Föreläsning 21 Directed and weighted graphs

TDDD86: DALP

Utskriftsversion av Föreläsing i *Datastrukturer, algoritmer och programmeringsparadigm* 03 December 2024

IDA, Linköpings universitet

21.3

			21.1
С	ontent		
С	ontents		
1	Directed graphs	1	
2	Connectivity	2	
3	Transitive closure	4	
4	Topological sorting	8	
5	Weighted graphs	14	
6	Shortest paths	15	21.2

1 Directed graphs

Introduction

• In a directed graph, all edges are directed

Properties

- A graph G = (V, E) s.t. each edge as a direction:
 - With edge (a,b) you can go from a to b but not from b to a.
- If G is simple (no parallel edges or loops) then $m \le n \cdot (n-1)$, hence $m \in O(n^2)$.

Some algorithmic graph problems

- Path. Is their a directed path from *s* to *t*?
- Shorted path. what is the shorted directed path from *s* to *t*?
- Strong connectivity. Is there a directed path between all pairs of nodes?
- Topological sort. Is it possible to draw the graph such that all the edges point in the same direction?
- Transitive closure. For which nodes *v* and *w* there is at least one path from *v* to *w*?
- Page Rank. How important is a web page?

Directed DFS

- We can specialize the DFS and BFS graph traversing algorithms to directed graphs
- · In the directed DFS algorithm there are 4 kinds of edges
 - "discovery"-edges
 - back-edges
 - forward-edges
 - crossing edges
- A directed DFS from node *s* lists the nodes that are reachable from *s*

2 Connectivity

Reachability

- DFS-tree rooted in *v*: nodes reachable from *v* via directed paths
- Not all nodes are reachable from node C, but all nodes are reachable from node B

2

21.4

Strongly connected graphs

Each node is reachable from each other node

Algorithm to decide whether a graph is strongly connected

- Choose a node v in G
- // Can we reach all nodes from v? Perform DFS from v in G
 - If a node *w* remains unvisited, answer "no"
- Obtain G' from G by reversing all edges
- // Can we reach all nodes from v in G'? Perform DFS v in G'
 - If a node *w* remains unvisited, answer "no"
 - Otherwise answer "yes"
- Execution time: O(n+m)

21.8

Strongly connected components

- A maximal sub-graph where each node is reachable from each other node in the sub-graph
- Can also be obtained in O(n+m) time complexity by using DFS in several steps
- The DFS based Kosaraju's algorithm:
 - Call DFS and enumerate vertices in post-order
 - Call DFS on transposed graph (i.e., reversed edges)

3 Transitive closure

Transitive closure

- Given a directed graph G, the transitive closure of G is the directed graph G^* where
 - G^* has the same nodes as G
 - if G has a directed path from u to $v (u \neq v)$ then G^* has a directed edge from u to v
- The transitive closure make explicit reachability in a directed graph

Computing the transitive closure

- We could execute DFS from each node v_1, \ldots, v_n , hence $O(n \cdot (n+m))$
- A dynamic programming alternative: Floyd-Warshalls algorithm

21.11

21.10

Transitive closure with Floyd-Warshall

- Identify the nodes with $1, 2, \ldots, n$.
- In phase k, only consider paths that use nodes in 1, 2, ..., k as intermediary nodes:

Floyd-Warshall algorithm

• The Floyd-Warshall algorithm enumerates the nodes in *G* as v_1, \ldots, v_n and computes the series of directed graphs G_0, \ldots, G_n

$$-G_0 = G$$

- G_k has a directed edge (v_i, v_j) if G has a directed path from v_i to v_j with intermediary nodes in the set $\{v_1, \ldots, v_k\}$

- We get $G_n = G^*$
- At iteration k the graph G_k is computed from G_{k-1}
- Execution time: $O(n^3)$ if areAdjacent is O(1)

