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Tactics without strategy is the noise before defeat. 

— Sun Tzu, ~5th Century BCE 
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When a recursive decomposition follows directly from a mathematical definition, as 
it does in the case of the fact and fib functions in Chapter 7, applying recursion is 
not particularly hard.  In most cases, you can translate the mathematical definition 
directly into a recursive implementation by plugging the appropriate expressions 
into the standard recursive paradigm.  The situation changes, however, as you begin 
to solve more complex problems. 
 

This chapter introduces several programming problems that seem—at least on 
the surface—much more difficult than those in Chapter 7.  In fact, if you try to solve 
these problems without using recursion, relying instead on more familiar iterative 
techniques, you will find them quite difficult to solve.  By contrast, each of the 
problems has a recursive solution that is surprisingly short.  If you exploit the power 
of recursion, a few lines of code are sufficient for each task. 
 

The brevity of these solutions, however, endows them with a deceptive aura of 
simplicity.  The hard part of solving these problems has nothing to do with the 
length of the code.  What makes these programs difficult is finding the recursive 
decomposition in the first place.  Doing so occasionally requires some cleverness, 
but what you need even more is confidence.  You have to accept the recursive leap 
of faith. 
 

 8.1 The Towers of Hanoi 

The first example in this chapter is a simple puzzle that has come to be known as 
the Towers of Hanoi.  Invented by French mathematician Édouard Lucas in the 
1880s, the Towers of Hanoi puzzle quickly became popular in Europe.  Its success 
was due in part to the legend that grew up around the puzzle, which was described 
as follows in La Nature by the French mathematician Henri de Parville (as 
translated by the mathematical historian W. W. R. Ball): 
 

In the great temple at Benares beneath the dome which marks the center of the 
world, rests a brass plate in which are fixed three diamond needles, each a 
cubit high and as thick as the body of a bee.  On one of these needles, at the 
creation, God placed sixty-four disks of pure gold, the largest disk resting on 
the brass plate and the others getting smaller and smaller up to the top one.  
This is the Tower of Brahma.  Day and night unceasingly, the priests transfer 
the disks from one diamond needle to another according to the fixed and 
immutable laws of Brahma, which require that the priest on duty must not 
move more than one disk at a time and that he must place this disk on a needle 
so that there is no smaller disk below it.  When all the sixty-four disks shall 
have been thus transferred from the needle on which at the creation God 
placed them to one of the other needles, tower, temple and Brahmins alike 
will crumble into dust, and with a thunderclap the world will vanish. 

 

Over the years, the setting has shifted from India to Vietnam, but the puzzle and its 
legend remain the same. 
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As far as I know, the Towers of Hanoi puzzle has no practical use except one: 

teaching recursion to computer science students.  In that domain, it has tremendous 

value because the solution involves nothing besides recursion.  In contrast to most 

recursive algorithms that arise in response to real-world problems, the Towers of 

Hanoi problem has no extraneous complications that might interfere with your 

understanding and keep you from seeing how the recursive solution works.  

Because it works so well as an example, the Towers of Hanoi is included in most 

textbooks that treat recursion and has become—much like the “hello, world” 

program in Chapter 1—part of the cultural heritage that computer scientists share. 
 

In commercial versions of the puzzle, the 64 golden disks of legend are replaced 

with eight wooden or plastic ones, which makes the puzzle considerably easier to 

solve (not to mention cheaper).  The initial state of the puzzle looks like this: 
 

 
 

At the beginning, all eight disks are on spire A.  Your goal is to move these eight 

disks from spire A to spire B, but you must adhere to the following rules: 
 

• You can only move one disk at a time. 

• You are not allowed to move a larger disk on top of a smaller disk. 

 

Framing the problem 

In order to apply recursion to the Towers of Hanoi problem, you must first frame 

the problem in more general terms.  Although the ultimate goal is moving eight 

disks from A to B, the recursive decomposition of the problem will involve moving 

smaller subtowers from spire to spire in various configurations.  In the more general 

case, the problem you need to solve is moving a tower of a given height from one 

spire to another, using the third spire as a temporary repository.  To ensure that all 

subproblems fit the original form, your recursive procedure must therefore take the 

following arguments: 
 

1. The number of disks to move 

2. The name of the spire where the disks start out 

3. The name of the spire where the disks should finish 

4. The name of the spire used for temporary storage 
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The number of disks to move is clearly an integer, and the fact that the spires are 

labeled with the letters A, B, and C suggests the use of type char to indicate which 

spire is involved.  Knowing the types allows you to write a prototype for the 

operation that moves a tower, as follows: 
 

void moveTower(int n, char start, char finish, char tmp); 

 

To move the eight disks in the example, the initial call is 
 

moveTower(8, 'A', 'B', 'C'); 

 

This function call corresponds to the English command “Move a tower of size 8 

from spire A to spire B using spire C as a temporary.”  As the recursive 

decomposition proceeds, moveTower will be called with different arguments that 

move smaller towers in various configurations. 

