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1 Graphs

1.1 Introduction
Definition
* A graph is a pair (V,E), where
— Vis aset of nodes or vertices

— E is a set of pairs of nodes or edges

— Nodes and edges can store data
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Types of edges
* Directed edge

— ordered pair of nodes (u,v)
— u is the start node, v is the end node

* undirected edge



— unordered pair {u,v}

* In a directed graph, all edges are directed
¢ In an undirected graph, all edges are undirected
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Why study graphs?
* Thousands of practical applications
¢ Multitude of graph algorithms

* Interesting abstraction with many applications
* Branch of computer science and discrete mathematics with many challenges

Terminology

* An edge has endpoints (a has endpoints U and V)

» Edges that end in a node n are said to be incidents (a, d and b are incident to V)
* Nodes can be adjacent (U and V are adjacent)

* Nodes have degrees (X has degree 5)

» Parallel edges (h and i are parallel edges)

* Loops (j is a loop)

More terminology

* A cycle is a circular sequence of alternating nodes and edges. Each edge is preceded and followed
by its endpoints.

* A simple cycle is a cycle where all nodes and edges are distinct.

e C1=(V,b,X,8Y,f,W,c,U,a,V) is a simple cycle.

e G =(U,c,W,e,X,8,Y,f,W,d,V,a,U) is not a simple cycle.
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Properties

Property 1
Y, deg(v) = 2m Proof: each edge is counted twice

Property 2
In an undirected graph without loops and parallel edges, we have m < n(n—1)/2 Proof: Each node has a
max degree of (n—1)

Notation

* n number of nodes
¢ m number of edges
¢ deg(v) is the degree of node v

Exempel
n=4
m=6
deg(v) =3
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Some algorithmic graph problems
» Path. Is there a path between s and ¢?
» Shortest path. What is the shortest path between s and #?

* Cycle. Is there a cycle in the graph?
* Euler tour. Is there a cycle that uses each edge exactly once?
» Hamiltonian cycle. Is there a cycle that uses each node exactly once?

* Connectivity. Is there a path from each node to each other node?
* MST. What is the best way to connect all nodes?
* Bi-connected graph. Is it possible to obtain a disconnected graph by removing a single node?

* Planar. Is it possible to draw a graph without having edges crossing each other?
* Isomorphism. Are two graphs identical except for renaming?

Challenge. Which of these problems are simple? difficult? impossible to solve efficiently? 20.9

1.2 ADT graph

Important methods for undirected graphs
* Node och edges
— are positions
— store labels
* Access methods
— endVertices(e): an array with e’s two endpoints
— opposit(v,e): the node opposit v wrt. e
— areAdjacent(v,w): true iff v and w are adjacent
— replace(v,x): replace label in node v with x
— replace(e,x): replace label in edge e with x 2010
Important methods for undirected graphs
» Update methods

insertVertex(o): inserts a node with label o

insertEdge (v, w,0): insert an edge (v,w) with label o

remove Vertex (v): remove node v (and its incident edges)

removeEdge(e): remove edge e

e Iteration methods
— incidentEdges(v): edges incident to v
— vertices(): all nodes in the graph

— edges(): all edges in the graph s



1.3 Data structures
Data-structure 1: Edge list

* A nodes’ sequence with a sequence of positions for node objects

* Anedges’ sequence with a sequence of positions for edge objects

* A node object stores the label and a reference to the position in the nodes’ sequence

* An edge object stores the label, a reference to start node object, a reference to the end node object
and a reference to the position in the edges’ sequence

20.12
Data-structure 2: adjacent list
* Additional structure to the edge list
» Each node is associated to a list of its incident edges and references to the incident edge objects
» Edge objects are augmented with references to associated positions in the sequences of incident edges
associated to its endpoints
20.13

Data-structure 3: adjacent matrix

¢ Add extra structure to the edges’ list
* Node objects augmented with integer keys (indices) associated with the nodes
* Two dimensional adjacent array

— Reference to edge object for nodes that are adjacent

— null for nodes that are not adjacent
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Asymptotic performance

n noder, m bagar Grann-
inga parallella kanter | Baglista Grannlista matris
inga oglor
minne O(n+m) O(n + m) O(n?)
incidentEdges(v) O(m) O(deg(v)) O(n)
areAdjacent (v, w) O(m) | O(min(deg(v),deg(w)) | O(1)
insertVertex(o) o) o) O(n?)
insertEdge(v, w, o) 0(1) 01) 0(1)
removeVertex(v) O(m) O(deg(v)) O(n?)
removeEdge(e) o) o) o)
2 Search in undirected graphs
2.1 DFS
Sub-graphs
* A sub-graph S of a graph G is a graph s.t.:
— Nodes of S are subset of the nodes in G
— Edges in S are subset of the edges in G
* A spanning sub-graph of G is a sub-graph that includes all nodes in G
Spannande delgraf 2016



