).

▪ Example: T = “abcabcaaa” and P = “ab” or P = “ac”.

i SA[i] Suffix

0 8 a

1 7 aa

2 6 aaa

3 3 abcaaa

4 0 abcabcaaa

5 4 bcaaa

6 1 bcabcaaa

7 5 caaa

8 2 cabcaaa

i SA[i] Suffix

0 8 a

1 7 aa

2 6 aaa

3 3 abcaaa

4 0 abcabcaaa

5 4 bcaaa

6 1 bcabcaaa

7 5 caaa

8 2 cabcaaa

21Suffix Array – Construction

 Naive implementation
▪ Standard sort by comparing suffixes.

▪ Time complexity in O(N^2logN), since comparisons take O(N).

▪ Not feasible even for moderately large strings!

(example by Steven Halim)

22Suffix Array – Construction

 Idea: Sort multiple times, comparing only parts of the string.
▪ In iteration k, only compare the first 2^k characters.

▪ Reuse results to avoid increasing work between iterations.

 Sort suffixes lexicographically based on C1 and C2.

 Iteration 1: Set C1[i] and C2[i] to ASCII values of first two chars.

i SA[i] Suffix C1[i] C2[i]

0 0 abcabcaaa 97 98

1 1 bcabcaaa 98 99

2 2 cabcaaa 99 97

3 3 abcaaa 97 98

4 4 bcaaa 98 99

5 5 caaa 99 97

6 6 aaa 97 97

7 7 aa 97 97

8 8 a 97 0

=>

i SA[i] Suffix C1[i] C2[i]

0 8 a 97 0

1 6 aaa 97 97

2 7 aa 97 97

3 0 abcabcaaa 97 98

4 3 abcaaa 97 98

5 1 bcabcaaa 98 99

6 4 bcaaa 98 99

7 2 cabcaaa 99 97

8 5 caaa 99 97

23Suffix Array – Construction

 Iteration 2: Sort by the first four characters.
▪ We already know the relative order of the second pair of characters from each

suffix, since they are the first two characters of another suffix!

 C1[i] = rank of suffix starting at SA[i].

 C2[i] = rank of suffix starting at SA[i] + 2, or 0 if SA[i] + 2 >= n.

=>

i SA[i] Suffix C1[i] C2[i]

0 8 a 1 0

1 6 aaa 2 1

2 7 aa 2 0

3 0 abcabcaaa 3 5

4 3 abcaaa 3 5

5 1 bcabcaaa 4 3

6 4 bcaaa 4 2

7 2 cabcaaa 5 4

8 5 caaa 5 2

i SA[i] Suffix C1[i] C2[i]

0 8 a 97 0

1 6 aaa 97 97

2 7 aa 97 97

3 0 abcabcaaa 97 98

4 3 abcaaa 97 98

5 1 bcabcaaa 98 99

6 4 bcaaa 98 99

7 2 cabcaaa 99 97

8 5 caaa 99 97

24Suffix Array – Construction

 Sort based on new C1 and C2.

=>

i SA[i] Suffix C1[i] C2[i]

0 8 a 1 0

1 7 aa 2 0

2 6 aaa 2 1

3 0 abcabcaaa 3 5

4 3 abcaaa 3 5

5 4 bcaaa 4 2

6 1 bcabcaaa 4 3

7 5 caaa 5 2

8 2 cabcaaa 5 4

i SA[i] Suffix C1[i] C2[i]

0 8 a 1 0

1 6 aaa 2 1

2 7 aa 2 0

3 0 abcabcaaa 3 5

4 3 abcaaa 3 5

5 1 bcabcaaa 4 3

6 4 bcaaa 4 2

7 2 cabcaaa 5 4

8 5 caaa 5 2

25Suffix Array – Construction

 Iteration 3: Sort by the first eight character.

 Update C1 and C2 in the same way, but now with step length 4.