 

Finding a recursive strategy 

Now that you have a more general definition of the problem, you can return to the 

problem of finding a strategy for moving a large tower.  To apply recursion, you 

must first make sure that the problem meets the following conditions: 
 

1. There must be a simple case.  In this problem, the simple case occurs when n is 

equal to 1, which means that there is only a single disk to move.  As long as 

you don’t violate the rule of placing a larger disk on top of a smaller one, you 

can move a single disk as a single operation. 

2. There must be a recursive decomposition.  In order to implement a recursive 

solution, it must be possible to break the problem down into simpler problems 

in the same form as the original.  This part of the problem is harder and will 

require closer examination. 
 

To see how solving a simpler subproblem helps solve a larger problem, it helps 

to go back and consider the original example with eight disks. 
 

 
 

The goal here is to move eight disks from spire A to spire B.  You need to ask 

yourself how it would help if you could solve the same problem for a smaller 
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number of disks.  In particular, you should think about how being able to move a 

stack of seven disks would help you to solve the eight-disk case. 
 

If you think about the problem for a few moments, it becomes clear that you can 

solve the problem by dividing it into these three steps: 
 

1. Move the entire stack consisting of the top seven disks from spire A to spire C. 

2. Move the bottom disk from spire A to spire B. 

3. Move the stack of seven disks from spire C to spire B. 
 

Executing the first step takes you to the following position: 
 

 
 

Once you have gotten rid of the seven disks on top of the largest disk, the second 

step is simply to move that disk from spire A to spire B, which results in the 

following configuration: 
 

 
 

All that remains is to move the tower of seven disks back from spire C to spire B, 

which is again a smaller problem of the same form.  This operation is the third step 

in the recursive strategy, and leaves the puzzle in the desired final configuration: 
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That’s it!  You’re finished.  You’ve reduced the problem of moving a tower of 

size eight to one of moving a tower of size seven.  More importantly, this recursive 

strategy generalizes to towers of size N, as follows: 
 

1. Move the top N–1 disks from the start spire to the temporary spire. 

2. Move a single disk from the start spire to the finish spire. 

3. Move the stack of N–1 disks from the temporary spire back to the finish spire. 
 

At this point, it is hard to avoid saying to yourself, “Okay, I can reduce the 

problem to moving a tower of size N–1, but how do I accomplish that?”  The 

answer, of course, is that you move a tower of size N–1 in precisely the same way.  

You break that problem down into one that requires moving a tower of size N–2, 

which further breaks down into moving a tower of size N–3, and so forth, until there 

is just one disk to move.  Psychologically, however, the important thing is to avoid 

asking that question altogether.  The recursive leap of faith should be sufficient.  

You’ve reduced the scale of the problem without changing its form.  That’s the hard 

work.  All the rest is bookkeeping, and it’s best to let the computer take care of that. 
 

Once you have identified the simple cases and the recursive decomposition, all 

you need to do is plug them into the standard recursive paradigm, which results in 

the following pseudocode procedure: 
 

void moveTower(int n, char start, char finish, char tmp) { 

   if (n == 1) { 

      Move a single disk from start to finish. 

   } else { 

      Move a tower of size n - 1 from start to tmp. 

      Move a single disk from start to finish. 

      Move a tower of size n - 1 from tmp to finish. 

   } 

} 

 

Validating the strategy 

Although the pseudocode strategy is in fact correct, the derivation up to this point 

has been a little careless.  Whenever you use recursion to decompose a problem, 

you must make sure that the new problems are identical in form to the original.  The 

task of moving N–1 disks from one spire to another certainly sounds like an instance 

of the same problem and fits the moveTower prototype.  Even so, there is a subtle 

but important difference.  In the original problem, the destination and temporary 

spires are empty.  When you move a tower of size N–1 to the temporary spire as 

part of the recursive strategy, you’ve left a disk behind on the starting spire.  Does 

the presence of that disk change the nature of the problem and thus invalidate the 

recursive solution? 
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To answer this question, you need to think about the subproblem in light of the 

rules of the game.  If the recursive decomposition doesn’t end up violating the rules, 

everything should be okay.  The first rule—that only one disk can be moved at a 

time—is not an issue.  If there is more than a single disk, the recursive 

decomposition breaks the problem down to generate a simpler case.  The steps in 

the pseudocode that actually transfer disks move only one disk at a time.  The 

second rule—that you are not allowed to place a larger disk on top of a smaller 

one—is the critical one.  You need to convince yourself that you will not violate this 

rule in the recursive decomposition. 
 

The important observation to make is that, as you move a subtower from one 

spire to the other, the disk you leave behind on the original spire—and indeed any 

disk left behind at any previous stage in the operation—must be larger than 

anything in the current subtower.  Thus, as you move those disks among the spires, 

the only disks below them will be larger in size, which is consistent with the rules. 