Connectivity

* A graph is connected if there is a path between each pair of nodes
* A connected component of a graph G is a maximal connected sub-graph of G
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Connected components
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Trees and forests
* A (free) tree is an undirected graph 7 such that:
— T is connected
— T does not have any cycles
— This definition is different from the one for rooted trees

* A forest is an undirected graph without cycles
* The connected components of a forest are trees
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Spanning trees and forests

¢ A spanning tree for a connected graph is a spanning sub-graph that is a tree
* A spanning tree is not unique if the original graph is not a tree

* Spanning trees have applications in design of communication networks

* A spanning forest for a graph is a spanning sub-graph that is a forest

Spannande trad

DFS: Depth first search

 Depth first search (DFS) is a generic technique for traversing a graph
e DFS in a graph G

Visits all nodes and edges in G

Checks whether G is connected

Computes connected components in G

Computes a spanning forest for G

* DFS on a graph with n nodes and m edges takes O(n+m) time
* DFS can be augmented to solve other graph problems

— Find a path between two given nodes in a graph

— Find a cycle in a graph

Algorithm for DFS

procedure DFS(G)
for all ¥ € G.VERTICES() do
SETLABEL (4, UNEXPLORED)

for all e € G.EDGES() do
SETLABEL (e, UNEXPLORED)

for all v € G.VERTICES() do
if GETLABEL(v) = UNEXPLORED then
DFS(G,v)

procedure DFS(G,v)
SETLABEL(v, VISITED)
for all ¢ € G.INCIDENTEDGES(v) do
if GETLABEL(e) = UNEXPLORED then
w <—OPPOSITE(v, ¢)
if GETLABEL(w) = UNEXPLORED then
SETLABEL (e, DISCOVERY)
DFS(G,w)
else
SETLABEL (e, BACK)
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@ explored node

@ unexplored node
unexplored edge
——— discovery edge

- — =» back edge

Example

DFS and labyrinth exploration

* Algorithm for DFS resembles a classical strategy for exploring a labyrinth
— We mark each crossing and dead end we encounter (nodes)
— We mark each corridor we walk through (edges)

— We keep how to get back to the start node (recursion stack)
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Properties

Property 1

DFS(G,v) visits all nodes and edges in the connected part of G that includes v

Property 2

The “discovery”-edges that are marked by a DFS(G, v) execution result in a spanning tree for the connected

component of G containing v

Analysis of DFS
* Marking/checking marking of node/edge

takes O(1) time
¢ Each node is marked twice:

— one time as UNEXPLORED
— one time as VISITED
» Each edge is marked twice:
— once as UNEXPLORED
— once as DISCOVERY or BACK

* The method incidentEdges is called once
for each node

* DFS is executed in time O(n+ m) given
the graph is represented as an adjacent list

- Recall Y, deg(v) =2m

Find paths

procedure DFS(G)

for all u € G.VERTICES() do
SETLABEL(u, UNEXPLORED)

for all ¢ € G.EDGES() do
SETLABEL(e,UNEXPLORED)

for all v € G.VERTICES() do
if GETLABEL(v) = UNEXPLORED then

DFS(G,v)

procedure DFS(G,v)
SETLABEL(v,VISITED)
for all ¢ € G.INCIDENTEDGES(v) do
if GETLABEL(¢) = UNEXPLORED then
W <—OPPOSITE(v,e)
if GETLABEL(w) = UNEXPLORED then
SETLABEL (e, DISCOVERY)
DFS(G,w)
else
SETLABEL (e, BACK)

* We can specialize DFS to find a path between two given nodes v and z

* We call DFS(G,v) with v as a start node

* We use a stack S to maintain the path from the start node to the current node
* As soon as we find the target node z, we return the content of the stack as the path

procedure PATHDFS(G,v,z)
SETLABEL(v, VISITED)
S.PUSH(v)
if v = z //found path then
print labels in S
else
for all ¢ € G.INCIDENTEDGES(v) do

if GETLABEL(e) = UNEXPLORED then

w <—OPPOSITE(v, e)

if GETLABEL(w) = UNEXPLORED then

SETLABEL (e, DISCOVERY)

