Föreläsning 20 Graphs and graph searches

TDDD86: DALP

Utskriftsversion av Föreläsing i *Datastrukturer, algoritmer och programmeringsparadigm* 02 December 2024

IDA, Linköpings universitet

Content

Contents

1	Gra	phs	1			
	1.1	Introduction	1			
	1.2	ADT graph	3			
	1.3	Data structures	3			
2	Search in undirected graphs 5					
-	Seal	rch in undirected graphs	5			
-	2.1	DFS	5 5			
-	2.1 2.2	rch in undirected graphs DFS	5 0			

1 Graphs

1.1 Introduction

Definition

- A graph is a pair (V, E), where
 - V is a set of nodes or vertices
 - E is a set of pairs of nodes or edges
 - Nodes and edges can store data

Types of edges

- Directed edge
 - ordered pair of nodes (u, v)
 - u is the start node, v is the end node
- undirected edge

20.2

20.1

- unordered pair $\{u, v\}$

- In a directed graph, all edges are directed
- In an undirected graph, all edges are undirected

Why study graphs?

- Thousands of practical applications
- Multitude of graph algorithms
- · Interesting abstraction with many applications
- · Branch of computer science and discrete mathematics with many challenges

Terminology

- An edge has endpoints (a has endpoints U and V)
- Edges that end in a node n are said to be incidents (a, d and b are incident to V)
- Nodes can be adjacent (U and V are adjacent)
- Nodes have degrees (*X* has degree 5)
- Parallel edges (*h* and *i* are parallel edges)
- Loops (j is a loop)

More terminology

- A cycle is a circular sequence of alternating nodes and edges. Each edge is preceded and followed by its endpoints.
- A simple cycle is a cycle where all nodes and edges are distinct.
- $C_1 = (V, b, X, g, Y, f, W, c, U, a, V)$ is a simple cycle.
- $C_2 = (U, c, W, e, X, g, Y, f, W, d, V, a, U)$ is *not* a simple cycle.

20.4

20.5

20.6

Properties

Property 1

 $\sum_{v} \deg(v) = 2m$ Proof: each edge is counted twice

Property 2

In an undirected graph without loops and parallel edges, we have $m \le n(n-1)/2$ Proof: Each node has a max degree of (n-1)

Notation

- *n* number of nodes
- *m* number of edges
- deg(v) is the degree of node v

Some algorithmic graph problems

- Path. Is there a path between *s* and *t*?
- Shortest path. What is the shortest path between *s* and *t*?
- Cycle. Is there a cycle in the graph?
- Euler tour. Is there a cycle that uses each edge exactly once?
- Hamiltonian cycle. Is there a cycle that uses each node exactly once?
- Connectivity. Is there a path from each node to each other node?
- MST. What is the best way to connect all nodes?
- Bi-connected graph. Is it possible to obtain a disconnected graph by removing a single node?
- Planar. Is it possible to draw a graph without having edges crossing each other?
- Isomorphism. Are two graphs identical except for renaming?

Challenge. Which of these problems are simple? difficult? impossible to solve efficiently?

1.2 ADT graph

Important methods for undirected graphs

- Node och edges
 - are positions
 - store labels
- · Access methods
 - endVertices(e): an array with e's two endpoints
 - opposit(v, e): the node opposit v wrt. e
 - areAdjacent(v, w): true iff v and w are adjacent
 - replace (v, x): replace label in node v with x
 - replace (e, x): replace label in edge e with x

Important methods for undirected graphs

- · Update methods
 - insertVertex(o): inserts a node with label o
 - insertEdge(v, w, o): insert an edge (v, w) with label o
 - removeVertex(v): remove node v (and its incident edges)
 - removeEdge(e): remove edge e
- Iteration methods
 - incidentEdges(v): edges incident to v
 - vertices(): all nodes in the graph
 - edges(): all edges in the graph

20.8

20.9

20.10

1.3 Data structures

Data-structure 1: Edge list

- A nodes' sequence with a sequence of positions for node objects
- An edges' sequence with a sequence of positions for edge objects
- A node object stores the label and a reference to the position in the nodes' sequence
- An edge object stores the label, a reference to start node object, a reference to the end node object and a reference to the position in the edges' sequence

Data-structure 2: adjacent list

- Additional structure to the edge list
- · Each node is associated to a list of its incident edges and references to the incident edge objects
- Edge objects are augmented with references to associated positions in the sequences of incident edges associated to its endpoints

Data-structure 3: adjacent matrix

- Add extra structure to the edges' list
- · Node objects augmented with integer keys (indices) associated with the nodes
- Two dimensional adjacent array
 - Reference to edge object for nodes that are adjacent
 - null for nodes that are not adjacent

