Algorithmic

Problem Solving
AAPS20 Strings I

Outline

Suffix Trie
Suffix Tree
Suffix Array

The Suffix

suffix

' sAfiks/)
oun

1. a morpheme added at the end of a word to form a dernvative (e.q. -ation, -fy, -ing, -tis).

P e = e
:! VIATHIF ATIS
- ¥ L] L LY e

another term for subscript.

verb
[so fiks/ 4V

1. append (something), especially as a suffix.

All suffixes of CARA:
CARA
ARA
RA
A

Recall that a trie (pronounced "try”) is a tree that takes advantage
of the structure of its keys (usually strings).

Suffix Trie

A suffix trie is a trie built for all suffixes of a set of strings.

.. with strings CAR, CAT and RAT:

All Suffixes: Sorted Unique Suffixes: edge root « 7 sorted
\ et 4

;- EQR ; iTR label *A~C/ R.>T

3. R 3. CAR O O .

4. CAT 4. CAT / \ A A

5. AT 5. R ‘ . O O

6. T 6. RAT
R T T

7. RAT 7. T path

8. AT label is s e e

9. T ‘AR’ N

in Dictionary

(example by Steven Halim)

Suffix Trie

Example applications of a suffix trie given a string S and a trie T:

Check whether S is a substring of T.
Follow the path for S from the root.
If you exhaust S, then Sisin T.

Check whether S is a suffix of T.
Follow the path for S from the root.

If you end at a leaf at the end of S, then
S is a suffix of T.

Count # of occurrences of Sin T.
Follow the path for S from the root.

The result is the sum of the # of suffixes
represented by the leaves under the node
you end up in.

(example by Steven Halim)

root . = rted
edge BN sorte
label E‘A‘ T

Q O ®

00l O

R T
pat h :_‘.'r}_" '.:"e.,' o ¥ .
label is e
‘AR’ Y

in Dictionary

Suffix Trie 7

A suffix trie T = "GATAGACAS™

GATAGACAS
ATAGACAS
TAGACAS
AGACAS
GACAS
ACAS

CAS

AS

S

O ~N o B W N L O

<—terminating
vertex

(example by Steven Halim)

Suffix Tree

A suffix tree T = "GATAGACAS”:
O-si:
A

A 5 ofthis

i [suffix

| $ e rtex
0 GATAGACAS o O e
1 ATAGACAS |
2 TAGACAS T .f-\ A
3 AGACAS g s 5
4 GACAS A (4 L g
5 ACAS C ‘TAGACAY' is an I".G)

A edge label— |

7 AS merge vertices E 9
g | with only 1 child ¢l

o

(example by Steven Halim)

Suffix Tree (Search)

* To find all occurrences of P (of length m) in T (of length n)
— Search for the vertex x in the Suffix Tree which represents P
— All the leaves in the subtree rooted at x are the occurrences

* Time: O(m + occ) where occ is the total no. of occurrences
O~ T = ‘GATAGACAS’
T Qe i = V012345678’

N < P= ‘A’ = Occurrences: 7,5, 3, 1
O \‘?:0 P=1'GA’ - Occurrences: 4,0
P~ p P="'T" = Occurrences: 2
G Q?_ P="Z" -2 Not Found
SN
2
%

(example by Steven Halim)

Suffix Tree (Longest Repeated Substring)

* To find the longest repeated substring in T
— Find the deepest internal node

* Time: O(n)

internal vertex ..., internal vertex
path label length = 1 omt path label length = 2 eg T= 'G_ATAG_ACAs'
— A@‘ Q The longest repeated
S & substring is ‘GA’ wit
$ N b G h
N 6 cx P@ path label length = 2
G A p B
N $ & ©
C o A » The other repeated
A o %*;_‘_. substring is ‘A’, but its
‘So P% 9 path label length = 1

(example by Steven Halim)

Suffix Tree (Longest Common Substring) |

* To find the longest common substring of two
or more strings

— Note: In 1970, Donald Knuth conjectured that a linear time
algorithm for this problem is impossible

— Now, we know that it can be solved in linear time

— E.g. consider two string T1 and T2,

* Build a generalized Suffix Tree for T1 and T2
— i.e. a Suffix Tree that combines both the Suffix Tree of T1 and T2

* Mark internal vertices with leaves representing suffixes of both T1
and T2

* Report the deepest marked vertex

(example by Steven Halim)

Suffix Tree (Longest Common Substring)

* T1='GATAGACAS’ (end vertices labeled with blue)
T2 = ‘CATA# (end vertices labeled with red)

— Their longest common substring is ‘ATA” with length 3

0{‘9 2 These are the internal
3 0 Q FY vertices representing
e}xo AW v suffixes from both strings
FCGY O
$ C i T ¢ T #X The deepest one has
O ~ ¥o O s 8 O ¢ pathlabel ATA
69% 00 3

(example by Steven Halim)

Suffix Tree (Construction)

See course webpage for references to constructing suffix trees.

(note: suffix tries are trivial to construct, while suffix trees are
not)

Suffix Array

The suffix array is a sorted array of all suffixes of a string.
Can do almost all things suffix trees can, and is also:
... more space efficient;

... easier to implement.

