
Lecture 14
C++ as a multiparadigm
programming language
TDDD86: DALP

Utskriftsversion av Lecture in Data Structures, Algorithms and Programming Paradigms
9th October 2017

Ahmed Rezine, IDA, Linköping University

14.1

Content

Contents
14.2

1 Introduction

Multiparadigm language
C++ is a multiparadigm language and let the programmer choose and combine between the various

characteristics of the language:

• structured
• procedural
• object-oriented
• generic
• functional

The functional aspects of C++ have improved with C++11

• lambda expression
• variadic templates
• STL-function bind and function

14.3

2 Functional programming

2.1 Functional style

Programming in functional style

• Automatic inference with

– auto and decltype

• Support for lambda expression

– closures

– functions as data

• Partial function application

– std::function and std::bind

std::function<double(double)> f = std::bind(std::divide,
std::placeholrder::_1, 2.0);

– lambda expression and auto

• High order functions of the algorithms in STL
• List manipulation with variadic templates

1

• Pattern matching with full and partial template specialization
• Lazy evaluation with std::async

auto value = std::async(std::launch::deferred, []{ ... });

14.4

2.2 Why functional programming?

Why functional programming?

• STL

– effective use of lambda expression

accumulate(vec.begin(), vec.end(), 0
[](int a, int b){return a+b;});

• Template programming

– recognition of functional patterns

template <int N>
struct Fac{ static int const val= N * Fac<N-1>::val; };
template <>
struct Fac<0>{ static int const val= 1; };

• Better programming style

– discuss side effect

– can be more concise or clearer

for (auto v: vec) cout << v << " " << endl;
copy(v.begin(), v.end(), ostream_iterator<T>(cout, " "));

14.5

2.3 What is functional programming?

What is functional programming?

• Functional programming is similar to programming with mathematical functions
• Mathematical functions are functions that given the same arguments returns the same answer

– functions must not have any side effect

– call to the function can be replaced by its results

– an optimiser can change the order of function calls or perform calls in different threads

– application flow is driven by dependencies and not by the sequence of instructions
14.6

2.4 Characteristics

Characteristics of functional programming

14.7

2

First-class citizens

• In a programming language, a first-class citizen is an entity that:

– can be passed as an argument

– can be returned from a function

– can be assigned to a variable

• In most programming language:

– scalar types are first-class citizens

– array and strings are not generally (ie in C)

• what about functions?
14.8

First-class functions

• First class functions are first-class citizens:

– Functions are treated as data

– Name of the function is not important

• Functions

– can be passed as arguments to other functions

– functions can be returned by other functions

– can be assigned to variables or stored in data structures

14.9

First class function: call table

map<const char,function<double(double,double)>> tab;

tab.insert(make_pair(’+’,[](double a,double b){return a + b;}));
tab.insert(make_pair(’-’,[](double a,double b){return a - b;}));
tab.insert(make_pair(’*’,[](double a,double b){return a * b;}));
tab.insert(make_pair(’/’,[](double a,double b){return a / b;}));

cout << "3.5+4.5= " << tab[’+’](3.5,4.5) << endl; // 8
cout << "3.5*4.5= " << tab[’*’](3.5,4.5) << endl; // 15.75

tab.insert(make_pair(’^’, [](double a,double b){return pow(a,b);}));
cout << "3.5^4.5= " << tab[’^’](3.5,4.5) << endl; // 280.741

14.10

High order functions
Higher order functions are functions which accept other function as arguments and/or return them as a

result.

• The three classics:

– map: apply a function to each element in a list (std::transform in C++)

– filter: remove element from a list (std::remove_if in C++)

– fold: reduce a list to a single element by successive application of a binary operation (std::accumulate
in C++)

3

14.11

High order functions
All programming language which support functionnal style offers map, filter and fold

Haskell Python C++
map map std::transform
filter filter std::remove_if
fold reduce std::accumulate

• map, filter and fold are three powerfull function that are applicable in many cases

– map + reduce = MapReduce
14.12

Higher order functions

• List and vector:

– Haskell:

vec= [1 . . 9]
str= ["Programming","in","a","functional","style."]

– Python:

vec=range(1,10)
str=["Programming","in","a","functional","style."]

– C++:

vector<int> vec{1,2,3,4,5,6,7,8,9}
vector<string>str{"Programming","in","a","functional","style."}

14.13

Higher order functions

• map

– Haskell:

map(\a -> a^2) vec
map(\a -> length a) str

– Python:

map(lambda x : x*x, vec)
map(lambda x : len(x), str)

– C++:

transform(vec.begin(),vec.end(),vec.begin(),
[](int i){ return i*i; });

transform(str.begin(),str.end(),back_inserter(vec2),
[](string s){ return s.length(); });

• Result: [1,4,9,16,25,36,49,64,81]
[11,2,1,10,6]