 

Coding the solution 

To complete the Towers of Hanoi solution, the only remaining step is to substitute 

function calls for the remaining pseudocode.  The task of moving a complete tower 

requires a recursive call to the moveTower function.  The only other operation is 

moving a single disk from one spire to another.  For the purposes of writing a test 

program that displays the steps in the solution, all you need is a function that 

records its operation on the console.  For example, you can implement the function 

moveSingleDisk as follows: 
 

void moveSingleDisk(char start, char finish) { 

   cout << start << " -> " << finish << endl; 

} 

 

The moveTower code itself looks like this: 
 

void moveTower(int n, char start, char finish, char tmp) { 

   if (n == 1) { 

      moveSingleDisk(start, finish); 

   } else { 

      moveTower(n - 1, start, tmp, finish); 

      moveSingleDisk(start, finish); 

      moveTower(n - 1, tmp, finish, start); 

   } 

} 

 

The complete implementation appears in Figure 8-1. 
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Hanoi.cpp 
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Tracing the recursive process 

The only problem with this implementation of moveTower is that it seems like 

magic.  If you’re like most students learning about recursion for the first time, the 

solution seems so short that you feel sure there must be something missing.  Where 

is the strategy?  How can the computer know which disk to move first and where it 

should go? 
 

The answer is that the recursive process—breaking a problem down into smaller 

subproblems of the same form and then providing solutions for the simple cases—is 

all you need to solve the problem.  If you trust the recursive leap of faith, you’re 

done.  You can skip this section of the book and go on to the next.  If, on the other 

hand, you’re still suspicious, it may be necessary for you to go through the steps in 

the complete process and watch what happens. 
 

To make the problem more manageable, consider what happens if there are only 

three disks in the original tower.  The main program call is therefore 
 

moveTower(3, 'A', 'B', 'C'); 

 

To trace how this call computes the steps necessary to transfer a tower of size 3, all 

you need to do is keep track of the operation of the program, using precisely the 

same strategy as in the factorial example from Chapter 7.  For each new function 

call, you introduce a stack frame that shows the values of the parameters for that 

call.  The initial call to moveTower, for example, creates the following stack frame: 
 

 
 

As the arrow in the code indicates, the function has just been called, so execution 

begins with the first statement in the function body.  The current value of n is not 

equal to 1, so the program skips ahead to the else clause and executes the 

statement 
 

moveTower(n-1, start, tmp, finish); 

 

As with any function call, the first step is to evaluate the arguments.  To do so, 

you need to determine the values of the variables n, start, tmp, and finish.  



358     Recursive Strategies 

Whenever you need to find the value of a variable, you use the value as it is defined 

in the current stack frame.  Thus, the moveTower call is equivalent to 
 

moveTower(2, 'A', 'C', 'B'); 

 

This operation, however, indicates another function call, which means that the 

current operation is suspended until the new function call is complete.  To trace the 

operation of the new function call, you need to generate a new stack frame and 

repeat the process.  As always, the parameters in the new stack frame are copied 

from the calling arguments in the order in which they appear.  Thus, the new stack 

frame looks like this: 
 

 
 

As the diagram illustrates, the new stack frame has its own set of variables, which 

temporarily supersede the variables in frames that are further down on the stack.  

Thus, as long as the program is executing in this stack frame, n will have the value 

2, start will be 'A', finish will be 'C', and tmp will be 'B'.  The old values in 

the previous frame will not reappear until the subtask represented by this call to 

moveTower is complete. 
 

The evaluation of the recursive call to moveTower proceeds exactly like the 

original one.  Once again, n is not 1, which requires another call of the form 
 

moveTower(n-1, start, tmp, finish); 

 

Because this call comes from a different stack frame, however, the value of the 

individual variables are different from those in the original call.  If you evaluate the 

arguments in the context of the current stack frame, you discover that this function 

call is equivalent to 
 

moveTower(1, 'A', 'B', 'C'); 

 

The effect of making this call is to introduce yet another stack frame for the 

moveTower function, as follows: 
 



 8.1 The Towers of Hanoi      359 

 
 

This call to moveTower, however, does represent the simple case.  Since n is 1, 

the program calls the moveSingleDisk function to move a disk from A to B, 

leaving the puzzle in the following configuration: 
 

 
 

At this point, the most recent call to moveTower is complete and the function 

returns.  In the process, its stack frame is discarded, which brings the execution 

back to the previous stack frame, having just completed the first statement in the 

else clause: 
 

 
 

The call to moveSingleDisk again represents a simple operation, which leaves 

the puzzle in the following state: 
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With the moveSingleDisk operation completed, the only remaining step 

required to finish the current call to moveTower is the last statement in the function: 
 

moveTower(n-1, tmp, finish, start); 

 

Evaluating these arguments in the context of the current frame reveals that this call 

is equivalent to 
 

moveTower(1, 'B', 'C', 'A'); 

 

Once again, this call requires the creation of a new stack frame.  By this point in the 

process, however, you should be able to see that the effect of this call is simply to 

move a tower of size 1 from B to C, using A as a temporary repository.  Internally, 

the function determines that n is 1 and then calls moveSingleDisk to reach the 

following configuration: 
 

 
 

This operation again completes a call to moveTower, allowing it to return to its 

caller having completed the subtask of moving a tower of size 2 from A to C.  

Discarding the stack frame from the just-completed subtask reveals the stack frame 

for the original call to moveTower, which is now in the following state: 
 

 
 

The next step is to call moveSingleDisk to move the largest disk from A to B, 

which results in the following position: 
 

 
 

The only operation that remains is to call 
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moveTower(n-1, tmp, finish, start); 

 

with the arguments from the current stack frame, which are 
 

moveTower(2, 'C', 'B', 'A'); 

 

If you’re still suspicious of the recursive process, you can draw the stack frame 

created by this function call and continue tracing the process to its ultimate 

conclusion.  At some point, however, it is essential that you trust the recursive 

process enough to see that function call as a single operation having the effect of the 

following command in English: 
 

Move a tower of size 2 from C to B, using A as a temporary repository. 

