
Föreläsning 20
Graphs and graph searches
TDDD86: DALP

Utskriftsversion av Föreläsing i Datastrukturer, algoritmer och programmeringsparadigm
02 December 2024

IDA, Linköpings universitet

20.1

Content

Contents

1 Graphs 1
1.1 Introduction . 1
1.2 ADT graph . 3
1.3 Data structures . 3

2 Search in undirected graphs 5
2.1 DFS . 5
2.2 BFS . 10
2.3 DFS vs BFS . 12 20.2

1 Graphs

1.1 Introduction

Definition

• A graph is a pair (V,E), where

– V is a set of nodes or vertices

– E is a set of pairs of nodes or edges

– Nodes and edges can store data

20.3

Types of edges

• Directed edge

– ordered pair of nodes (u,v)

– u is the start node, v is the end node

• undirected edge

1

– unordered pair {u,v}
• In a directed graph, all edges are directed
• In an undirected graph, all edges are undirected

ORD PVD
flight

AA 1206

ORD PVD
849

miles 20.4

Why study graphs?

• Thousands of practical applications
• Multitude of graph algorithms
• Interesting abstraction with many applications
• Branch of computer science and discrete mathematics with many challenges

20.5

Terminology

• An edge has endpoints (a has endpoints U and V)
• Edges that end in a node n are said to be incidents (a, d and b are incident to V)
• Nodes can be adjacent (U and V are adjacent)
• Nodes have degrees (X has degree 5)
• Parallel edges (h and i are parallel edges)
• Loops (j is a loop)

XU

V

W

Z

Y

a

c

b

e
d

f
g

h

i

j

20.6

More terminology

• A cycle is a circular sequence of alternating nodes and edges. Each edge is preceded and followed
by its endpoints.

• A simple cycle is a cycle where all nodes and edges are distinct.
• C1 = (V,b,X ,g,Y, f ,W,c,U,a,V) is a simple cycle.
• C2 = (U,c,W,e,X ,g,Y, f ,W,d,V,a,U) is not a simple cycle.

C1

XU

V

W

Z

Y

a

c

b

e

d

f

g

hC2

20.7

2

Properties

Property 1
∑v deg(v) = 2m Proof: each edge is counted twice

Property 2
In an undirected graph without loops and parallel edges, we have m ≤ n(n− 1)/2 Proof: Each node has a
max degree of (n−1)

Notation
• n number of nodes
• m number of edges
• deg(v) is the degree of node v

 Exempel
 n = 4
 m = 6
 deg(v) = 3

20.8

Some algorithmic graph problems

• Path. Is there a path between s and t?
• Shortest path. What is the shortest path between s and t?

• Cycle. Is there a cycle in the graph?
• Euler tour. Is there a cycle that uses each edge exactly once?
• Hamiltonian cycle. Is there a cycle that uses each node exactly once?

• Connectivity. Is there a path from each node to each other node?
• MST. What is the best way to connect all nodes?
• Bi-connected graph. Is it possible to obtain a disconnected graph by removing a single node?

• Planar. Is it possible to draw a graph without having edges crossing each other?
• Isomorphism. Are two graphs identical except for renaming?

Challenge. Which of these problems are simple? difficult? impossible to solve efficiently? 20.9

1.2 ADT graph

Important methods for undirected graphs

• Node och edges

– are positions

– store labels

• Access methods

– endVertices(e): an array with e’s two endpoints

– opposit(v,e): the node opposit v wrt. e

– areAdjacent(v,w): true iff v and w are adjacent

– replace(v,x): replace label in node v with x

– replace(e,x): replace label in edge e with x
20.10

Important methods for undirected graphs

• Update methods

– insertVertex(o): inserts a node with label o

– insertEdge(v,w,o): insert an edge (v,w) with label o

– removeVertex(v): remove node v (and its incident edges)

– removeEdge(e): remove edge e

• Iteration methods

– incidentEdges(v): edges incident to v

– vertices(): all nodes in the graph

– edges(): all edges in the graph
20.11

3

1.3 Data structures

Data-structure 1: Edge list

• A nodes’ sequence with a sequence of positions for node objects
• An edges’ sequence with a sequence of positions for edge objects
• A node object stores the label and a reference to the position in the nodes’ sequence
• An edge object stores the label, a reference to start node object, a reference to the end node object

and a reference to the position in the edges’ sequence

a

v

u

w

a c

b
z

d

u v w z

b c d

20.12

Data-structure 2: adjacent list

• Additional structure to the edge list
• Each node is associated to a list of its incident edges and references to the incident edge objects
• Edge objects are augmented with references to associated positions in the sequences of incident edges

associated to its endpoints

u

v

w

a b

a

u v w

b

20.13

Data-structure 3: adjacent matrix

• Add extra structure to the edges’ list
• Node objects augmented with integer keys (indices) associated with the nodes
• Two dimensional adjacent array