The Floyd-Warshall algorithm

function FLOYDWARSHALL(G) $G_0 \leftarrow G$ for $k \leftarrow 1$ to n do $G_k \leftarrow G_{k-1}$ for $i \leftarrow 1$ to n $(i \neq k)$ do for $j \leftarrow 1$ to n $(j \neq i,k)$ do if G_{k-1} .AREADJACENT (v_i, v_k) then if G_{k-1} .AREADJACENT (v_k, v_j) then if $\neg G_k$.AREADJACENT (v_i, v_j) then G_k .INSERTDIRECTEDEDGE (v_i, v_j, k)

return G_n

Example: Floyd-Warshall

21.14

21.13

Floyd-Warshall, iteration 1

Floyd-Warshall, iteration 2

6

Floyd-Warshall, iteration 3

Floyd-Warshall, iteration 4

Floyd-Warshall, iteration 5

21.20

7

Floyd-Warshall, iteration 6

Floyd-Warshall, end

4 Topological sorting

Directed acyclic graphs and topological sorting

- A directed acyclic graph (DAG) is a directed graph that does not have any directed cycle
- A topological sorting of a graph is a total ordering v₁,..., v_n of the nodes such that each edge (v_i, v_j) satisfies i < j
- Example: Existence of a plan for tasks that depend on each other.

Proposition 1. A graph can be topologically sorted iff it is a DAG

An algorithm for topological sorting

procedure TOPOLOGICALSORT(G) $H \leftarrow G$ $n \leftarrow G.NUMVERTICES$ **while** H is non-empty **do** let v be a node without outgoing edges mark v with n $n \leftarrow n-1$ remove v from H

Execution time: O(n+m). How...?

Algorithm for topological sorting via DFS

procedure TOPOLOGICALDFS(G) $n \leftarrow G.NUMVERTICES$ mark all nodes and edges as *UNEXPLORED* like in DFS **for all** $v \in G.VERTICES()$ **do** \triangleright temporary copy of *G*

21.25

21.24

if GETLABEL(v) = UNEXPLORED then TOPOLOGICALDFS(G, v) procedure TOPOLOGICALDFS(G, v) SETLABEL(v, VISITED) for all $e \in G$.INCIDENTEDGES(v) do if GETLABEL(e) = UNEXPLORED then $w \leftarrow OPPOSITE(v, e)$ if GETLABEL(w) = UNEXPLORED then SETLABEL(e, DISCOVERY) TOPOLOGICALDFS(G, w) else e is a crossing edge or a forward edge mark v with the topological number n $n \leftarrow n-1$

Example: Topological sorting

Example: Topological sorting

21.28

21.26

Example: Topological sorting

Example: Topological sorting

21.31

Example: Topological sorting

21.34

2 1 3 4 5 6 7 8 9

Weighted graphs 5

Weighted graphs

- In a weighted graph, each edge is associated a numerical *weight*. Weights can represent distances, costs, etc.

Google maps

21.36

21.37

Continentals fly routes in USA (august 2010)

6 Shortest paths

The shortest path problem

- Given a weighted graph and two nodes *u* and *v*, find a path between *u* and *v* with minimal total weight.
 - Length of a path is the sum of the weights of its edges

Example

Shortest path between Providence and Honolulu

21.38

Properties of shortest paths

- A sub-path of a shortest path is also a shortest path
- There is a tree of shortest paths from a start node to all other nodes

Example

A tree of shortest paths from Providence

Weighted Floyd-Warshalls algorithm

function WEIGHTEDFLOYDWARSHALL(G(N, E, w)) for $i \leftarrow 1$ to N do for $j \leftarrow 1$ to N do dist $(i, j) \leftarrow w(i, j)$ for $i \leftarrow 1$ to N do dist $(i, i) \leftarrow 0$ for $k \leftarrow 1$ to N do for $i \leftarrow 1$ to N do for $j \leftarrow 1$ to N do if $(\text{dist}(v_i, v_j) > \text{dist}(v_i, v_k) + \text{dist}(v_k, v_j))$ then dist $(v_i, v_j) \leftarrow \text{dist}(v_i, v_k) + \text{dist}(v_k, v_j)$ return dist