 

If you think about the process in this holistic form, you can immediately see that 

completion of this step will move the tower of two disks back from C to B, leaving 

the desired final configuration: 
 

 

 

 8.2 The subset-sum problem 
Although the Towers of Hanoi problem offers a wonderful illustration of the power 

of recursion, its effectiveness as an example is compromised by its lack of any 

practical application.  Many people are drawn to programming because it enables 

them to solve practical problems.  If the only examples of recursion are like the 

Towers of Hanoi, it’s easy to conclude that recursion is useful only for solving 

abstract puzzles.  Nothing could be further from the truth.  Recursive strategies give 

rise to extremely efficient solutions to practical problems—most notably the 

problem of sorting introduced in Chapter 10—that are hard to solve in other ways. 
 

The problem covered in this section is called the subset-sum problem, which can 

be defined as follows: 
 

Given a set of integers and a target value, determine whether it is 

possible to find a subset of those integers whose sum is equal to 

the specified target. 
 

For example, given the set { –2, 1, 3, 8 } and the target value 7, the answer to the 

subset-sum question is yes, because the subset { –2, 1, 8 } adds up to 7.  If the target 

value had been 5, however, the answer would be no, because there is no way to 

choose a subset of the integers in { –2, 1, 3, 8 } that adds up to 5. 
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It is easy to translate the idea of the subset-sum problem into C++.  The concrete 

goal is to write a predicate function 
 

bool subsetSumExists(Set<int> & set, int target); 

 

that takes the required information and returns true if it is possible to generate the 

value target by adding up some combination of elements chosen from set. 
 

Even though it might at first seem that the subset-sum problem is just as esoteric 

as the Towers of Hanoi, it has significant importance in both the theory and practice 

of computer science.  As you will discover in Chapter 10, the subset-sum problem is 

an instance of an important class of computational problems that are hard to solve 

efficiently.  That very fact, however, makes problems like subset-sum useful in 

applications where the goal is to keep information secret.  The first implementation 

of public-key cryptography, for example, used a variant of the subset-sum problem 

as its mathematical foundation.  By basing their operation on problems that are 

provably hard, modern encryption strategies are more difficult to break. 

 

The search for a recursive solution 

The subset-sum problem is difficult to solve using a traditional iterative approach.  

To make any headway, you need to think recursively.  As always, you therefore 

need to identify a simple case and a recursive decomposition.  In applications that 

work with sets, the simple case is almost always when the set is empty.  If the set is 

empty, there is no way that you can add elements to produce a target value unless 

the target is zero.  That discovery suggests that the code for subsetSumExists 

will start off like this: 
 

bool subsetSumExists(Set<int> & set, int target) { 

   if (set.isEmpty()) { 

      return target == 0; 

   } else { 

      Find a recursive decomposition that simplifies the problem. 

   } 

} 

 

In this problem, the hard part is finding that recursive decomposition. 
 

When you are looking for a recursive decomposition, you need to be on the 

lookout for some value in the inputs—which are conveyed as arguments in the C++ 

formulation of the problem—that you can make smaller.  In this case, what you 

need to do is make the set smaller, because what you’re trying to do is move toward 

the simple case that occurs when the set is empty.  If you take an element out of the 

set, what’s left over is smaller by one element.  The operations exported by the Set 
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class make it easy to choose an element from a set and then determine what’s left 

over.  All you need is the following code: 
 

int element = set.first(); 

Set<int> rest = set - element; 

 

The first method returns the element of the set that appears first in its iteration 

order, and the expression involving the overloaded - operator produces the set that 

contains every element in set except the value of element.  The fact that element 

is first in iteration order is not really important here.  All you really need is some 

way to choose some element and then to create a smaller set by removing the 

element you selected from the original set. 

 

The inclusion/exclusion pattern 

Making the set smaller, however, is not enough to solve this problem.  The code to 

divide a set into an element and the rest of the set will come up again in many 

recursive applications and is part of a general programming pattern for working 

with the Set class.  Structurally, you know that subsetSumExists must call itself 

recursively on the smaller set now stored in the variable rest.  What you haven’t 

yet determined is how the solution to these recursive subproblems will help to solve 

the original. 
 

The key insight you need to solve this problem is that there are two ways that 

you might be able to produce the desired target sum after you have identified a 

particular element.  One possibility is that the subset you’re looking for includes 

that element.  For that to happen, it must be possible to take the rest of the set and 

produce the value target - element.  The other possibility is that the subset 

you’re looking for excludes that element, in which case it must be possible to 

generate the value target using only the leftover set of elements.  This insight is 

enough to complete the implementation of subsetSumExists, as follows: 
 

bool subsetSumExists(Set<int> & set, int target) { 

   if (set.isEmpty()) { 

      return target == 0; 

   } else { 

      int element = set.first(); 

      Set<int> rest = set - element; 

      return subsetSumExists(rest, target) 

          || subsetSumExists(rest, target - element); 

   } 

} 

 

Because the recursive strategy subdivides the general case into one branch that 

includes a particular element and another that excludes it, this strategy is sometimes 
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called the inclusion/exclusion pattern.  As you work through the exercises in this 

chapter as well as several subsequent ones, you will find that this pattern, with slight 

variations, comes up in many different applications.  Although the pattern is easiest 

to recognize when you are working with sets, it also comes up in applications 

involving vectors and strings, and you should be on the lookout for it in those 

situations as well. 

