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Abstract
In this document, we motivate and describe the development of artificial intelligence for
game-playing. More specifically, we introduce the reader to real-time strategy games and the
computer game StarCraft II as a testbed for algorithms, game-playing systems, and general
problem-solving techniques.

1 Introduction
Since the inception of artificial intelligence (AI), game-playing has been a rewarding research en-
deavour, and an interesting application for a wide range of AI techniques. Today, commercial
computer games are a huge part of the entertainment industry, and simulations are one of the most
important tools in many fields of research.

With the emergence of cheap and powerful personal computers, simulation-based games have be-
come extremely popular, e.g. StarCraft (see Figure 1), Minecraft and Dota 2 [1,2,3,4]. Such games
give rise to a plethora of interesting AI-related problems, and often induce severe time constraints
that make game-playing more difficult and realistic. To be successful in these environments, players
need to act and reason in real-time, be adaptable, learn to exploit opponents’ mistakes, and predict
the behaviour of adversaries [5, 6]. With this in mind, it is not surprising that many simulation-
based games are ideal testbeds for a wide variety of real-time AI techniques, and that skills required
in game-playing are central to numerous other important problems [7].

Figure 1: A screenshot from StarCraft (Remastered), the predecessor of StarCraft II.
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In recent years, real-time strategy (RTS) games have become increasingly popular as a research
environment for AI. In the next few sections, we discuss why this is the case, and why the RTS
game StarCraft II is a very promising testbed for AI development, and the next natural step in
game-playing research.

1.1 The History of Artificial Intelligence in Strategy Games
Although research in AI for strategy games and related techniques has been conducted for a long
time, it was first in the early 90s that advancements in highly specialized software and hardware
made it possible for computers to start challenging human experts in non-trivial strategy games. A
computer that took advantage of such advancements was Deep Blue—a chess computer developed
by IBM in the late 20th century. [8, 9]

1.1.1 Chess

In 1997, Deep Blue managed to defeat Garry Kasparov, and became the world’s first non-human to
win an official chess match against a world champion (depicted in Figure 2). To achieve this level
of proficiency, Deep Blue based its decision-making on simulating different moves, and evaluating
subsequent game states, while utilizing minimax1 and alpha–beta pruning2. [10, 11]

Figure 2: A photograph from the chess match between Garry Kasparov (left) and Deep Blue.
1Minimax is a decision rule for minimizing the possible loss for the worst case.
2Alpha–beta pruning is an adversarial search algorithm. In chess, it can be used to decrease the number of

states that needs to be evaluated, and thus increase the performance. Technically, it does so by pruning (discarding)
branches (e.g. removing edges in a minimax tree) that cannot improve the final decision.
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Today, modern chess engines (e.g. Stockfish, Houdini, Komodo) outperform human chess play-
ers using techniques that share similarities to those used by Deep Blue, and the seemingly ever-
increasing efficiency of new computer hardware has made it possible for personal computers and
chess engines to consistently outperform chess experts without difficulty. [12,13,14]

With Deep Blue, humankind solved the problem of creating a machine that can outperform and
defeat the best human chess players. Subsequently, research in game-playing increasingly focused
on more complex games, and perhaps most notably Go—a strategy game that has since then played
an important role in game-playing research, and arguably in the history of experimental AI.

1.1.2 Go

Go (which means ”encircling game”) is a turn-based board game in which two players challenge
each other in strategical reasoning and intuition. The game originates from ancient China, and is
often played on a game board of 19x19 positions with playing pieces called stones. The objective of
Go is to surround more territory (positions) than your opponent. A typical 19x19 Go board, with
accompanying playing pieces, is shown in Figure 3. [15]

Figure 3: A typical 19x19 Go board in midst of play, with accompanying playing pieces (stones).

Even though Go has simple rules and a minimalist appearance, it is still far more complex than
chess. Its state-space is huge, and it has, on average, many more possible moves per turn [16]. Also,
there seems to be no obvious and efficient approach to determine whether a certain state (board
configuration) is on the path to victory, making it extremely difficult to create successful Go-playing
agents. With this in mind, it is not surprising that relatively straight-forward techniques, e.g. the
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previous search algorithms that were applied to chess, are too inefficient for Go-playing agents.
Therefore, other approaches need to be considered.