– Reference to edge object for nodes that are adjacent

– null for nodes that are not adjacent

4

u

v

w

a b

2

1

0

 2 1 0

∅ ∅

 ∅

∅ ∅

a

u v w 0 1 2

b

20.14

Asymptotic performance

20.15

2 Search in undirected graphs

2.1 DFS

Sub-graphs

• A sub-graph S of a graph G is a graph s.t.:

– Nodes of S are subset of the nodes in G

– Edges in S are subset of the edges in G

• A spanning sub-graph of G is a sub-graph that includes all nodes in G

Delgraf

Spännande delgraf 20.16

5

Connectivity

• A graph is connected if there is a path between each pair of nodes
• A connected component of a graph G is a maximal connected sub-graph of G

Sammanhängande graf

Ej sammanhängande graf med två
sammanhängande komponenter 20.17

Connected components

20.18

Trees and forests

• A (free) tree is an undirected graph T such that:

– T is connected

– T does not have any cycles

– This definition is different from the one for rooted trees

• A forest is an undirected graph without cycles
• The connected components of a forest are trees

Träd

Skog

20.19

6

Spanning trees and forests

• A spanning tree for a connected graph is a spanning sub-graph that is a tree
• A spanning tree is not unique if the original graph is not a tree
• Spanning trees have applications in design of communication networks
• A spanning forest for a graph is a spanning sub-graph that is a forest

Graf

Spännande träd 20.20

DFS: Depth first search

• Depth first search (DFS) is a generic technique for traversing a graph
• DFS in a graph G

– Visits all nodes and edges in G

– Checks whether G is connected

– Computes connected components in G

– Computes a spanning forest for G

• DFS on a graph with n nodes and m edges takes O(n+m) time
• DFS can be augmented to solve other graph problems

– Find a path between two given nodes in a graph

– Find a cycle in a graph
20.21

Algorithm for DFS
procedure DFS(G)

for all u ∈ G.VERTICES() do
SETLABEL(u,UNEXPLORED)

for all e ∈ G.EDGES() do
SETLABEL(e,UNEXPLORED)

for all v ∈ G.VERTICES() do
if GETLABEL(v) =UNEXPLORED then

DFS(G,v)

procedure DFS(G,v)
SETLABEL(v,V ISIT ED)
for all e ∈ G.INCIDENTEDGES(v) do

if GETLABEL(e) =UNEXPLORED then
w←OPPOSITE(v,e)
if GETLABEL(w) =UNEXPLORED then

SETLABEL(e,DISCOV ERY)
DFS(G,w)

else
SETLABEL(e,BACK)

20.22

7

Example explored node

unexplored node

unexplored edge

discovery edge

back edge

20.23

Example

DB

A

C

E

DB

A

C

E

DB

A

C

E

DB

A

C

E

20.24

DFS and labyrinth exploration

• Algorithm for DFS resembles a classical strategy for exploring a labyrinth

– We mark each crossing and dead end we encounter (nodes)

– We mark each corridor we walk through (edges)

– We keep how to get back to the start node (recursion stack)

20.25

8

Properties

Property 1
DFS(G,v) visits all nodes and edges in the connected part of G that includes v

Property 2
The ”discovery”-edges that are marked by a DFS(G,v) execution result in a spanning tree for the connected
component of G containing v

DB

A

C

E

20.26

Analysis of DFS
• Marking/checking marking of node/edge

takes O(1) time
• Each node is marked twice:

– one time as UNEXPLORED

– one time as VISITED

• Each edge is marked twice:

– once as UNEXPLORED

– once as DISCOVERY or BACK

• The method incidentEdges is called once
for each node

• DFS is executed in time O(n+m) given
the graph is represented as an adjacent list

– Recall ∑v deg(v) = 2m

procedure DFS(G)
for all u ∈ G.VERTICES() do

SETLABEL(u,UNEXPLORED)

for all e ∈ G.EDGES() do
SETLABEL(e,UNEXPLORED)

for all v ∈ G.VERTICES() do
if GETLABEL(v) =UNEXPLORED then

DFS(G,v)

procedure DFS(G,v)
SETLABEL(v,V ISIT ED)
for all e ∈ G.INCIDENTEDGES(v) do

if GETLABEL(e) =UNEXPLORED then
w←OPPOSITE(v,e)
if GETLABEL(w) =UNEXPLORED then

SETLABEL(e,DISCOV ERY)
DFS(G,w)

else
SETLABEL(e,BACK)

20.27

Find paths

• We can specialize DFS to find a path between two given nodes v and z
• We call DFS(G,v) with v as a start node
• We use a stack S to maintain the path from the start node to the current node
• As soon as we find the target node z, we return the content of the stack as the path

procedure PATHDFS(G,v,z)
SETLABEL(v,V ISIT ED)
S.PUSH(v)
if v = z //found path then

print labels in S
else

for all e ∈ G.INCIDENTEDGES(v) do
if GETLABEL(e) =UNEXPLORED then

w←OPPOSITE(v,e)
if GETLABEL(w) =UNEXPLORED then

SETLABEL(e,DISCOV ERY)
S.PUSH(e)
PATHDFS(G,w,z)
S.POP() // e

else
SETLABEL(e,BACK)