 

 8.3 Generating permutations 
Many word games and puzzles require the ability to rearrange a set of letters to 

form a word.  Thus, if you wanted to write a Scrabble program, it would be useful to 

have a facility for generating all possible arrangements of a particular set of tiles.  In 

word games, such arrangements are generally called anagrams.  In mathematics, 

they are known as permutations. 
 

Let’s suppose you want to write a function 
 

Set<string> generatePermutations(string str); 

 

that returns a set containing all permutations of the string.  For example, if you call 
 

generatePermutations("ABC") 

 

the function should return a set containing the following elements: 
 

{ "ABC", "ACB", "BAC", "BCA", "CAB", "CBA" } 
 

How might you go about implementing the generatePermutations function?  

If you are limited to iterative control structures, finding a general solution that 

works for strings of any length is difficult.  Thinking about the problem recursively, 

on the other hand, leads to a relatively straightforward solution. 
 

As is usually the case with recursive programs, the hard part of the solution 

process is figuring out how to divide the original problem into simpler instances of 

the same problem.  In this case, to generate all permutations of a string, you need to 

discover how being able to generate all permutations of a shorter string might 

contribute to the solution. 
 

Before you look at my solution on the next page, stop and think about this 

problem for a few minutes.  When you are first learning about recursion, it is easy to 

look at a recursive solution and believe that you could have generated it on your 

own.  Without trying it first, however, it is hard to know whether you would have 

come up with the necessary recursive insight. 
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Finding the recursive insight 

To give yourself more of a feel for the problem, it helps to consider a concrete case.  

Suppose you want to generate all permutations of a five-character string, such as 

"ABCDE".  In your solution, you can apply the recursive leap of faith to generate all 

permutations of any shorter string.  Just assume that the recursive calls work and be 

done with it.  Once again, the critical question is how being able to permute shorter 

strings helps you solve the problem of permuting the original five-character string. 
 

If you focus on breaking the five-character permutation problem down into some 

number of instances of the permutation problem involving four-character strings, 

you will soon discover that the permutations of the five-character string "ABCDE" 

consist of the following strings: 
 

• The character 'A' followed by every possible permutation of "BCDE" 

• The character 'B' followed by every possible permutation of "ACDE" 

• The character 'C' followed by every possible permutation of "ABDE" 

• The character 'D' followed by every possible permutation of "ABCE" 

• The character 'E' followed by every possible permutation of "ABCD" 
 

More generally, you can construct the set of all permutations of a string of length n 

by selecting each character in turn and then, for each of those n possible first 

characters, concatenating the selected character on to the front of every possible 

permutation of the remaining n – 1 characters.  The problem of generating all 

permutations of n – 1 characters is a smaller instance of the same problem and can 

therefore be solved recursively. 
 

As always, you also need to define a simple case.  One possibility is to check to 

see whether the string contains a single character.  Computing all the permutations 

of a single-character string is easy, because there is only one possible ordering.  In 

string processing, however, the best choice for the simple case is rarely a 

one-character string, because there is in fact an even simpler alternative: the empty 

string containing no characters at all.  Just as there is only one ordering for a 

single-character string, there is only one way to write the empty string.  If you call 

generatePermutations(""), you should get back a set containing a single 

element, which is the empty string. 
 

Once you have both the simple case and the recursive insight, writing the code 

for generatePermutations becomes reasonably straightforward.  The code for 

generatePermutations appears in Figure 8-2, along with a simple test program 

that asks the user for a string and then prints out every possible permutation of the 

characters in that string. 
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Permutations.cpp 
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If you run the Permutations program and enter the string "ABC", you see the 

following output: 
 

 
 

The use of sets in this application ensures that the program generates permutations 

in alphabetical order and that each distinct ordering of the characters appears 

exactly once, even if there are repeated letters in the input string.  For example, if 

you enter the string AABB in response to the prompt, the program produces only six 

permutations, as follows: 
 

 
 

The recursive process adds a new element to this set the full total of 24 (4!) times, 

but the implementation of the Set class ensures that no duplicate values appear. 
 

You can use the generatePermutations function to generate all anagrams of 

a word by changing the main program from Figure 8-2 so that it checks each string 

against the English lexicon.  If you enter the string "aeinrst", you get the 

following output—a list that serious Scrabble players will recognize instantly: 
 

 



 

 

 

 

 

 

 

Chapter 9 

Backtracking Algorithms 
 

 

 

 

 

 

 

 

Truth is not discovered by proofs but by exploration.  It is 

always experimental. 