Dijkstra's algorithm

- Distance from a node v to a node s is the length of a shortest path between s and v
- Dijkstra's algorithm computes the distance from a given start node s to all other nodes v in the graph
- Assumptions:
 - the graph is connected
 - graph has no loops or parallel edges
 - weights are non-negative
- We build a "cloud" of nodes, starting from *s*, that will cover all nodes
- We mark each node v in the cloud or neighbor to it with d(v), which represents the distance between v and s
- At each step:
 - Extend the cloud to the node u that was outside the cloud and which has the minimal distance d(u)
 - update distances of nodes that are neighbor to u

Extension step

- Consider an edge e = (u, z) s.t.:
 - u has just been added to the cloud
 - -z is not part of the cloud yet
- Edge e updates d(z) with :
 - $d(z) \leftarrow \min\{d(z), d(u) + weight(e)\}$

21.42

21.41

Dijkstra pseudocode function dijkstra(v_1 , v_2): initialize every vertex to have a cost of infinity. set v_1 's cost to 0. pqueue := { v_1 , with priority 0}. // ordered by cost while pqueue is not empty:

v := dequeue vertex from pqueue with minimum priority.
mark v as visited.
if v is v₂, we can stop.
for each unvisited neighbor n of v:
 cost := v's cost + weight of edge (v, n).
 if cost < n's cost:
 set n's cost to cost, and n's previous to v.
 enqueue n in the pqueue with priority of cost,
 or update its priority if it was already in the pqueue.</pre>

reconstruct path from v_2 back to v_1 , following previous pointers.

Example

Example

21.44

21.45

• dijkstra(A, F);

pqueue = {**D:1**, **B:2**}

Example

• dijkstra(A, F);

Example

21.48

pqueue = {C:3, E:3, G:5, F:9}

Example

dijkstra(A, F);

pqueue = {E:3, G:5, **F:8**}

Example

21.50

• dijkstra(A, F);

pqueue = {G:5, F:8}

Example

dijkstra(A, F);

Example

21.52

• dijkstra(A, F);

pqueue = {}

Example

function **dijkstra**(v_1 , v_2): v_1 's cost := 0. *pqueue* := { v_1 }. // ordered by cost

while pqueue is not empty: v := dequeue min cost from pqueue. mark v as visited. if v is v₂, we can stop. for each unvisited neighbor n of v: cost := v's cost + weight of edge (v, n). if cost < n's cost: set n's cost and n's previous to v. enqueue or update n in the pqueue.

reconstruct path from v_2 back to v_1 , following previous pointers. // path = {A, D, G, F}

Analysis of Dijkstra algorithm

- incidentEdges is called once for each node
- markings are fetched/updated for node z O(deg(z)) times
- to fetch/update a marking takes O(1) time
- Each node is inserted once and removed once from the priority queue, where each insertion and removal takes $O(\log n)$ time
- The key of a node in the priority queue is updated at most deg(w) times, where each update may take at most $O(\log n)$ time
- function **dijkstra**(v_1 , v_2): initialize every vertex to have a cost of infinity. set v_1 's cost to 0.

$pqueue := \{v_1, with priority 0\}$. // ordered by cost

while *pqueue* is not empty:

- v := dequeue vertex from *pqueue* with minimum priority. mark v as visited.
- if v is v_2 , we can stop. for each unvisited neighbor n of v:
- or each unvisited neighbor n of v: cost := v's cost + weight of edge (v, n).
- if cost < n's cost:
- set n's cost to cost, and n's previous to v.
- enqueue *n* in the *pqueue* with priority of *cost*, or update its priority if it was already in the *pqueue*.

reconstruct path from v_2 back to v_1 , following previous pointers.

- Dijkstra's algorithm has execution time of $O((n+m)\log n)$ given the graph is represented using adjacent lists
- Execution time can also be expressed as $O(m \log n)$ since we assume it is connected

Why does it work

21.55

21.54

Dijkstra's algorithm is a greedy algorithm. It greedily adds nodes in increasing distances to the source.