=>

i SA[i] Suffix C1[i] C2[i]

0 8 a 1 0

1 7 aa 2 0

2 6 aaa 3 0

3 0 abcabcaaa 4 5

4 3 abcaaa 4 2

5 4 bcaaa 5 1

6 1 bcabcaaa 6 7

7 5 caaa 7 0

8 2 cbacaaa 8 3

i SA[i] Suffix C1[i] C2[i]

0 8 a 1 0

1 7 aa 2 0

2 6 aaa 2 1

3 0 abcabcaaa 3 5

4 3 abcaaa 3 5

5 4 bcaaa 4 2

6 1 bcabcaaa 4 3

7 5 caaa 5 2

8 2 cbacaaa 5 4

26Suffix Array – Construction

 Sort based on new C1 and C2.

=>

i SA[i] Suffix C1[i] C2[i]

0 8 a 1 0

1 7 aa 2 0

2 6 aaa 3 0

3 3 abcaaa 4 2

4 0 abcabcaaa 4 5

5 4 bcaaa 5 1

6 1 bcabcaaa 6 7

7 5 caaa 7 0

8 2 cbacaaa 8 3

i SA[i] Suffix C1[i] C2[i]

0 8 a 1 0

1 7 aa 2 0

2 6 aaa 3 0

3 0 abcabcaaa 4 5

4 3 abcaaa 4 2

5 4 bcaaa 5 1

6 1 bcabcaaa 6 7

7 5 caaa 7 0

8 2 cbacaaa 8 3

27Suffix Array – Construction

 Iteration 4: Sort by first sixteen characters (i.e. entire string).

 Update C1 and C2 with step length 8

 All strings have unique C1, so we terminate without sorting.

=>

i SA[i] Suffix C1[i] C2[i]

0 8 a 1 0

1 7 aa 2 0

2 6 aaa 3 0

3 3 abcaaa 4 0

4 0 abcabcaaa 5 1

5 4 bcaaa 6 0

6 1 bcabcaaa 7 0

7 5 caaa 8 0

8 2 cbacaaa 9 0

i SA[i] Suffix C1[i] C2[i]

0 8 a 1 0

1 7 aa 2 0

2 6 aaa 3 0

3 3 abcaaa 4 2

4 0 abcabcaaa 4 5

5 4 bcaaa 5 1

6 1 bcabcaaa 6 7

7 5 caaa 7 0

8 2 cbacaaa 8 3

28Suffix Array – Construction

 Time complexity
▪ At most O(logn) iterations needed.

▪ With comparison based sort, total time complexity is O(n(logn)^2).

 Improvement: Both C1 and C2 are integers, so we can use
integer-specific sorting algorithms!

29Integer Sorting

 Counting Sort of single integers
▪ Let count[i] = number of elements with value i.

▪ Then, elements with value i should be placed on indicies [sum(count[j <
i]), sum(count[j <= i])) in sorted order.

30Integer Sorting

 Radix Sort of integer tuples.
▪ Counting Sort is stable.

▪ To sort the tuples lexicographically, first sort the last integer using
Counting Sort, then the second to last, …

C1[i] C2[i]

1 0

2 1

2 0

3 5

3 5

4 4

4 2

5 4

5 2

C1[i] C2[i]

1 0

2 0

2 1

4 2

5 2

4 4

5 4

3 5

3 5

C1[i] C2[i]

1 0

2 0

2 1

3 5

3 5

4 2

4 4

5 2

5 4

=> =>

31Suffix Array – Construction

 Suffix Array in O(n^2logn)
▪ Naïve construction by direct comparison of suffixes.

▪ Useful baseline, but no course credits.

 Suffix Array in O(n(logn)^2)
▪ Comparison-based sorting algorithm operating on bigrams.

▪ Sufficient for course credits, but might need optimization to pass time
limits, especially for exercises/sessions.

 Suffix Array in O(nlogn)
▪ Radix sort of bigrams.

▪ Solves all relevant course problems handily.