— Simone Weil, The New York Notebook, 1942 
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For many real-world problems, the solution process consists of working your way 

through a sequence of decision points in which each choice leads you further along 

some path.  If you make the correct set of choices, you end up at the solution.  On 

the other hand, if you reach a dead end or otherwise discover that you have made an 

incorrect choice somewhere along the way, you have to backtrack to a previous 

decision point and try a different path.  Algorithms that use this approach are called 

backtracking algorithms. 
 

If you think about a backtracking algorithm as the process of repeatedly 

exploring paths until you encounter the solution, the process appears to have an 

iterative character.  As it happens, however, most problems of this form are easier to 

solve recursively.  The fundamental recursive insight is simply this: a backtracking 

problem has a solution if and only if at least one of the smaller backtracking 

problems that result from making each possible initial choice has a solution.  The 

examples in this chapter are designed to illustrate this process and demonstrate the 

power of recursion in this domain. 
 

 9.1 Recursive backtracking in a maze 
Once upon a time, in the days of Greek mythology, the Mediterranean island of 

Crete was ruled by a tyrannical king named Minos.  From time to time, Minos 

demanded tribute from the city of Athens in the form of young men and women, 

whom he would sacrifice to the Minotaur, a fearsome beast with the head of a bull 

and the body of a man.  To house this deadly creature, Minos forced his servant 

Daedalus (the engineering genius who later escaped by constructing a set of wings) 

to build a vast underground labyrinth at Knossos.  The young sacrifices from Athens 

would be led into the labyrinth, where they would be eaten by the Minotaur before 

they could find their way out.  This tragedy continued until young Theseus of 

Athens volunteered to be one of the sacrifices.  Following the advice of Minos’s 

daughter Ariadne, Theseus entered the labyrinth with a sword and a ball of string.  

After slaying the monster, Theseus was able to find his way back to the exit by 

unwinding the string as he went along. 
 

The right-hand rule 

Ariadne’s strategy is an algorithm for escaping from a maze, but not everyone 

trapped in a maze is lucky enough to have a ball of string.  Fortunately, there are 

other strategies for solving a maze.  Of these strategies, the best known is called the 

right-hand rule, which can be expressed in the following pseudocode form: 
 

Put your right hand against a wall. 

while (you have not yet escaped from the maze) { 

   Walk forward keeping your right hand on a wall. 

} 
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To visualize the operation of the right-hand rule, imagine that Theseus has 

successfully dispatched the Minotaur and is now standing in the position marked by 

the first character in Theseus’s name, the Greek letter theta (!): 
 

 
 

If Theseus puts his right hand on the wall and then follows the right-hand rule from 

there, he will trace out the path shown by the dashed line in this diagram: 
 

 
 

Unfortunately, the right-hand rule does not in fact work in every maze.  If there is a 

loop that surrounds the starting position, Theseus can get trapped in an infinite loop, 

as illustrated by the following simple maze: 
 

 
 

Finding a recursive approach 

As the while loop in its pseudocode form makes clear, the right-hand rule is an 

iterative strategy.  You can, however, also think about the process of solving a maze 

from a recursive perspective.  To do so, you must adopt a different mindset.  You 

can no longer think about the problem in terms of finding a complete path.  Instead, 

your goal is to find a recursive insight that simplifies the problem, one step at a 



392     Backtracking Algorithms 

time.  Once you have made the simplification, you use the same process to solve 

each of the resulting subproblems. 
 

Let’s go back to the initial configuration of the maze shown in the illustration of 

the right-hand rule.  Put yourself in Theseus’s place.  From the initial configuration, 

you have three choices, as indicated by the arrows in the following diagram: 
 

 
 

The exit, if any, must lie along one of those paths.  Moreover, if you choose the 

correct direction, you will be one step closer to the solution.  The maze has 

therefore become simpler along that path, which is the key to a recursive solution.  

This observation suggests the necessary recursive insight.  The original maze has a 

solution if and only if it is possible to solve at least one of the new mazes shown in 

Figure 9-1.  The !  in each diagram marks the original starting square and is 

off-limits for any of the recursive solutions because the optimal solution will never 

have to backtrack through this square. 
 

By looking at the mazes in Figure 9-1, it is easy to see—at least from your global 

vantage point—that the submazes labeled (a) and (c) represent dead-end paths and 

that the only solution begins in the direction shown in the submaze (b).  If you are 

thinking recursively, however, you don’t need to carry on the analysis all the way to 
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the solution.  You have already decomposed the problem into simpler instances.  All 

you need to do is rely on the power of recursion to solve the individual 

subproblems, and you’re home free.  You still have to identify a set of simple cases 

so that the recursion can terminate, but the hard work has been done. 
 

Identifying the simple cases 

What constitutes the simple case for a maze?  One possibility is that you might 

already be standing outside the maze.  If so, you’re finished.  Clearly, this situation 

represents one simple case.  There is, however, another possibility.  You might also 

reach a blind alley where you’ve run out of places to move.  For example, if you try 

to solve the sample maze by moving north and then continue to make recursive calls 

along that path, you will eventually be in the position of trying to solve the 

following maze: 
 

 
 

At this point, you’ve run out of room to maneuver.  Every path from the new 

position is either marked or blocked by a wall, which makes it clear that the maze 

has no solution from this point.  Thus, the maze problem has a second simple case 

in which every direction from the current square is blocked, either by a wall or a 

marked square. 
 