Before 2015, Go-playing systems only managed to reach the skill-level of advanced amateur
players [17]. In 2016, however, AlphaGo—an advanced Go-playing computer developed by Google
DeepMind—became the first non-human to outperform a top-tier player in an official broadcast
match (see Figure 4). AlphaGo managed to do so by utilizing highly sophisticated AI techniques,
combined with an advanced hardware configuration consisting of more than 1000 central processing
units (CPUs), 100 graphical processing units (GPUs), and the new tensor processing unit3 (TPU).
Its main algorithm was based on a variation of Monte Carlo tree search4 (MCTS), guided by an
advanced evaluation function that utilized artificial neural networks5 (ANNs), and a huge database
of previous Go matches. DeepMind subsequently received the inaugural IJCAI Marvin Minsky
medal for their achievements in AI. [18,19,20]

Figure 4: A photograph from the famous Go match between AlphaGo and Lee Sedol (right).

The next year, in 2017, DeepMind published an article that introduced AlphaGo Zero, a new
version of AlphaGo that achieved superhuman proficiency in Go through self-play and reinforcement
learning6 without any domain knowledge, i.e. tabula rasa, except for the game’s rules. In three

3The tensor processing unit is a new type of processing unit that is specialized in tensor operations and machine
learning (e.g. neural networks).

4Monte Carlo tree search is a search algorithm based on continuously expanding and constructing a search tree,
while analysing the seemingly best moves through random playouts (i.e. simulated games).

5An artificial neural network is a computing system (input-output) consisting of artificial neurons that, given a
certain input, changes their internal state through activation, and then produces an output.

6Reinforcement learning algorithms make it possible for systems to learn from their own experience, in contrast
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days of training, AlphaGo Zero reached a skill-level so high that it could win against its former
self, and defeat AlphaGo with a score of 100 matches to 0. A few months later, the same authors
published a new article, in which they presented results from generalizing AlphaGo Zero to other
games: In only 24 hours, AlphaZero, the generalized version of AlphaGo Zero, trained itself to a
top-tier skill-level, and then convincingly defeated state-of-the-art game-playing programs in both
shogi (also known as Japanese chess) and chess using the same principles of self-play. [21,22,23]

1.1.3 Computer Strategy Games

Even though Go is a complex game with a huge number of legal positions, the complexity of many
popular computer-based strategy games overshadow the complexity of Go. Many of them, such as
Age of Empires and StarCraft II (see Figure 5), not only have an immense number of possible game
states, but are also partially observable (due to a ”fog of war” that occludes what your units cannot
see), highly dynamic, and played in real-time7. The complexity of such games make the previously
mentioned approaches impractical and insufficient, making it very difficult to create game-playing
agents that are on a human skill-level, even when utilizing highly specialized hardware and software.

Figure 5: An image of a typical scenario in the strategy game StarCraft II, where the red player is
on the verge of defeat due to not having reacted appropriately to an aggressive strategy (known as
”cheese”) executed by a Protoss (one of the three playable races in the StarCraft series).

With DeepMind’s extensive advancements in game-playing, researchers and AI experts increas-
ingly turned their attention to more complex simulation environments that are more similar to the
to learning from supervision-mechanisms, such as expert knowledge, or labelled data sets.

7A real-time game is a game in which all players can act simultaneously at any given time.
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real world. For example, DeepMind worked together with Blizzard Entertainment8, and released
the RTS game StarCraft II as a simulation environment for AI research in late 2017. To motivate
experimental research in StarCraft II, Oriol Vinyals, a deep learning scientist at DeepMind, wrote:

”StarCraft is an interesting testing environment for current
AI research because it provides a useful bridge to the
messiness of the real-world. The skills required for an agent
to progress through the environment and play StarCraft
well could ultimately transfer to real-world tasks.”

Additionally, a research team at Facebook AI Research published a paper on using machine learning
for handling unit micromanagement in StarCraft. They also developed TorchCraft, a programming
library that is focused on enabling deep learning research for RTS games. [4, 24,25]

Figure 6: A Dota 2 screenshot from the OpenAI Five match that took place in August 2018.