S.PUSH(e)
PATHDFS(G,w,z)
S.poP() // e
else
SETLABEL (e, BACK)
S.POP() //v
Find cycles

* We can specialize the DFS algorithm to find simple cycles
* We use a stack S to maintain a path to the start node from the current node
* As soon as we encounter an edge (v,w) that leads to an ancestor we return the content of the cycle

from the stack
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procedure CYCLEDFS(G,v,z)
SETLABEL(v,VISITED)
S.PUSH(v)
for all e € G.INCIDENTEDGES(v) do
if GETLABEL(¢) = UNEXPLORED then
w <—OPPOSITE(v, ¢)
S.PUSH(e)
if GETLABEL(w) = UNEXPLORED then
SETLABEL (e, DISCOVERY)
CYCLEDFS(G,w)
else // found cycle
GETLABEL(w) = VISITED
//w has to be in S
print labels in S between w and v
S.POP() /e

S.POP() //v

2.2 BFS
BFS: Breadth first search

* BFS is a generic technique to traverse a graph
e BFSinagraph G

— Visits all nodes and edges in G

Checks whether G is connected
— Computes connected components in G

— Computes a spanning forest in G

 BFS on a graph with n nodes and m edges takes O(n +m) time
* BFS can be augmented to solve other graph problems:

— Find and return a shortest path between two given nodes in a graph

— Find a simple cycle in a graph, if any exists

Algorithm for BFS

procedure BFS(G)
mark all nodes/edges with UNEXPLORED
for all v € G.VERTICES() do

if GETLABEL(v) = UNEXPLORED then BFS(G, v)

procedure BFS(G,s)

Lo < new empty sequence; Ly.INSERTLAST(s); SETLABEL(s,VISITED); i < 0

while —L; ISEMPTY() do
L;+1 < new empty sequence
for all v € L; ELEMENTS() do
for all ¢ € G.INCIDENTEDGES(v) do

if GETLABEL(e) = UNEXPLORED then

W <—OPPOSITE(v, e)

if GETLABEL(w) = UNEXPLORED then

SETLABEL (e, DISCOVERY)
SETLABEL(w,VISITED)
L;11.INSERTLAST(w)

else
SETLABEL (e, CROSS)

i+—i+1
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@ unexplored node

@ explored node
unexplored edge
—— discovery edge

- — =» Cross edge

Example

Ll

Properties
Let Gy be the connected component of G that includes s

Property 1
BFS(G,s) visits all nodes and edges in Gy

Property 2
“discovery”-edges marked by BFS(G, s) are a spanning tree Ty for Gj

Property 3
For each node v in L;:

» The path in 75 from s to v has i edges
* Any path from s to v in G; has at least i edges

11
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Analysis of BFS

Mark/check marking of a node/edge takes
O(1) time
Each node is marked twice

— once as UNEXPLORED
— once as VISITED
Each edge is marked twice
— once as UNEXPLORED
— once as DISCOVERY or CROSS

Each node is inserted once in a sequence
L;

Method incidentEdges is called once for
each node

BFS executes in O(n+m) time given the
graph is represented with adjacent lists

procedure BFS(G)
mark all nodes/edges with UNEXPLORED
for all v € G.VERTICES() do
if GETLABEL(v) = UNEXPLORED then
BFS(G,v)

procedure BFS(G,s)
L <+ new empty sequence
L. INSERTLAST(s)
SETLABEL(s,VISITED)
i+~0
while ~L; ISEMPTY() do
L; 1 < new empty sequence
for all v € L; ELEMENTS() do
for all ¢ € G.INCIDENTEDGES (v) do
if GETLABEL(¢) = UNEXPLORED then
w <—OPPOSITE(v, €)
if GETLABEL(w) = UNEXPLORED then
SETLABEL(e, DISCOVERY)
SETLABEL(w,VISITED)
L1 INSERTLAST(w)
else
SETLABEL (e, CROSS)

- Recall ¥, deg(v) = 2m il
2.3 DFSvsBFS
Applications
Applications | DFS | BFS |
Spaning tree, connected components, paths, cycles Vv Vv
Shortest path Vv
2-connected components Vv

\
|
|
)

Edges to already visited nodes
edge to ancestor

* w is an ancestor to v in the tree of “discovery”-edges
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DFS crossing edge

* w is in the same level as v or in the next level in the tree of “’discovery”’-edges

BFS 2037
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