
Föreläsning 21
Directed and weighted graphs
TDDD86: DALP

Utskriftsversion av Föreläsing i Datastrukturer, algoritmer och programmeringsparadigm
03 December 2024

IDA, Linköpings universitet

21.1

Content

Contents

1 Directed graphs 1

2 Connectivity 2

3 Transitive closure 4

4 Topological sorting 8

5 Weighted graphs 14

6 Shortest paths 15 21.2

1 Directed graphs

Introduction

• In a directed graph, all edges are directed

A

C

E

B

D

21.3

Properties

• A graph G = (V,E) s.t. each edge as a direction:

– With edge (a,b) you can go from a to b but not from b to a.

• If G is simple (no parallel edges or loops) then m≤ n · (n−1), hence m ∈ O(n2).

1

A

C

E

B

D

21.4

Some algorithmic graph problems

• Path. Is their a directed path from s to t?
• Shorted path. what is the shorted directed path from s to t?

• Strong connectivity. Is there a directed path between all pairs of nodes?

• Topological sort. Is it possible to draw the graph such that all the edges point in the same direction?

• Transitive closure. For which nodes v and w there is at least one path from v to w?

• Page Rank. How important is a web page?
21.5

Directed DFS

• We can specialize the DFS and BFS graph traversing algorithms to directed graphs
• In the directed DFS algorithm there are 4 kinds of edges

– ”discovery”-edges

– back-edges

– forward-edges

– crossing edges

• A directed DFS from node s lists the nodes that are reachable from s

A

C

E

B

D

21.6

2 Connectivity

Reachability

• DFS-tree rooted in v: nodes reachable from v via directed paths
• Not all nodes are reachable from node C, but all nodes are reachable from node B

2

21.7

Strongly connected graphs
Each node is reachable from each other node

a

d

c

b

e

f

g

21.8

Algorithm to decide whether a graph is strongly connected

• Choose a node v in G
• // Can we reach all nodes from v? Perform DFS from v in G

– If a node w remains unvisited, answer ”no”

• Obtain G′ from G by reversing all edges
• // Can we reach all nodes from v in G′? Perform DFS v in G′

– If a node w remains unvisited, answer ”no”

– Otherwise answer “yes”

• Execution time: O(n+m)

3

21.9

Strongly connected components

• A maximal sub-graph where each node is reachable from each other node in the sub-graph
• Can also be obtained in O(n+m) time complexity by using DFS in several steps
• The DFS based Kosaraju’s algorithm:

– Call DFS and enumerate vertices in post-order

– Call DFS on transposed graph (i.e., reversed edges)

{ a , c , g }

{ f , d , e , b }

a

d

c

b

e

f

g

21.10

3 Transitive closure

Transitive closure

• Given a directed graph G, the transitive closure of G is the directed graph G∗ where

– G∗ has the same nodes as G

– if G has a directed path from u to v (u ̸= v) then G∗ has a directed edge fro mu to v

• The transitive closure make explicit reachability in a directed graph

B

A

D

C

E

B

A

D

C

E

G

G* 21.11

Computing the transitive closure

• We could execute DFS from each node v1, . . . ,vn, hence O(n · (n+m))
• A dynamic programming alternative: Floyd-Warshalls algorithm

21.12

4

Transitive closure with Floyd-Warshall
• Identify the nodes with 1,2, . . . ,n.
• In phase k, only consider paths that use nodes in 1,2, . . . ,k as intermediary nodes:

k

j

i

Stig med noder
numrerade 1,…,k-1

Stig med noder
numrerade 1,…,k-1

Använder bara noder numrerade 1,…,k
(lägg till bågen om den inte redan är med)

21.13

Floyd-Warshall algorithm
• The Floyd-Warshall algorithm enumerates the nodes in G as v1, . . . ,vn and computes the series of

directed graphs G0, . . . ,Gn

– G0 = G
– Gk has a directed edge (vi,v j) if G has a directed path from vi to v j with intermediary nodes in

the set {v1, . . . ,vk}
• We get Gn = G∗

• At iteration k the graph Gk is computed from Gk−1
• Execution time: O(n3) if areAdjacent is O(1) 21.14

The Floyd-Warshall algorithm
function FLOYDWARSHALL(G)