Suffix Array

Analogous to suffix sorting.
A suffix array for "GATAGACAS”:

i [suffix i | SAli] | suffix ___

0 GATAGACAS 0o 8 S

1 ATAGACAS 1 7 AS

2 TAGACAS Sot> 2 5 ACAS

3 AGACAS 3 3 AGACAS

4 GACAS 4 1 ATAGACAS
5 ACAS 5 6 CAS

6 CAS 6 4 GACAS

7 AS 7 0 GATAGACAS
8 S 8 2 TAGACAS

Suffix Array (Construction)

Naive O(N? log N) implementation

#include <algorithm>
#include <cstdio>
#include <cstring>

using namespace std;

char T[MAX N]; int SA[MAX N];

bool cmp(int a, int b) { return strcmp(T + a, T + b) < 0; }

inet mainl) {

int n = (int)strlen(gets(T)) ;

for (int 1 = 0; i < n; i++) SA[i] = 1i;
sort(SA, SA + n, cmp); What is the time complexity?
} Can we do better?

Overall O(N2 log N)

(example by Steven Halim)

Suffix Array (Construction)

O(N log>N) implementation

An n-gram is an n-sized consecutive part of the original string.

e.g. {ab, bb, ba} are the 2-grams of abba, and abba is the only
4-gram.

Algorithm: Sort by 2-grams (bigrams), 4-grams, 8-grams, etc.
log,(n) iterations needed.

This sorting can be accomplished by using lexicographic
renaming (i.e. using only bigrams and ranks), and the sorting
comparator thus only needs to compare bigrams (ranks).
Therefore, a comparison can be made in O(1) for all iterations.

Suffix Array (Construction)

Example of lexicographic renaming: Assume we have a sorted

))

list of bigrams {'ab’, ‘ab’, ca’, ‘cd’, cd’, ‘ea’}. We then assign ranks
by going from left to right, starting with rank 0 and incrementing
the rank whenever we encounter a changed bigram:

ab :
ab :
ca :
cd :
cd :
ea :

w MN MNEPERE O

[no change
[increment
[increment
[no change
[increment

to previous]
because different from previous]
because different from previous]
to previous]
because different from previous]

Note that this would’ve been the first iteration in our suffix array
construction algorithm.

(example by Johannes Goller)

Suffix Array (Construction)

But what about 4-grams?

The naive approach would involve comparing them character by
character (i.e. 4 comparisons, and for n-grams, n comparisons).

Instead, we can look up the ranks of the two bigrams contained in
them, and use the rank table we previously generated!

ab : ©

ab : © [no change to previous]

ca : 1 [increment because different from previous]
cd : 2 [increment because different from previous]
cd : 2 [no change to previous]

ea : 3 [increment because different from previous]

(example by Johannes Goller)

Suffix Array (Construction)

O(N log N) implementation

Do the exact same thing, but with radix sort O(N).
Note that the previous approach (i.e. quick sort) is sufficient
for all problems in this course.

Suffix Array (Construction)

O(N) implementation

Ukkonen’s algorithm (1995).
Check it out if you want a challenge!

Suffix Array (String Matching)

Finding all occurrences of P = ‘GA’ in S = ‘GATAGACA’

Finding lower bound Finding upper bound
i Jsal sufx sl | suffx
0 8 S - o 8 S
1 7 AS 1 7 AS
2 5 ACAS 2 5 ACAS
3 3 AGACAS 3 3 AGACAS
- 4 1 $GATAGACAS) 4 1 $QATAGACAS
" (mps5 6 Mcas] 5 6 CAS
‘mmm) 6 4 GACAS 4= =) 6 4 GACAS 4=
7 0 GATAGACAS =7 0 GATAGACAS¢
8 2 TAGACAS L8 2 $3TAGACAS

2 binary searches = O(|P|log|S]|)

(example by Steven Halim)

Suffix Array (Longest Repeated Substring)

Simply find the highest entry in LCParray - O(n)

__—
“m LCPJi Recall:
0 3 0 $ LCP = Longes_t
. . 7 AS Common Prefix
between two
2 5 1 ACAS successive suffices
3 3 1 AGACAS
4 1 1 ATAGACAS
5 6 0 CAS
6 4 0 GACAS
7 0 2 GATAGACAS
8 2 0

TAGACAS

(example by Steven Halim)

Suffix Array (Longest Common Substring)

Ti1="GATAGACASY’ “mmm-ml_
‘ 1 8 0 1 SCATA#
T="GATAGACA$sCATA#
_ _ 2 12 0 2 A#
Fmdghe .hlt%}éePSt 3 7 1 1 ASCATAH#
num. €T in , array 4 5 1 1 ACASCATA#
provided that it comes P . T e
from two suffices with) 0 . , ;TA#
different owner -
_ _ 7 1 3 1 ATAGACASCATA#
Owner: Does this suffix
belong to string 1 or 8 0 0 1 S
string 27? 9 9 2 2 CATA#
O(n) 10 4 0 1 GACASCATA#
11 0 2 1 GATAGACASCATA#
12 11 0 2 TA#
13 2 2 1 TAGACASCATA#

Summary

Suffix Trie
Suffix Tree
Suffix Array