S.POP() // v
20.28

Find cycles

• We can specialize the DFS algorithm to find simple cycles
• We use a stack S to maintain a path to the start node from the current node
• As soon as we encounter an edge (v,w) that leads to an ancestor we return the content of the cycle

from the stack

9

procedure CYCLEDFS(G,v,z)
SETLABEL(v,V ISIT ED)
S.PUSH(v)
for all e ∈ G.INCIDENTEDGES(v) do

if GETLABEL(e) =UNEXPLORED then
w←OPPOSITE(v,e)
S.PUSH(e)
if GETLABEL(w) =UNEXPLORED then

SETLABEL(e,DISCOV ERY)
CYCLEDFS(G,w)

else // found cycle
GETLABEL(w) =V ISIT ED
// w has to be in S
print labels in S between w and v

S.POP() // e
S.POP() // v

20.29

2.2 BFS

BFS: Breadth first search

• BFS is a generic technique to traverse a graph
• BFS in a graph G

– Visits all nodes and edges in G

– Checks whether G is connected

– Computes connected components in G

– Computes a spanning forest in G

• BFS on a graph with n nodes and m edges takes O(n+m) time
• BFS can be augmented to solve other graph problems:

– Find and return a shortest path between two given nodes in a graph

– Find a simple cycle in a graph, if any exists

20.30

Algorithm for BFS
procedure BFS(G)

mark all nodes/edges with UNEXPLORED
for all v ∈ G.VERTICES() do

if GETLABEL(v) =UNEXPLORED then BFS(G,v)

procedure BFS(G,s)
L0← new empty sequence; L0.INSERTLAST(s); SETLABEL(s,V ISIT ED); i← 0
while ¬Li.ISEMPTY() do

Li+1← new empty sequence
for all v ∈ Li.ELEMENTS() do

for all e ∈ G.INCIDENTEDGES(v) do
if GETLABEL(e) =UNEXPLORED then

w←OPPOSITE(v,e)
if GETLABEL(w) =UNEXPLORED then

SETLABEL(e,DISCOV ERY)
SETLABEL(w,V ISIT ED)
Li+1.INSERTLAST(w)

else
SETLABEL(e,CROSS)

i← i+1 20.31

10

Example

unexplored node

unexplored edge

discovery edge

cross

explored node

20.32

Example

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

20.33

Properties
Let Gs be the connected component of G that includes s

Property 1
BFS(G,s) visits all nodes and edges in Gs

Property 2
”discovery”-edges marked by BFS(G,s) are a spanning tree Ts for Gs

Property 3
For each node v in Li:

• The path in Ts from s to v has i edges
• Any path from s to v in Gs has at least i edges

11

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

20.34

Analysis of BFS
• Mark/check marking of a node/edge takes

O(1) time
• Each node is marked twice

– once as UNEXPLORED

– once as VISITED

• Each edge is marked twice

– once as UNEXPLORED

– once as DISCOVERY or CROSS

• Each node is inserted once in a sequence
Li

• Method incidentEdges is called once for
each node

• BFS executes in O(n+m) time given the
graph is represented with adjacent lists

– Recall ∑v deg(v) = 2m

procedure BFS(G)
mark all nodes/edges with UNEXPLORED
for all v ∈ G.VERTICES() do

if GETLABEL(v) =UNEXPLORED then
BFS(G,v)

procedure BFS(G,s)
L0 ← new empty sequence
L0 .INSERTLAST(s)
SETLABEL(s,V ISIT ED)
i← 0
while ¬Li .ISEMPTY() do

Li+1 ← new empty sequence
for all v ∈ Li .ELEMENTS() do

for all e ∈ G.INCIDENTEDGES(v) do
if GETLABEL(e) =UNEXPLORED then

w←OPPOSITE(v,e)
if GETLABEL(w) =UNEXPLORED then

SETLABEL(e,DISCOV ERY)
SETLABEL(w,V ISIT ED)
Li+1 .INSERTLAST(w)

else
SETLABEL(e,CROSS)

i← i+1
20.35

2.3 DFS vs BFS

Applications

Applications DFS BFS
Spaning tree, connected components, paths, cycles

√ √

Shortest path
√

2-connected components
√

CB

A

E

D

F

DFS

CB

A

E

D

L0

L1

F
L2

BFS 20.36

Edges to already visited nodes
edge to ancestor

• w is an ancestor to v in the tree of ”discovery”-edges

12

CB

A

E

D

F

DFS crossing edge

• w is in the same level as v or in the next level in the tree of ”discovery”-edges

CB

A

E

D

L0

L1

F
L2

BFS 20.37

13

	Graphs
	Introduction
	ADT graph
	Data structures

	Search in undirected graphs
	DFS
	BFS
	DFS vs BFS