G0← G
for k← 1 to n do

Gk← Gk−1
for i← 1 to n (i ̸= k) do

for j← 1 to n (j ̸= i,k) do
if Gk−1.AREADJACENT(vi,vk) then

if Gk−1.AREADJACENT(vk,v j) then
if ¬Gk.AREADJACENT(vi,v j) then

Gk.INSERTDIRECTEDEDGE(vi,v j,k)

return Gn 21.15

Example: Floyd-Warshall

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v
2

v
1

v
3

v
4

v
5

v
6

v7

5

21.16

Floyd-Warshall, iteration 1

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v
2

v
1

v
3

v
4

v
5

v
6

v7

21.17

Floyd-Warshall, iteration 2

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v
2

v
1

v
3

v
4

v
5

v
6

v7

21.18

Floyd-Warshall, iteration 3

6

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v
2

v
1

v
3

v
4

v
5

v
6

v7

21.19

Floyd-Warshall, iteration 4

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v
2

v
1

v
3

v
4

v
5

v
6

v7

21.20

Floyd-Warshall, iteration 5

7

JFK

MIA

ORD

LAX
DFW

SFO

v
2

v
1

v
3

v
4

v
5

v
6

v7

BOS

21.21

Floyd-Warshall, iteration 6

JFK

MIA

ORD

LAX
DFW

SFO

v
2

v
1

v
3

v
4

v
5

v
6

v7

BOS

21.22

Floyd-Warshall, end

8

JFK

MIA

ORD

LAX
DFW

SFO

v
2

v
1

v
3

v
4

v
5

v
6

v7

BOS

21.23

4 Topological sorting

Directed acyclic graphs and topological sorting

• A directed acyclic graph (DAG) is a directed graph that does not have any directed cycle
• A topological sorting of a graph is a total ordering v1, . . . ,vn of the nodes such that each edge (vi,v j)

satisfies i < j
• Example: Existence of a plan for tasks that depend on each other.

Proposition 1. A graph can be topologically sorted iff it is a DAG

B

A

D

C

E

DAG G

B

A

D

C

E

Topologisk
ordning av G

v1

v2

v3

v4 v5

21.24

An algorithm for topological sorting
procedure TOPOLOGICALSORT(G)

H← G ▷ temporary copy of G
n← G.NUMVERTICES

while H is non-empty do
let v be a node without outgoing edges
mark v with n
n← n−1
remove v from H

Execution time: O(n+m). How. . . ? 21.25

Algorithm for topological sorting via DFS
procedure TOPOLOGICALDFS(G)

n← G.NUMVERTICES

mark all nodes and edges as UNEXPLORED like in DFS
for all v ∈ G.VERTICES() do

9

if GETLABEL(v) =UNEXPLORED then
TOPOLOGICALDFS(G,v)

procedure TOPOLOGICALDFS(G,v)
SETLABEL(v,V ISIT ED)
for all e ∈ G.INCIDENTEDGES(v) do

if GETLABEL(e) =UNEXPLORED then
w←OPPOSITE(v,e)
if GETLABEL(w) =UNEXPLORED then

SETLABEL(e,DISCOV ERY)
TOPOLOGICALDFS(G,w)

else
e is a crossing edge or a forward edge

mark v with the topological number n
n← n−1 21.26

Example: Topological sorting

21.27

Example: Topological sorting

9

21.28

10

Example: Topological sorting

8

9

21.29

Example: Topological sorting

7
8

9

21.30

Example: Topological sorting

11

7
8

6

9

21.31

Example: Topological sorting

7
8

56

9

21.32

Example: Topological sorting

12

7

4

8

56

9

21.33

Example: Topological sorting

7

4

8

56

3

9

21.34

Example: Topological sorting

13

2

7

4

8

56

3

9

21.35

Example: Topological sorting

2

7

4

8

56

1

3

9

21.36

5 Weighted graphs

Weighted graphs

• In a weighted graph, each edge is associated a numerical weight.
• Weights can represent distances, costs, etc.

21.37

Google maps

14

21.38

Continentals fly routes in USA (august 2010)

21.39

6 Shortest paths

The shortest path problem

• Given a weighted graph and two nodes u and v, find a path between u and v with minimal total weight.