20.12

Asymptotic performance

<i>n</i> noder, <i>m</i> bågar inga parallella kanter inga öglor	Båglista	Grannlista	Grann- matris
minne	O(n + m)	O(n + m)	O(n ²)
incidentEdges(v)	O(m)	O(deg(v))	O(n)
areAdjacent (v, w)	O(m)	O(min(deg(v),deg(w))	O(1)
insertVertex(o)	O(1)	O(1)	O(n ²)
insertEdge(v, w, o)	O(1)	O(1)	O(1)
removeVertex(v)	O(m)	O(deg(v))	O(n ²)
removeEdge(e)	O(1)	O(1)	O(1)

2 Search in undirected graphs

2.1 DFS

Sub-graphs

- A sub-graph *S* of a graph *G* is a graph s.t.:
 - Nodes of S are subset of the nodes in G
 - Edges in S are subset of the edges in G
- A spanning sub-graph of G is a sub-graph that includes all nodes in G

5

Delgraf

Spännande delgraf

20.14

Connectivity

- A graph is connected if there is a path between each pair of nodes
- A connected component of a graph G is a maximal connected sub-graph of G

Ej sammanhängande graf med två sammanhängande komponenter

Connected components

Trees and forests

- A (free) tree is an undirected graph *T* such that:
 - T is connected
 - T does not have any cycles
 - This definition is different from the one for rooted trees
- · A forest is an undirected graph without cycles
- · The connected components of a forest are trees

20.18

20.19

Spanning trees and forests

- A spanning tree for a connected graph is a spanning sub-graph that is a tree
- A spanning tree is not unique if the original graph is not a tree
- Spanning trees have applications in design of communication networks
- A spanning forest for a graph is a spanning sub-graph that is a forest

Spännande träd

DFS: Depth first search

- Depth first search (DFS) is a generic technique for traversing a graph
- DFS in a graph G
 - Visits all nodes and edges in G
 - Checks whether G is connected
 - Computes connected components in G
 - Computes a spanning forest for G
- DFS on a graph with *n* nodes and *m* edges takes O(n+m) time
- DFS can be augmented to solve other graph problems
 - Find a path between two given nodes in a graph
 - Find a cycle in a graph

Algorithm for DFS

```
procedure DFS(G)
   for all u \in G.VERTICES() do
      SETLABEL(u, UNEXPLORED)
   for all e \in G.EDGES() do
      SETLABEL(e, UNEXPLORED)
   for all v \in G.VERTICES() do
      if GETLABEL(v) = UNEXPLORED then
         DFS(G, v)
procedure DFS(G, v)
   SETLABEL(v, VISITED)
   for all e \in G.INCIDENTEDGES(v) do
      if GETLABEL(e) = UNEXPLORED then
         w \leftarrow \text{OPPOSITE}(v, e)
         if GETLABEL(w) = UNEXPLORED then
            SETLABEL(e, DISCOVERY)
             DFS(G, w)
         else
            SETLABEL(e, BACK)
```

20.22

20.20

DFS and labyrinth exploration

- Algorithm for DFS resembles a classical strategy for exploring a labyrinth
 - We mark each crossing and dead end we encounter (nodes)
 - We mark each corridor we walk through (edges)
 - We keep how to get back to the start node (recursion stack)

20.25

Properties

Property 1

DFS(G, v) visits all nodes and edges in the connected part of G that includes v

Property 2

The "discovery"-edges that are marked by a DFS(G, v) execution result in a spanning tree for the connected component of G containing v

- Analysis of DFS

 Marking/checking marking of node/edge procedure DFS(G)
 - takes O(1) time
 - · Each node is marked twice:
 - one time as UNEXPLORED
 - one time as VISITED
 - · Each edge is marked twice:
 - once as UNEXPLORED
 - once as DISCOVERY or BACK
 - The method incidentEdges is called once for each node
 - DFS is executed in time O(n+m) given the graph is represented as an adjacent list
 - Recall $\sum_{v} deg(v) = 2m$

Find paths

- We can specialize DFS to find a path between two given nodes v and z
- We call DFS(G, v) with v as a start node
- We use a stack S to maintain the path from the start node to the current node
- As soon as we find the target node z, we return the content of the stack as the path

procedure PATHDFS(G, v, z)

```
SETLABEL(v, VISITED)
S.PUSH(v)
if v = z //found path then
   print labels in S
else
   for all e \in G.INCIDENTEDGES(v) do
       if GETLABEL(e) = UNEXPLORED then
          w \leftarrow \text{OPPOSITE}(v, e)
          if GETLABEL(w) = UNEXPLORED then
              SETLABEL(e, DISCOVERY)
              S.PUSH(e)
              PATHDFS(G, w, z)
              S.POP() // e
          else
              SETLABEL(e, BACK)
```