Apart from StarCraft, there has also been work in developing bots for the game Dota 2. In fact,
Dota 2 is the only non-trivial strategical real-time game for which game-playing agents have been
able to defeat human players in an official match. This was accomplished by OpenAI Five—a team
of self-learned Dota 2 bots—when they defeated a non-professional team of well-known humans
in a series of matches in August 2018, depicted in Figure 6 (however, a few days later, they were
crushingly defeated by a professional team). Similarly to AlphaZero, OpenAI Five utilised learning
via self-play. The authors described this self-learning process, which ran on 256 GPUs and 128000
CPU cores, as having a bot play ”180 years worth of games against itself every day”, and explained

8Blizzard Entertainment is the creator of the StarCraft game series.
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that it consists of a long short term memory9 (LSTM) network to take dynamic behaviour into
consideration. [1]

In Dota 2, the player only controls one unit (the hero), but to win, she has to work together
with her team of 4 other players to defeat the enemy team. In StarCraft II, the player instead has
to produce her own units (up to many hundreds per match), and coordinate (micromanage) each
of them individually. With this in mind: In the following section, we give an in-depth description
of StarCraft II, and its potential as a simulation environment for the development of more general
game-playing methods that could ultimately transfer to the real world.

1.2 StarCraft II
StarCraft II is a military RTS game set in a science fiction setting with three asymmetrical playable
races (the Zerg, Protoss, and Terran—depicted in Figure 7) released in 2010. It has a large commu-
nity, with many professional players that compete to win large prize pools in frequent competitions,
such as the World Championship Series, seen in Figure 8, and the Global StarCraft II League [26].

Figure 7: A depiction of the three asymmetrical races available in StarCraft II: the Zerg (left),
Protoss (center) and Terran (right). Each race has its own unique abilities, units, and potential
strategies.

Figure 8: A photograph from the finals of the StarCraft II World Championship Series (2014).
9The long short term memory network is a variation of the recurrent neural network—a type of ANN that can use

its internal units to process sequences of inputs, specifically designed to handle tasks that require taking temporal
behaviour into consideration.
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The goal in StarCraft II is to defeat all opponents by destroying all their buildings (but matches
almost always end in the voluntary resignation of the losing players). To accomplish this goal,
players have to make quick decisions in regards to infrastructure, units, tactics, and resources.
The screenshot in Figure 9 shows some of these processes—resource gathering, production, and
base-building—from a Terran player’s perspective.

Figure 9: A screenshot from a player’s perspective in StarCraft II. The screenshot shows an early-
game Terran base, with several SCVs (workers) that are collecting minerals (the blue crystals) and
vespene gas—the two resource types that are available in the game.

Matches in StarCraft II are mostly played one-against-one on predefined maps. These maps are
to a large degree static, but very different from each other, and their decompositions continuously
force the players to take the terrain and its attributes into consideration. See Figure 10 for examples.

Figure 10: A bird’s eye view of three different maps from StarCraft II. The blue arcs are minerals,
and they indicate potential base locations.
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Figure 11: The 1v1 league distribution over time for StarCraft II players. From top to bottom: The
Grandmaster (red—a tiny line on the top of the graph), Master (teal), Diamond (blue), Platinum,
Gold, Silver, and Bronze leagues, respectively. Courtesy of rankedftw.com.

At the start of a match, every player is given a main base, and 12 workers (Zerg players are
also given an Overlord unit—a flying unit that provides supply and vision). Using these units,
the players research technology (upgrades), construct new buildings, produce new units, wage
war against enemies (e.g. attack, defend), and expand their territory. To maximise efficiency,
professional players make over 300 actions per minute (APM). A single action in StarCraft II may
drastically change the outcome of a match, and to master the game, players have to react as fast
as possible to the actions and strategies of their adversaries. Even top-tier amateur players, such
as non-professional Grandmaster10 (see Figure 11 for a visualisation of the 1v1 league distributions
over time for StarCraft II players) players, need to have almost perfect high-precision control.
Important decisions, ideas, and reactions, e.g. those that can change the outcome of a match, are
often discussed and analysed in terms of certain recurring concepts, including:

• Build Order : A pre-defined production progression (analogous to openings in e.g. chess).

• Micromanagement and Macromanagement: The management of units and production
(technology included), respectively.

• Strategy: A grand plan of action that often dictates how to react to different hypothetical
build orders of the opponent.

