
Algorithmic

Problem Solving
Le 7 Strings I

Herman Appelgren

Dept of Computer and Information Science

Linköping University

9Outline

 Exercise 7: Graph III
▪ Hiding Places

▪ Get Shorty

▪ XYZZY

▪ Risk

 Introduction to String Processing

 Trie (Prefix Tree)

 The String Matching Problem

10Introduction

• Most (all?) modern programming languages have built-in
string utilities.
• Basic tasks (replace, split, find character, …)

• Creating strings (<sstream>, StringBuilder, str.format)

• Regular expression (<regex>, Pattern, re)

• Why write your own string algorithms?
• The built-in features might not support you problem (efficiently).

• Better worst-case time complexity.

• Improve efficiency when processing many strings.

• Process general sequential data.

11Introduction

• Built-in hash functions for strings are often very good. Use
Hash Tables whenever the internal structure of the strings
aren’t required.
• Example: Replace words with integer IDs, process the IDs, lookup in

table when the word is required.

• Example: Check if a string is found in a dictionary.

• Note that the time complexity must often include the string
length.
• Hash function is in O(S), and so is insertion/lookup in hash table.

• Comparison of strings are in O(S), so insertion/lookup in a BST is in
O(SlogN).

12Suffixes and Prefixes

• Suffixes are substrings at the end of the string.
• Example: “banana” (not proper), "anana", "nana", "ana", "na", "a".

• Prefixes are substring at the start of the string.
• Example: “banana” (not proper), "banan", "bana", "ban", "ba", "b".

• Every substring of S is a prefix of some suffix of S.
• Example: "nan" is a prefix of "nana", which is a suffix of "banana".

13Trie (Prefix Tree)

• A Trie is a rooted tree structure used for storing a set of strings
and optimize prefix searches.
• Essentially an 26-ary tree. One node for each prefix. Each node has 26

children, one for each character A-Z.

• Example: “me”, “are”, “my”, “out”, “one”, “mean”.

• Time complexity: O(S) where S is the total string length.

• Memory complexity: O(S), but may include a large constant.

• Can be used to answer many string-related questions. Typically
in O(length of the query string).
• Efficient dictionary representation.

• Which strings from a set has a given prefix? (auto-complete)

• Is any string in a set the prefix of another string in the same set? (phone
numbers)

• String Multimatching using the Aho-Corasick Automaton (no longer part
of the course)

14Trie (Prefix Tree)

15The String Matching Problem

• Problem: Find all occurrences of the pattern P in the text S.

• String libraries (e.g. string::find, String.indexOf) often use
naïve algorithm:
• for i in 1..|S|-|P|:

match := true
for j in 1..|P|:

if S[i + j - 1] != P[j]:
match := false
break

if match return i

• Works well in practice. However, worst-case time complexity O(SP), e.g.
if S = “aaa…” and P = “aaa…ab”. Can we do better?

16Naive String Matching

A B A B A A B A B B

A B A B B

A B A B B

A B A B B

A B A B B

A B A B B

A B A B B

• Observation 1: We don’t need to recheck 1..2 in iteration 3.

• Observation 2: Iteration 2 and 4 aren’t needed at all.

• Solution: Whenever there is a mismatch, shift the pattern to
the longest prefix of the pattern that is a suffix of the partial
match.

17Knuth-Morris-Pratt

A B A B A A B A B B

A B A B B

A B A B B

A B A B B

A B A B B

• Observation 3: The shifts only depend on P, not S => Can be
precomputed for each position in P.

• This forms the base for the Knuth-Morris-Pratt string
matching algorithm (Lab 3.1).

18Knuth-Morris-Pratt

• Precompute the prefix function in O(P).
• prefix[i] = Length of longest prefix of P[1 .. i] that is also a (proper) suffix

of P[1 .. i], i.e. largest j < i such that P[1 .. j] == P[i – j + 1 .. i].

• Trivially, prefix[1] = 0.

• For general prefix[i], note that if P[i] == P[prefix[i – 1] + 1] then prefix[i] =
prefix[i – 1] + 1. Otherwise repeat with two calls to prefix etc. until a
match is found or we have exhausted the pattern.

• Time complexity: O(P)

• Match against the test.
• Use the prefix function whenever a mismatch is found, and when you

match the entire pattern.

• Time complexity: O(S)

i 1 2 3 4 5

P[i] A B A B B

prefix[i] 0 0 1 2 0

19Knuth-Morris-Pratt

A B A B A A B A B B

A B A B B

A B A B B

A B A B B

A B A B B

• Visualization tool:
cmps-people.ok.ubc.ca/ylucet/DS/KnuthMorrisPratt.html

• CP-algorithms:
https://cp-algorithms.com/string/prefix-function.html

i 1 2 3 4 5

P[i] A B A B B

prefix[i] 0 0 1 2 0

https://cmps-people.ok.ubc.ca/ylucet/DS/KnuthMorrisPratt.html
https://cp-algorithms.com/string/prefix-function.html

20Other String Matching Algorithms

 Knuth-Morris-Pratt (lab 3.1)
▪ O(|S|+|P|) time, O(|P|) space.

 Boyer-Moore
▪ O(|S|+|P|) time, O(|P|) space.

▪ More efficient than KMP when the alphabet is large.

 Aho-Corasick Automaton
▪ String Multimatching, i.e. multiple patterns.

▪ O(|S| + |P|) time, O(|P|) space.

▪ Generalizes the prefix function to a trie, using the same ideas as KMP.

 Suffix Array
▪ See next lecture.

▪ O(|P|log(|S|)) time assuming a suffix array of S is available. Not
worthwhile unless you need the suffix array for another purpose.

21Summary

 Exercise 7: Graph III
▪ Hiding Places

▪ Get Shorty

▪ XYZZY

▪ Risk

 Introduction to String Processing

 Trie (Prefix Tree)

 The String Matching Problem