 Suffix Array in O(n)
▪ Interesting if you want a challenge. Ask Leif for directions.

 Suffix Tree in O(n)
▪ Very challenging, but doable. See e.g. Ukkonen’s algorithm.

32Suffix Array – Implementation

 There are multiple arrays of indices with different meaning.
Make sure you understand their purpose!

 Troubleshooting advice
▪ Most bugs arise when comparing suffixes towards the end of the text.

▪ To troubleshoot, print the array on a nice format, e.g. the one used in the
previous slides. Makes it easy to manually check correctness.

▪ Good testcases are strings with repeating subpatterns, but natural
sentences are often sufficient.

 Some implementations append a terminating character
▪ Removes some special cases, since all “real” suffixes then has a preceding

entry in the table

▪ Might make other parts of the code less intuitive.

33Suffix Array – Longest Common Prefix (Lab 3.3)

 To solve many Suffix Array problems, we need the Longest
Common Prefix extension.
▪ LCP[i] is the length of longest prefix shared between SA[i] and SA[i – 1].

i SA[i] LCP[i] Suffix

0 6 0 aab

1 7 1 ab

2 3 2 abcaab

3 0 4 abcabcaab

4 8 0 b

5 4 1 bcaab

6 1 3 bcabcaab

7 5 0 caab

8 2 2 cabcaab

34Suffix Array – Longest Repeated Substring

 Find the longest substring that occurs at least twice in the text.
▪ Recall: Every substring is a prefix of a suffix.

▪ The longest repeated substring is simply the largest LCP entry.

i SA[i] LCP[i] Suffix

0 6 0 aab

1 7 1 ab

2 3 2 abcaab

3 0 4 abcabcaab

4 8 0 b

5 4 1 bcaab

6 1 3 bcabcaab

7 5 0 caab

8 2 2 cabcaab

35Suffix Array – Longest Common Substring

 Find the longest substring
contained in both T1 and T2.
▪ Concatenate the strings, separated by a

character not contained in T1 or T2.

▪ Find the largest LCP value corresponding
to a prefix from different texts.

▪ Example: “abcabca” and “aabcb”

owner LCP Suffix

T1 0 #aabcb

T1 0 a#aabcb

T2 1 aabcb

T1 1 abca#aabcb

T1 4 abcabca#aabcb

T2 3 abcb

T2 0 b

T1 1 bca#aabcb

T1 3 bcabca#aabcb

T2 2 bcb

T1 0 ca#aabcb

T1 2 cabca#aabcb

T2 1 cb

36Suffix Array – Longest Common Substring

 Generalizes to more than two texts.
▪ Concatenate the texts.

▪ Don’t count the separators towards LCP,
or use unique separators!

▪ If m is the smallest LCP value in a range
corresponding to suffixes from all texts,
then there is a common substring of
length m.

▪ Find the largest such m.

▪ Example: “ab”, “abc”, “a”, “aaab”

owner LCP Suffix

T2 0 #a#aaab

T3 0 #aaab

T1 0 #abc#a#aaab

T3 0 a#aaab

T4 1 aaab

T4 2 aab

T4 1 ab

T1 2 ab#abc#a#aaab

T2 2 abc#a#aaab

T4 0 b

T1 1 b#abc#a#aaab

T2 1 bc#a#aaab

T2 0 c#a#aaab

37Suffix Array – Computing LCP

 The naïve algorithm (comparing each suffix pair) is quadratic,
which is unacceptably slow!

i SA[i] LCP[i] Suffix

3 0 4 abcabcaab

6 1 3 bcabcaab

8 2 2 cabcaab

2 3 1 abcaab

5 4 0 bcaab

7 5 0 caab

0 6 0 aab

1 7 1 ab

4 8 0 b

 It is actually easier to compute
LCP in unsorted order.
▪ Note that in this order, LCP never

decreases by more than one.

▪ Thus, when computing LCP[i], we can
start at LCP[i - 1] – 1.