Note that these concepts are intertwined. For example, build orders and macromanagement are
almost always affected by strategy, and they, in turn, alter the possibilities for micromanagement.

Players also have to consider meta-strategies, and top-tier players often base their strategies on
explicit assumptions of their enemies’ preconditions and preferences (e.g. preferred build orders) to
hard-counter them. This is an important consideration in StarCraft II due to the players’ incomplete
information of the game state. By making correct assumptions of opponents, players can optimise
their play through ”short-circuiting”, e.g. by saving time and resources after skipping tasks that
they would normally have to attend to. The dynamics that describe this type of behaviour are

10Players in StarCraft II are ranked based on their MMR, a rating that indicates the relative skill of each player.
Players are placed in one out of 7 different leagues based on this rating: Bronze, Silver, Gold, Platinum, Diamond,
Master and Grandmaster. The Grandmaster league contains the top 1000 best players in the world.
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known as the meta-game, which refers to the preparations and thought-processes of players that
they do before matches to gain potential advantages. This is an important concept for StarCraft II
players, since the expected win rate of a strategy often depends, to a large degree, on the player
that they are playing against. For example, professional players thoroughly study their opponents
before matches, analyse the latest strategy-trends, and take advantage of psychological warfare to
exploit opponents’ mental states and strategies: If a player loses to a strategy that they haven’t
played against before, he or she may, in a succeeding match, play overly safe to prevent losing from
the same strategy again, consequently becoming weaker against other strategies. A famous example
of a player that often takes advantage of such tactics is the arguably cunning Kim ”sOs” Yoo-jin
(see Figure 12)—one of the highest ranked players in StarCraft II’s relatively short history—who
is well-known for continuously inventing new strategies and build orders to surprise his enemies
through a deliberate meta-game style of play.

Figure 12: The professional StarCraft II player Kim ”sOs” Yoo-jin before one of his matches in
Proleague (2015). He is well-known in the game’s community for his involvement in continuously
altering the meta-game and persistently inventing new strong strategies.

2 Artificial Intelligence and StarCraft II
With the previous sections in mind, it is not surprising that StarCraft II is a very complex game
with an ever-changing meta-game. There exists some tools that can help the players and bots make
decisions and preparations to decrease their workload, e.g. databases of recorded games (replays),
and also in-game assistance, including, but not limited to:

• Pathfinding: When a unit is ordered to move to a position, it will find and follow the shortest
path to it without the player’s interaction.

• Resource Gathering: When a worker has been ordered to gather resources, it will continue
to do so automatically until ordered otherwise.
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• Attack Move: If a unit is ordered to ”attack move” a position, it will try to move there, and
attack all units that it encounters on its path.

With this in mind, and even though it is relatively simple to create a basic game-playing bot
that can defeat amateurs, researchers and AI experts have thus far failed to develop and present
a game-playing agent with a skill level that is on par with top-tier human players. This is partly
due to StarCraft II’s immense state-space (see Figure 13), and the multi-agent nature of its game
mechanics—coordinating multiple units perfectly can be difficult, especially in complex environ-
ments when taking long term strategies and learning (adaptation) into consideration. However,
these are also some of the main reasons to why StarCraft II is a promising testbed for AI al-
gorithms and game-playing techniques, since the game inherently offers a dynamic multifaceted
simulation with a wide range of interesting problems to solve, in a domain that is both intuitive
and, in many aspects, more real-world-like than many other games.

Game Branching Factor Average Depth Possible States

Chess 35 80 1046

Go [30, 300] [150, 200] 10170

StarCraft [1050, 10200] 36000 101685

Figure 13: Approximate branching factors, average depths, and sizes of state spaces for chess, Go,
and StarCraft: Brood War [5, 16,24].

Instead of attempting to use a single holistic technique (e.g. those that were successful in chess)
for StarCraft II, many researchers and AI experts instead focus on combining different techniques
to create more efficient bots. To do so, one may divide game-playing into more manageable problem
areas that can be solved independently. For example, in 2003, Buro identified six such fundamental
AI research areas in RTS games:

• Resource Management.

• Decision-Making under Uncertainty.

• Spatial and Temporal Reasoning.

• Collaboration.

• Opponent Modelling and Learning.

• Adversarial Real-Time Planning.