14.14

4

Higher order functions

• filter

– Haskell:

filter(\x -> x<3 || x>8) vec
filter(\x -> isUpper(head x)) str

– Python:

filter(lambda x: x<3 or x>8 , vec)
filter(lambda x: x[0].isupper(), str)

– C++:

auto it= remove_if(vec.begin(),vec.end(),
[](int i){ return !((i < 3) or (i > 8)) });

auto it2= remove_if(str.begin(),str.end(),
[](string s){ return !(isupper(s[0])); });

• Result: [1,2,9]
[“Programming”]

14.15

Higher order functions

• fold

– Haskell:

foldl (\a b -> a * b) 1 vec
foldl (\a b -> a ++ ":" ++ b) "" str

– Python:

reduce(lambda a , b: a * b, vec, 1)
reduce(lambda a, b: a + b, str, "")

– C++:

accumulate(vec.begin(),vec.end(),1,
[](int a, int b){ return a*b; });

accumulate(str.begin(),str.end(),string(""),
[](string a,string b){ return a+":"+b; });

• Result: 362800 and “:Programming:in:a:functional:style.”
14.16

“Pure” function
“Pure” vs “impure” function (from the book of The Real World Haskell)

Pure function Impure function
Allways produces the same results
given the same arguments

Can produce different result
given the same argument.

Never has a side effect Can have side effect
Never change state Can change a global state in the pro-

gram, system or world

• Pure functions are isolated. The program will be easier to

– reason about

– refactor and test

• Very good for optimisation

– Save the result of a call

– Rearrange pure function call or share it between threads
14.17

5

“Pure” function

• Monad is Haskell solution to handle impure world
• A monad

– encapsulate the impure world in pure Haskell

– it is an imperative subsystem in Haskell

– it is a structure representing calculation

– must define the composition of calculations

• Example:

– I/O-monad for handling I/O operations

– Maybe-monad for computations that can fail

– List-monad for calculations of zero or more valid responses

– Authorisation-monad for computation that require permission
14.18

Recursion

• Loop:

– Recursion are controlstructure

– A loop for(int i <= 10; ++i) needs a variable i

∗ Mutable variable are not valid in language such as Haskell

• Recursion combined with list manipulation is a powerfull pattern in functionnal languages
14.19

Recursion

• Recursion

– Haskell:

fac 0 = 1
fac n = n * fac (n-1)

– C++:

template<int N>
struct Fac{

static int const value = N * Fac<N-1>::value;
};

template <>
struct Fac<0>{

static int const value = 1;
};

• Resultat: fac(5) == Fac<5>::value == 120
14.20

6

List manipulation

• List manipulation (LISt Processing) is important in functional programming:

– transform a list into an other list

– reduce a list to a single value

• The functional pattern for list manipulation:

1) Handle first element x

2) Handle rest of the list (xs) recursively => Go to step 1)

– Example:

mySum [] = 0
mySum (x:xs) = x + mySum xs
mySum [1,2,3,4,5] // 15
myMap f [] = []
myMap f (x:xs)= f x: myMap f xs
myMap (\x -> x*x)[1,2,3] // [1,4,9]

14.21

List manipulation

template<int ...> struct mySum;

template<>struct
mySum<>{

static const int value= 0;
};

template<int i, int ... tail> struct
mySum<i,tail...>{

static const int value= i + mySum<tail...>::value;
};

int sum= mySum<1,2,3,4,5>::value; // sum == 15

• Implementing myMap with variadic template is not going to be fun. . .
14.22

Lazy evaluation

• Lazy evaluation only evaluate an expression if it is needed

– Haskell is lazy because the following works

length [2+1, 3*2, 1/0, 5-4]

– C++ is eager but the following works

template <typename... Args>
void mySize(Args... args) {

cout << sizeof...(args) << endl;
}
mySize("Wohoo", 1/0);

• Advantages:

– Save time and memory

– Work with infinite data structures
14.23

7

Lazy evaluation

• Example:

successor i = i: (successor (i+1))
take 5 (successor 10) // [10,11,12,13,14]

odds = takeWhile (< 1000) . filter odd . map (^2)
[1..] = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 ... Control -C
odds [1..] // [1,9,25, ... , 841,961]

• Special case: short circuit evaluation

if (true || (1/0)) cout << "short circuit evaluation in C++\n";

if (pointer && pointer->can_run()) cout << "Check if pointer is non null!\n";

14.24

What is missing?

• List comprehensions:

– Syntactic sugar on map and filter

– Example:

[(s,len(s)) for s in ["Only","for"]] # [(’Only’, 4), (’for’, 3)]
[i*i for i in range(11) if i%2 == 0] # [0,4,16,36,64,100]

• Funciton composition:

– Programing with lego pieces

– Example:

(reverse . sort)[10,2,8,1,9,5,3,6,4,7] - - [10,9,8,7,6,5,4,3,2,1]
theLongestTitle = head . reverse . sortBy(comparing length) .

filter isTitle
theLongestTitle words("A Sentence Full Of Titles.")

∗ Result: “Sentence”
14.25

8