It is easier to code the recursive algorithm if, instead of checking for marked 

squares as you consider the possible directions of motion, you go ahead and make 

the recursive calls on those squares.  If you check at the beginning of the procedure 

to see whether the current square is marked, you can terminate the recursion at that 

point.  After all, if you find yourself positioned on a marked square, you must be 

retracing your path, which means that the optimal solution must lie in some other 

direction. 
 

Thus, the two simple cases for this problem are as follows: 
 

1. If the current square is outside the maze, the maze is solved. 

2. If the current square is marked, the maze is unsolvable, at least along the path 

you’ve chosen so far. 
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Coding the maze solution algorithm 

Although the recursive insight and the simple cases are all you need to solve the 

problem on a conceptual level, writing a complete program to navigate a maze 

requires you to consider a number of implementation details as well.  For example, 

you need to decide on a representation for the maze itself that allows you to figure 

out where the walls are, keep track of the current position, indicate that a particular 

square is marked, and determine whether you have escaped from the maze.  While 

designing an appropriate data structure for the maze is an interesting programming 

challenge in its own right, it has very little to do with understanding the recursive 

algorithm, which is the focus of this discussion.  If anything, the details of the data 

structure are likely to get in the way and make it more difficult for you to 

understand the algorithmic strategy as a whole.  Fortunately, it is possible to set 

those details aside by introducing a new interface that hides some of the complexity.  

The maze.h interface in Figure 9-2 exports a class called Maze that encapsulates all 

the information necessary to keep track of the passages in a maze and to display that 

maze in the graphics window. 
 

Once you have access to the Maze class, writing a program to solve a maze 

becomes much simpler.  The goal of this exercise is to write a function 
 

bool solveMaze(Maze & maze, Point pt); 

 

The arguments to solveMaze are (1) the Maze object that holds the data structure 

and (2) the starting position, which changes for each of the recursive subproblems.  

To ensure that the recursion can terminate when a solution is found, the solveMaze 

function returns true if a solution has been found, and false otherwise. 
 

Given this definition of solveMaze, the main program looks like this: 
 

int main() { 

   initGraphics(); 

   Maze maze("SampleMaze.txt"); 

   maze.showInGraphicsWindow(); 

   if (solveMaze(maze, maze.getStartPosition())) { 

      cout << "The marked path is a solution." << endl; 

   } else { 

      cout << "No solution exists." << endl; 

   } 

   return 0; 

} 
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maze.h, p1
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maze.h, p2 
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The code for the solveMaze function appears in Figure 9-3, along with the 

function adjacentPoint(start, dir), which returns the point you reach if you 

move in the specified direction from the starting point. 
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Convincing yourself that the solution works 

In order to use recursion effectively, at some point you must be able to look at a 

recursive function like the solveMaze example in Figure 9-3 and say to yourself 

something like this: “I understand how this works.  The problem is getting simpler 

because more squares are marked each time.  The simple cases are clearly correct.  

This code must do the job.”  For most of you, however, that confidence in the power 

of recursion will not come easily.  Your natural skepticism makes you want to see 

the steps in the solution.  The problem is that, even for a maze as simple as the one 

shown earlier in this chapter, the complete history of the steps involved in the 

solution is far too large to think about comfortably.  Solving that maze, for example, 

requires 66 calls to solveMaze that are nested 27 levels deep when the solution is 

finally discovered.  If you attempt to trace the code in detail, you will almost 

certainly get lost. 
 

If you are not yet ready to accept the recursive leap of faith, the best you can do 

is track the operation of the code in a more general sense.  You know that the code 

first tries to solve the maze by moving one square to the north, because the for loop 

goes through the directions in the order defined by the Direction enumeration.  

Thus, the first step in the solution process is to make a recursive call that starts in 

the following position: 
 

 
 

At this point, the same process occurs again.  The program again tries to move 

north and makes a new recursive call in the following position: 
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At this level of the recursion, moving north is no longer possible, so the for loop 

cycles through the other directions.  After a brief excursion southward, upon which 

the program encounters a marked square, the program finds the opening to the west 

and proceeds to generate a new recursive call.  The same process occurs in this new 

square, which in turn leads to the following configuration: 
 

 
 

In this position, none of the directions in the for loop do any good; every square 

is either blocked by a wall or already marked.  Thus, when the for loop at this level 

exits at the bottom, it unmarks the current square and returns to the previous level.  

It turns out that all the paths have also been explored in this position, so the program 

once again unmarks the square and returns to the next higher level in the recursion.  

Eventually, the program backtracks all the way to the initial call, having completely 

exhausted the possibilities that begin by moving north.  The for loop then tries the 

eastward direction, finds it blocked, and continues on to explore the southern 

corridor, beginning with a recursive call in the following configuration: 
 

 
 

From here on, the same process ensues.  The recursion systematically explores 

every corridor along this path, backing up through the stack of recursive calls 

whenever it reaches a dead end.  The only difference along this route is that 

eventually—after descending through an additional recursive level for every step on 

the path—the program makes a recursive call in the following position: 
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At this point, Theseus is outside the maze, so the simple case kicks in and returns 

true to its caller.  This value is then propagated back through all 27 levels of the 

recursion, eventually returning back to the main program. 