S.POP() // v

Find cycles

- We can specialize the DFS algorithm to find simple cycles
- We use a stack S to maintain a path to the start node from the current node
- As soon as we encounter an edge (v, w) that leads to an ancestor we return the content of the cycle from the stack

- for all $u \in G$.VERTICES() do SETLABEL(u, UNEXPLORED) for all $e \in G.EDGES()$ do SETLABEL(e, UNEXPLORED)
- for all $v \in G$.VERTICES() do if GETLABEL(v) = UNEXPLORED then DFS(G, v)
- procedure DFS(G,v) SETLABEL(v,VISITED) for all $e \in G$.INCIDENTEDGES(v) do if GETLABEL(e) = UNEXPLORED then $w \leftarrow OPPOSITE(v, e)$ if GETLABEL(w) = UNEXPLORED then SETLABEL(e, DISCOVERY) DFS(G, w)else SETLABEL(e, BACK)

20.26

```
procedure CYCLEDFS(G, v, z)
   SETLABEL(v, VISITED)
   S.PUSH(v)
   for all e \in G.INCIDENTEDGES(v) do
      if GETLABEL(e) = UNEXPLORED then
          w \leftarrow \text{OPPOSITE}(v, e)
          S.PUSH(e)
          if GETLABEL(w) = UNEXPLORED then
             SETLABEL(e, DISCOVERY)
             CYCLEDFS(G, w)
          else // found cycle
             GETLABEL(w) = VISITED
             // w has to be in S
             print labels in S between w and v
          S.POP() // e
   S.pop() // v
```

2.2 BFS

BFS: Breadth first search

- · BFS is a generic technique to traverse a graph
- BFS in a graph G
 - Visits all nodes and edges in G
 - Checks whether G is connected
 - Computes connected components in G
 - Computes a spanning forest in G
- BFS on a graph with *n* nodes and *m* edges takes O(n+m) time
- BFS can be augmented to solve other graph problems:
 - Find and return a shortest path between two given nodes in a graph
 - Find a simple cycle in a graph, if any exists

Algorithm for BFS

```
procedure BFS(G)
   mark all nodes/edges with UNEXPLORED
   for all v \in G.VERTICES() do
      if GETLABEL(v) = UNEXPLORED then BFS(G, v)
procedure BFS(G,s)
   L_0 \leftarrow new empty sequence; L_0.INSERTLAST(s); SETLABEL(s, VISITED); i \leftarrow 0
   while \neg L_i.ISEMPTY() do
      L_{i+1} \leftarrow new empty sequence
      for all v \in L_i.ELEMENTS() do
          for all e \in G.INCIDENTEDGES(v) do
              if GETLABEL(e) = UNEXPLORED then
                 w \leftarrow \text{OPPOSITE}(v, e)
                 if GETLABEL(w) = UNEXPLORED then
                     SETLABEL(e, DISCOVERY)
                     SETLABEL(w, VISITED)
                     L_{i+1}.INSERTLAST(w)
                 else
                     SETLABEL(e, CROSS)
```

```
i \leftarrow i + 1
```

20.30

20.29

20.32

Example

Properties

Let G_s be the connected component of G that includes s

Property 1

BFS(G, s) visits all nodes and edges in G_s

Property 2

"discovery"-edges marked by BFS(G,s) are a spanning tree T_s for G_s

Property 3

For each node v in L_i :

- The path in T_s from s to v has i edges
- Any path from s to v in G_s has at least i edges

Analysis of BFS

- Mark/check marking of a node/edge takes O(1) time
- Each node is marked twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is marked twice
 - once as UNEXPLORED
 - once as *DISCOVERY* or *CROSS*
- Each node is inserted once in a sequence L_i
- Method incidentEdges is called once for each node
- BFS executes in O(n+m) time given the graph is represented with adjacent lists
 - Recall $\sum_{v} deg(v) = 2m$

2.3 DFS vs BFS

Applications

DFS

mark all nodes/edges with UNEXPLORED for all $v \in G.VERTICES()$ do if GETLABEL(v) = UNEXPLORED then BFS(G, v)

procedure BFS(G)

ApplicationsDFSBFSSpaning tree, connected components, paths, cycles \checkmark \checkmark Shortest path \checkmark \checkmark 2-connected components \checkmark \downarrow \checkmark \downarrow \downarrow L_1 \blacksquare L_2 \blacksquare \blacksquare </tr

Edges to already visited nodes

edge to ancestor

• w is an ancestor to v in the tree of "discovery"-edges

20.36

20.35

crossing edge

• w is in the same level as v or in the next level in the tree of "discovery"-edges