– Length of a path is the sum of the weights of its edges

Example
Shortest path between Providence and Honolulu

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

21.40

15

Properties of shortest paths

• A sub-path of a shortest path is also a shortest path
• There is a tree of shortest paths from a start node to all other nodes

Example
A tree of shortest paths from Providence

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

21.41

Weighted Floyd-Warshalls algorithm
function WEIGHTEDFLOYDWARSHALL(G(N,E,w))

for i← 1 to N do
for j← 1 to N do

dist(i, j)← w(i, j)
for i← 1 to N do

dist(i, i)← 0
for k← 1 to N do

for i← 1 to N do
for j← 1 to N do

if
(
dist(vi,v j)> dist(vi,vk)+dist(vk,v j)

)
then

dist(vi,v j)← dist(vi,vk)+dist(vk,v j)

return dist 21.42

Dijkstra’s algorithm

• Distance from a node v to a node s is the length of a shortest path between s and v
• Dijkstra’s algorithm computes the distance from a given start node s to all other nodes v in the graph
• Assumptions:

– the graph is connected

– graph has no loops or parallel edges

– weights are non-negative

• We build a “cloud” of nodes, starting from s, that will cover all nodes
• We mark each node v in the cloud or neighbor to it with d(v), which represents the distance between

v and s
• At each step:

– Extend the cloud to the node u that was outside the cloud and which has the minimal distance
d(u)

– update distances of nodes that are neighbor to u
21.43

Extension step

• Consider an edge e = (u,z) s.t.:

– u has just been added to the cloud

– z is not part of the cloud yet

• Edge e updates d(z) with :

– d(z)←min{d(z),d(u)+weight(e)}

16

d(z) 75
d(u) 50

zs
u

d(z) 60
d(u) 50

zs
u

e

e

21.44

Dijkstra pseudocode

21.45

Example

21.46

Example

17

21.47

Example

21.48

Example

18

21.49

Example

21.50

Example

19

21.51

Example

21.52

Example

20

21.53

Example

21.54

Analysis of Dijkstra algorithm

• incidentEdges is called once for each node

• markings are fetched/updated for node z O(deg(z))
times

• to fetch/update a marking takes O(1) time

• Each node is inserted once and removed once from
the priority queue, where each insertion and re-
moval takes O(logn) time

• The key of a node in the priority queue is updated
at most deg(w) times, where each update may take
at most O(logn) time

• Dijkstra’s algorithm has execution time of O((n+m) logn) given the graph is represented using adjacent lists

• Execution time can also be expressed as O(m logn) since we assume it is connected
21.55

Why does it work

21

Dijkstra’s algorithm is a greedy algorithm. It greedily adds nodes in increasing distances to the source.

• Suppose the algorithm does not find all shortest distances. Let F be the first node that got a wrong
shortest distance.

• Any node D preceding F along a shortest path must have obtained a correct shortest distance and
added to the cloud at some point.

• But then the edge (D,F) must have been updated when such a D was added!
• In other words, since d(F)≥ d(D), then the distance to F should have been correct.

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

21.56

Why does it require non-negative weights?

Dijkstra’s algorithm is a greedy algorithm. It greedily adds nodes in increasing distances to the source.

• If a node with a negative incident edge is added later to the cloud, it would jeopardize the distances
to nodes that were earlier added.

CB

A

E

D

F

0

457

5 9

48

7 1

2 5

6

0 -8

C’s sanna avstånd är 1, men finns
redan i molnet med d(C)=5! 21.57

Observations

• Dijkstra’s algorithm works by incrementally computing shortest path to potential intermediary nodes.

– Most such paths are in the wrong direction.

• The algorithm explores in all directions;

– Could we tips the algorithm to first explore more promising directions?
21.58

Heuristics

• heuristic: Speculation, estimation or a qualified guess on how the search for a solution should pro-
ceed.

– Example: Estimate the distance between two locations in a map using a direct line.

• for the following algorithm, an admissible heuristic is one that does not over-estimate the distance.

– Ok if the heuristic under-estimates the distance (as above with the maps).
21.59

22

A⋆-algorithm

• A⋆(“A-star): a modified version of Dijkstra’s algorithm that uses a heuristic to direct the search.

• Suppose we are looking for a path from source node a to target node c

– Each intermediary node b has two costs:

– The known exact cost from a to b

– A heuristic based estimation of the cost from b to the target node c.

• Idea: Execute Dijkstra’s algorithm but adopt the following priority in the priority queue:

– priority(b) = cost(a, b) + Heuristic(b, c)

– Explore based on the smallest estimated cost
21.60

Example: Labyrinth heuristic

• A possible heuristic to find paths in a labyrinth:

– H(p1, p2) = abs(p1.x - p2.x) + abs(p1.y - p2.y) // dx + dy

– Idea: Explore neighbors with low value of (cost + heuristic)

21.61

Recall: pseudo-code for Dijkstra’s algorithm

21.62

23

Pseudo-code for the A⋆-algorithm

Observe that only nodes’ priorities are influenced by the heuristic, not their costs. 21.63

24

	Directed graphs
	Connectivity
	Transitive closure
	Topological sorting
	Weighted graphs
	Shortest paths