 

 9.2 Backtracking and games 
Although backtracking is easiest to illustrate in the context of a maze, the strategy is 

considerably more general.  For example, you can apply backtracking to most 

two-player strategy games.  The first player has several choices for an initial move.  

Depending on which move is chosen, the second player then has a particular set of 

responses.  Each of these responses leads in turn to new options for the first player, 

and this process continues until the end of the game.  The different possible 

positions at each turn in the game form a branching structure in which each option 

opens up more and more possibilities. 
 

If you want to program a computer to take one side of a two-player game, one 

approach is to have the computer follow all the branches in the list of possibilities.  

Before making its first move, the computer would try every possible choice.  For 

each of these choices, it would then try to determine what its opponent’s response 

would be.  To do so, it would follow the same logic: try every possibility and 

evaluate the possible counterplays.  If the computer can look far enough ahead to 

discover that some move would leave its opponent in a hopeless position, it should 

make that move. 
 

In theory, this strategy can be applied to any two-player strategy game.  In 

practice, the process of looking at all the possible moves, potential responses, 

responses to those responses, and so on requires too much time and memory, even 

for modern computers.  There are, however, several games that are simple enough 

to solve by looking at all the possibilities, yet complex enough so that the solution is 

not immediately obvious to the human player. 
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The game of Nim 

To see how recursive backtracking applies to two-player games, it helps to consider 

a simple example such as the game of Nim, which is the generic name for an entire 

class of games in which players take turns removing objects from some initial 

configuration.  In this particular version, the game begins with a pile of 13 coins.  

On each turn, players take either one, two, or three coins from the pile and put them 

aside.  The object of the game is to avoid being forced to take the last coin.  

Figure 9-4 shows a sample game between the computer and a human player. 
 

How would you go about writing a program to play a winning game of Nim?  

The mechanical aspects of the game—keeping track of the number of coins, asking 

the player for a legal move, determining the end of the game, and so forth—are a 

straightforward programming task.  The interesting part of the program consists of 

figuring out how to give the computer a strategy for playing the best possible game. 
 

Finding a successful strategy for Nim is not particularly hard, particularly if you 

work backward from the end of the game.  The rules of Nim indicate that the loser 

is the player who takes the last coin.  Thus, if you ever find yourself with just one 

coin on the table, you’re in a bad position.  You have to take that coin and lose.  On 

the other hand, things look good if you find yourself with two, three, or four coins.  

In any of these cases, you can always take all but one of the remaining coins, 

leaving your opponent in the unenviable position of being stuck with just one coin.  
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But what if there are five coins on the table?  What can you do then?  After a bit of 

thought, it’s easy to see that you’re also doomed if you’re left with five coins.  No 

matter what you do, you have to leave your opponent with two, three, or four 

coins—situations that you’ve just discovered represent good positions from your 

opponent’s perspective.  If your opponent is playing intelligently, you will surely be 

left with a single coin on your next turn.  Since you have no good moves, being left 

with five coins is clearly a bad position. 
 

This informal analysis reveals an important insight about the game of Nim.  On 

each turn, you are looking for a good move.  A good move is one that leaves your 

opponent in a bad position.  But what is a bad position?  A bad position is one in 

which there is no good move. 
 

Even though these definitions of good move and bad position are circular, they 

nonetheless constitute a complete strategy for playing a perfect game of Nim.  You 

just have to rely on the power of recursion.  If you have a function findGoodMove 

that takes the number of coins as its argument, all it has to do is try every 

possibility, looking for one that leaves a bad position for the opponent.  You can 

then assign the job of determining whether a particular position is bad to the 

predicate function isBadPosition, which calls findGoodMove to see if there is 

one.  The two functions call each other back and forth, evaluating all possible 

branches as the game proceeds. 
 

The mutually recursive functions findGoodMove and isBadPosition provide 

all the strategy that the Nim program needs to play a perfect game.  To complete the 

program, all you need to do is write the code that takes care of the mechanics of 

playing Nim with a human player.  This code is responsible for setting up the game, 

printing out instructions, keeping track of whose turn it is, asking the user for a 

move, checking whether that move is legal, updating the number of coins, figuring 

out when the game is over, and letting the user know who won. 
 

Although none of these tasks is conceptually difficult, the Nim application is 

large enough that it makes sense to adopt the implementation strategy described in 

section 6.5, in which the program is defined as a class rather than as a collection of 

free functions.  Figure 9-5 shows an implementation of the Nim game that adopts 

this design.  The code for the game is encapsulated in a class called SimpleNim, 

along with two instance variables that keep track of the progress of play: 
 

• An integer variable nCoins that records the number of coins in the pile. 

 • A variable whoseTurn that indicates which player is about to move.  This value 

is stored using the enumerated type Player, which defines the constants HUMAN 

and COMPUTER.  At the end of each turn, the code for the play method passes 

the turn to the next player by setting whoseTurn to opponent(whoseTurn). 
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Nim.cpp 
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nim.cpp, p2 



 9.2 Backtracking and games      405 

 

nim.cpp, p3 
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nim.cpp, p4 