- Suppose the algorithm does not find all shortest distances. Let *F* be the first node that got a wrong shortest distance.
- Any node *D* preceding *F* along a shortest path must have obtained a correct shortest distance and added to the cloud at some point.
- But then the edge (D, F) must have been *updated* when such a D was added!
- In other words, since $d(F) \ge d(D)$, then the distance to F should have been correct.

Why does it require non-negative weights?

Dijkstra's algorithm is a greedy algorithm. It greedily adds nodes in increasing distances to the source.

• If a node with a negative incident edge is added later to the cloud, it would jeopardize the distances to nodes that were earlier added.

C's sanna avstånd är 1, men finns redan i molnet med d(C)=5!

Observations

- Dijkstra's algorithm works by incrementally computing shortest path to potential intermediary nodes.
 - Most such paths are in the wrong direction.

			5?	4	5?	6?				
	6?	5?	4	3	4	5	6?			
6?	5	4	3	2	3	4	5?			
5?	4	3	2	1	2	3	4	5?		
4	3	2	1		1	2	3	4		
5?	4	3	2	1	2	3	4	5?		
	5?	4	3	2	3	4	5	6?		
	6?	5	4	3	4	5?	6?			
		6?	5?	4	5?					

- The algorithm explores in all directions;
 - Could we tips the algorithm to first explore more promising directions?

Heuristics

- heuristic: Speculation, estimation or a qualified guess on how the search for a solution should proceed.
 - Example: Estimate the distance between two locations in a map using a direct line.
- for the following algorithm, an admissible heuristic is one that does not over-estimate the distance.
 - Ok if the heuristic under-estimates the distance (as above with the maps).

21.56

21.58

A*-algorithm

• A*("A-star): a modified version of Dijkstra's algorithm that uses a heuristic to direct the search.

- Suppose we are looking for a path from source node a to target node c
 - Each intermediary node *b* has two costs:
 - The known exact cost from *a* to *b*
 - A heuristic based estimation of the cost from b to the target node c.
- Idea: Execute Dijkstra's algorithm but adopt the following priority in the priority queue:
 - priority(b) = cost(a, b) + Heuristic(b, c)
 - Explore based on the smallest estimated cost

Example: Labyrinth heuristic

- A possible heuristic to find paths in a labyrinth:
 - $H(p_1, p_2) = abs(p_1.x p_2.x) + abs(p_1.y p_2.y)$ // dx + dy
 - Idea: Explore neighbors with low value of (cost + heuristic)

6	5	4	3	4
5	4	3	2	3
4	3	2	1	2
а	2	1	С	1
4	3	2	1	2
5	4	3	2	3

Recall: pseudo-code for Dijkstra's algorithm

```
function dijkstra(v_1, v_2):
initialize every vertex to have a cost of infinity.
set v_1's cost to 0.
pqueue := {v_1, with priority 0}. // ordered by cost
```

```
while pqueue is not empty:
    v := dequeue vertex from pqueue with minimum priority.
    mark v as visited.
    if v is v<sub>2</sub>, we can stop.
    for each unvisited neighbor n of v:
        cost := v's cost + weight of edge (v, n).
        if cost < n's cost:
            set n's cost to cost, and n's previous to v.
            enqueue n in the pqueue with priority of cost,
            or update its priority if it was already in the pqueue.
```

reconstruct path from v_2 back to v_1 , following previous pointers.

Pseudo-code for the A*-algorithm

function **astar**(v_1 , v_2): initialize every vertex to have a cost of infinity. set v_1 's cost to 0. pqueue := { v_1 , at priority $H(v_1, v_2)$ }.

while pqueue is not empty: v := dequeue vertex from pqueue with minimum priority. mark v as visited. if v is v₂, we can stop. for each unvisited neighbor n of v: cost := v's cost + weight of edge (v, n). if cost < n's cost : set n's cost to cost, and n's previous to v. enqueue n in the pqueue with priority of (cost + H(n, v₂)), or update its priority to be (cost + H(n, v₂)) if it was already in the pqueue.

reconstruct path from v_2 back to v_1 , following previous pointers.

Observe that only nodes' priorities are influenced by the heuristic, not their costs.