
Algorithmic

Problem Solving
AAPS20 Strings II

Fredrik Präntare, Fredrik Heintz

Dept of Computer and Information Science

Linköping University

2Outline

 Suffix Trie

 Suffix Tree

 Suffix Array

3The Suffix

All suffixes of CARA:

CARA

ARA

RA

A

4Trie

Recall that a trie (pronounced ”try”) is a tree that takes advantage
of the structure of its keys (usually strings).

5Suffix Trie

… with strings CAR, CAT and RAT:

A suffix trie is a trie built for all suffixes of a set of strings.

(example by Steven Halim)

6Suffix Trie

 Check whether S is a substring of T.
Follow the path for S from the root.
If you exhaust S, then S is in T.

 Check whether S is a suffix of T.
Follow the path for S from the root.
If you end at a leaf at the end of S, then
S is a suffix of T.

 Count # of occurrences of S in T.
Follow the path for S from the root.
The result is the sum of the # of suffixes
represented by the leaves under the node
you end up in.

Example applications of a suffix trie given a string S and a trie T:

(example by Steven Halim)

7Suffix Trie

A suffix trie T = ”GATAGACA$”:

(example by Steven Halim)

8Suffix Tree

A suffix tree T = ”GATAGACA$”:

(example by Steven Halim)

9Suffix Tree (Search)

(example by Steven Halim)

10Suffix Tree (Longest Repeated Substring)

(example by Steven Halim)

11Suffix Tree (Longest Common Substring)

(example by Steven Halim)

12Suffix Tree (Longest Common Substring)

(example by Steven Halim)

13Suffix Tree (Construction)

See course webpage for references to constructing suffix trees.

(note: suffix tries are trivial to construct, while suffix trees are
not)

14Suffix Array

The suffix array is a sorted array of all suffixes of a string.

Can do almost all things suffix trees can, and is also:

 … more space efficient;

 … easier to implement.

15Suffix Array

Analogous to suffix sorting.
A suffix array for ”GATAGACA$”:

16Suffix Array (Construction)

Naïve O(N2 log N) implementation

(example by Steven Halim)

17Suffix Array (Construction)

O(N log2N) implementation

 An n-gram is an n-sized consecutive part of the original string.
e.g. {ab, bb, ba} are the 2-grams of abba, and abba is the only
4-gram.

 Algorithm: Sort by 2-grams (bigrams), 4-grams, 8-grams, etc.
log2(n) iterations needed.

 This sorting can be accomplished by using lexicographic
renaming (i.e. using only bigrams and ranks), and the sorting
comparator thus only needs to compare bigrams (ranks).
Therefore, a comparison can be made in O(1) for all iterations.

18Suffix Array (Construction)

Example of lexicographic renaming: Assume we have a sorted
list of bigrams {’ab’, ’ab’, ’ca’, ’cd’, ’cd’, ’ea’}. We then assign ranks
by going from left to right, starting with rank 0 and incrementing
the rank whenever we encounter a changed bigram:

Note that this would’ve been the first iteration in our suffix array
construction algorithm.

(example by Johannes Goller)

19Suffix Array (Construction)

But what about 4-grams?

The naïve approach would involve comparing them character by
character (i.e. 4 comparisons, and for n-grams, n comparisons).

Instead, we can look up the ranks of the two bigrams contained in
them, and use the rank table we previously generated!

(example by Johannes Goller)

21Suffix Array (Construction)

O(N log N) implementation

 Do the exact same thing, but with radix sort O(N).
Note that the previous approach (i.e. quick sort) is sufficient
for all problems in this course.

22Suffix Array (Construction)

O(N) implementation

 Ukkonen’s algorithm (1995).
Check it out if you want a challenge!

23Suffix Array (String Matching)

2 𝑏𝑖𝑛𝑎𝑟𝑦 𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑠 ⇒ 𝑶(|𝑷|log |𝑺|)
(example by Steven Halim)

Finding all occurrences of P = ‘GA’ in S = ‘GATAGACA’

24Suffix Array (Longest Repeated Substring)

 Simply find the highest entry in LCParray – O(n)

(example by Steven Halim)

25Suffix Array (Longest Common Substring)

 T1=‘GATAGACA$’

 T2=‘CATA#’

 T=‘GATAGACA$CATA#

 Find the highest
number in LCP array
provided that it comes
from two suffices with
different owner
▪ Owner: Does this suffix

belong to string 1 or
string 2?

 O(n)

26Summary

 Suffix Trie

 Suffix Tree

 Suffix Array