These six areas are intertwined, and have been subject to substantial effort since then. There are
many possible approaches to all of them, each with their own strengths and weaknesses. We now
describe how these problem areas relate to StarCraft II in the following subsections, before we
conclude with a summary. [5, 7, 27,28]
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2.1 Resource Management
Units and buildings cost resources to produce. The two available resource types in StarCraft II are
minerals and gas. Without efficient management of these, a player may fail to keep production on
par with adversaries (see Figure 14), and ultimately lose the game. Solving this problem typically
involves estimating future availability of resources, so that the player can plan ahead to build new
mining bases before old ones are depleted, and optimising resource gathering through planning
(strategies) and low-level control (micromanagement).

Figure 14: Resource management is crucial to sustain a competitive level of production. This
screenshot shows a Protoss player’s mining base, and several stargates (the air-production facility
of the Protoss) that are producing carriers—one of the most expensive units in the game.

2.2 Decision-Making under Uncertainty
StarCraft II is a partially observable game, and players have to deal with uncertainty due to the
game’s fog of war (depicted in Figure 15). In other words, the players have to act on imperfect
observations with unknown outcomes. They may, for example, have to estimate threat levels, and
navigate unexplored environments. To handle these types of problems, a bot may have to take
advantage of probabilistic models, such as Markov decision processes (MDPs) to model sequential
problems, or Bayesian networks to describe the probabilistic relationships of variables.

Figure 15: The fog of war (the darker area to the right in this image) conceals areas that are not
in range of friendly units, thus forcing players to make decisions under uncertainty.
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2.3 Spatial and Temporal Reasoning
A strategy in StarCraft II is typically only viable in certain time frames and environments, and
geospatial information, such as cliffs and destructible objects, can often be taken advantage of to
make better decisions (see Figure 16). Spatial and temporal reasoning involves applying logic to
solve spatio-temporal problems that relate to such data—for example by utilizing path planning to
steer units, or generating plans for optimal production and the development of new upgrades.

Figure 16: Movement plans can make it possible for players to make better decisions, thus improving
their game-playing skills. This image shows three different types of shortest paths between two base
locations: By air (teal), by ground (yellow), and by cliff-walking (purple). The paths were generated
by the SC2 Map Analyzer.

2.4 Collaboration
To succeed in playing StarCraft II, the player has to command many units simultaneously. From
another perspective: The player has to coordinate and organize multiple units so that the units can
work together to solve tasks, reach goals, and improve their problem-solving skills. This makes it
possible for a single unit to transcend its own capabilities via cooperation with other friendly units.
There are many organizational paradigms that can be utilized for this purpose (e.g. coalitions and
hierarchies), and there are algorithms for task allocation that can be used to coordinate units.
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2.5 Opponent Modelling and Learning
Players in StarCraft II can potentially improve their game-playing skills by learning how to exploit
the mistakes of their opponents. Perhaps more importantly, behaviours can be optimised by learning
from one’s own mistakes, and make players more robust to unexpected strategies and unconventional
tactics, e.g. by extrapolating experience. For example, online reinforcement learning can be used to
continuously improve unit-control, and supervised learning can be used to generate player models,
e.g. by analysing replay data, to predict strategies and behaviours of adversaries.

2.6 Adversarial Real-Time Planning
In chess and Go, search techniques (e.g. Monte Carlo tree search) have been used to solve problems
that are inherently adversarial. In StarCraft II, such search techniques are typically too inefficient
for direct use. By utilizing high-level abstractions that take opponents’ potential strategies into
consideration, adversarial real-time planning can be used to generate strategies, while playing, that
are less vulnerable to hostile interdiction.

3 Conclusion
In this document, we introduced the reader to strategy games and game-playing systems. More
specifically, we introduced the reader to RTS games and StarCraft II, and their utility as testbeds
for benchmarking and developing algorithms. We deliberately emphasized StarCraft II for this
purpose, since it is arguably one of the most influential games in the AI community right now. It
is also very multifaceted (depicted in Figure 17), while still being more similar to the real world
compared to other well-studied games (e.g. poker, chess and Go). It is now open to the public, and
also cost-free, making it is easier than ever to develop new game-playing bots.

Figure 17: StarCraft II is a multifaceted game with a wide range of aspects that players have to
consider, and it offers a dynamic real-time environment that poses many algorithmic challenges.
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