▪ Since LCP decrements at most once
per suffix and cannot exceed n, this
reduces the time complexity to O(n).

38Suffix Array – Computing LCP

i SA[i] LCP[i] Suffix

3 0 4 abcabcaab

6 1 bcabcaab

8 2 cabcaab

2 3 abcaab

5 4 bcaab

7 5 caab

0 6 aab

1 7 ab

4 8 b

i SA[i] LCP[i] Suffix

3 0 4 abcabcaab

6 1 3 bcabcaab

8 2 cabcaab

2 3 abcaab

5 4 bcaab

7 5 caab

0 6 aab

1 7 ab

4 8 b

The first suffix has index 3 in sorted order.
Find index 2 (O(1) if precomputed in O(n))
First 4 characters match.

The second suffix has index 6
Find index 5
No need to recheck first 3 characters

39Suffix Array – Computing LCP

i SA[i] LCP[i] Suffix

3 0 4 abcabcaab

6 1 3 bcabcaab

8 2 2 cabcaab

2 3 abcaab

5 4 bcaab

7 5 caab

0 6 aab

1 7 ab

4 8 b

i SA[i] LCP[i] Suffix

3 0 4 abcabcaab

6 1 3 bcabcaab

8 2 2 cabcaab

2 3 2 abcaab

5 4 bcaab

7 5 caab

0 6 aab

1 7 ab

4 8 b

The third suffix has index 8 in sorted order
Find index 7
No need to recheck first 2 characters

The fourth suffix has index 2
Find index 1
No need to recheck first character

40Suffix Array – Computing LCP

i SA[i] LCP[i] Suffix

3 0 4 abcabcaab

6 1 3 bcabcaab

8 2 2 cabcaab

2 3 2 abcaab

5 4 1 bcaab

7 5 caab

0 6 aab

1 7 ab

4 8 b

i SA[i] LCP[i] Suffix

3 0 4 abcabcaab

6 1 3 bcabcaab

8 2 2 cabcaab

2 3 2 abcaab

5 4 1 bcaab

7 5 0 caab

0 6 aab

1 7 ab

4 8 b

The fifth suffix has index 5 in sorted order
Find index 4
No need to check first character

41Suffix Array – Computing LCP

i SA[i] LCP[i] Suffix

3 0 4 abcabcaab

6 1 3 bcabcaab

8 2 2 cabcaab

2 3 2 abcaab

5 4 1 bcaab

7 5 0 caab

0 6 0 aab

1 7 ab

4 8 b

i SA[i] LCP[i] Suffix

3 0 4 abcabcaab

6 1 3 bcabcaab

8 2 2 cabcaab

2 3 2 abcaab

5 4 1 bcaab

7 5 0 caab

0 6 0 aab

1 7 1 ab

4 8 b

The 7th suffix has index 0 in sorted order
Has no preceeding suffix, so LCP = 0

42Suffix Array – Computing LCP

i SA[i] LCP[i] Suffix

3 0 4 abcabcaab

6 1 3 bcabcaab

8 2 2 cabcaab

2 3 2 abcaab

5 4 1 bcaab

7 5 0 caab

0 6 0 aab

1 7 1 ab

4 8 0 b

i SA[i] LCP[i] Suffix

0 6 0 aab

1 7 1 ab

2 3 2 abcaab

3 0 4 abcabcaab

4 8 0 b

5 4 1 bcaab

6 1 3 bcabcaab

7 5 0 caab

8 2 2 cabcaab

Change to sorted suffix order

43Outline

 Exercise 8: Strings I
▪ A: Exercise Evil Straw Warts Live

▪ B: Dictionary Attack

▪ B: Dominant Strings

▪ C: Intellectual Property

 Suffix Trie & Suffix Tree

 Suffix Array (Lab 3.2)
▪ Construction (Lab 3.2)

▪ Longest Common Prefix extension (Lab 3.3)

