Forelasning 20
Graphs and graph searches

TDDD86: DALP

Utskriftsversion av Forelasing i Datastrukturer, algoritmer och programmeringsparadigm
02 December 2024

IDA, Linképings universitet

20.1

Content

Contents

R.1 DESI . .o 5

23 DESvsBESI. oo 12 20.2

1 Graphs

1.1 Introduction
Definition
* A graph is a pair (V,E), where
— Vis aset of nodes or vertices

— E is a set of pairs of nodes or edges

— Nodes and edges can store data

20.3

Types of edges
* Directed edge

— ordered pair of nodes (u,v)
— u is the start node, v is the end node

* undirected edge

— unordered pair {u,v}

* In a directed graph, all edges are directed
¢ In an undirected graph, all edges are undirected

flight
AA 1206
miles

Why study graphs?
* Thousands of practical applications
¢ Multitude of graph algorithms

* Interesting abstraction with many applications
* Branch of computer science and discrete mathematics with many challenges

Terminology

* An edge has endpoints (a has endpoints U and V)

» Edges that end in a node n are said to be incidents (a, d and b are incident to V)
* Nodes can be adjacent (U and V are adjacent)

* Nodes have degrees (X has degree 5)

» Parallel edges (h and i are parallel edges)

* Loops (j is a loop)

More terminology

* A cycle is a circular sequence of alternating nodes and edges. Each edge is preceded and followed
by its endpoints.

* A simple cycle is a cycle where all nodes and edges are distinct.

e C1=(V,b,X,8Y,f,W,c,U,a,V) is a simple cycle.

e G =(U,c,W,e,X,8,Y,f,W,d,V,a,U) is not a simple cycle.

20.4

20.5

20.6

20.7

Properties

Property 1
Y, deg(v) = 2m Proof: each edge is counted twice

Property 2
In an undirected graph without loops and parallel edges, we have m < n(n—1)/2 Proof: Each node has a
max degree of (n—1)

Notation

* n number of nodes
¢ m number of edges
¢ deg(v) is the degree of node v

Exempel
n=4
m=6
deg(v) =3

20.8

Some algorithmic graph problems
» Path. Is there a path between s and ¢?
» Shortest path. What is the shortest path between s and #?

* Cycle. Is there a cycle in the graph?
* Euler tour. Is there a cycle that uses each edge exactly once?
» Hamiltonian cycle. Is there a cycle that uses each node exactly once?

* Connectivity. Is there a path from each node to each other node?
* MST. What is the best way to connect all nodes?
* Bi-connected graph. Is it possible to obtain a disconnected graph by removing a single node?

* Planar. Is it possible to draw a graph without having edges crossing each other?
* Isomorphism. Are two graphs identical except for renaming?

Challenge. Which of these problems are simple? difficult? impossible to solve efficiently? 20.9

1.2 ADT graph

Important methods for undirected graphs
* Node och edges
— are positions
— store labels
* Access methods
— endVertices(e): an array with e’s two endpoints
— opposit(v,e): the node opposit v wrt. e
— areAdjacent(v,w): true iff v and w are adjacent
— replace(v,x): replace label in node v with x
— replace(e,x): replace label in edge e with x 2010
Important methods for undirected graphs
» Update methods

insertVertex(o): inserts a node with label o

insertEdge (v, w,0): insert an edge (v,w) with label o

remove Vertex (v): remove node v (and its incident edges)

removeEdge(e): remove edge e

e Iteration methods
— incidentEdges(v): edges incident to v
— vertices(): all nodes in the graph

— edges(): all edges in the graph s

1.3 Data structures
Data-structure 1: Edge list

* A nodes’ sequence with a sequence of positions for node objects

* Anedges’ sequence with a sequence of positions for edge objects

* A node object stores the label and a reference to the position in the nodes’ sequence

* An edge object stores the label, a reference to start node object, a reference to the end node object
and a reference to the position in the edges’ sequence

20.12
Data-structure 2: adjacent list
* Additional structure to the edge list
» Each node is associated to a list of its incident edges and references to the incident edge objects
» Edge objects are augmented with references to associated positions in the sequences of incident edges
associated to its endpoints
20.13

Data-structure 3: adjacent matrix

¢ Add extra structure to the edges’ list
* Node objects augmented with integer keys (indices) associated with the nodes
* Two dimensional adjacent array

— Reference to edge object for nodes that are adjacent

— null for nodes that are not adjacent

20.14

Asymptotic performance

n noder, m bagar Grann-
inga parallella kanter | Baglista Grannlista matris
inga oglor
minne O(n+m) O(n + m) O(n?)
incidentEdges(v) O(m) O(deg(v)) O(n)
areAdjacent (v, w) O(m) | O(min(deg(v),deg(w)) | O(1)
insertVertex(o) o) o) O(n?)
insertEdge(v, w, o) 0(1) 01) 0(1)
removeVertex(v) O(m) O(deg(v)) O(n?)
removeEdge(e) o) o) o)
2 Search in undirected graphs
2.1 DFS
Sub-graphs
* A sub-graph S of a graph G is a graph s.t.:
— Nodes of S are subset of the nodes in G
— Edges in S are subset of the edges in G
* A spanning sub-graph of G is a sub-graph that includes all nodes in G
Spannande delgraf 2016

Connectivity

* A graph is connected if there is a path between each pair of nodes
* A connected component of a graph G is a maximal connected sub-graph of G

Sammanhéngande graf

o

Ej sammanhangande graf med tva
sammanhangande komponenter 20.17

Connected components

:I_.I-I
'471;1*{ s

63 sammanhangande komponenter 20.18

Trees and forests
* A (free) tree is an undirected graph 7 such that:
— T is connected
— T does not have any cycles
— This definition is different from the one for rooted trees

* A forest is an undirected graph without cycles
* The connected components of a forest are trees

20.19

Trad

®oe oo

Skog

Spanning trees and forests

¢ A spanning tree for a connected graph is a spanning sub-graph that is a tree
* A spanning tree is not unique if the original graph is not a tree

* Spanning trees have applications in design of communication networks

* A spanning forest for a graph is a spanning sub-graph that is a forest

Spannande trad

DFS: Depth first search

 Depth first search (DFS) is a generic technique for traversing a graph
e DFS in a graph G

Visits all nodes and edges in G

Checks whether G is connected

Computes connected components in G

Computes a spanning forest for G

* DFS on a graph with n nodes and m edges takes O(n+m) time
* DFS can be augmented to solve other graph problems

— Find a path between two given nodes in a graph

— Find a cycle in a graph

Algorithm for DFS

procedure DFS(G)
for all ¥ € G.VERTICES() do
SETLABEL (4, UNEXPLORED)

for all e € G.EDGES() do
SETLABEL (e, UNEXPLORED)

for all v € G.VERTICES() do
if GETLABEL(v) = UNEXPLORED then
DFS(G,v)

procedure DFS(G,v)
SETLABEL(v, VISITED)
for all ¢ € G.INCIDENTEDGES(v) do
if GETLABEL(e) = UNEXPLORED then
w <—OPPOSITE(v, ¢)
if GETLABEL(w) = UNEXPLORED then
SETLABEL (e, DISCOVERY)
DFS(G,w)
else
SETLABEL (e, BACK)

20.20

20.21

20.22

@ explored node

@ unexplored node
unexplored edge
——— discovery edge

- — =» back edge

Example

DFS and labyrinth exploration

* Algorithm for DFS resembles a classical strategy for exploring a labyrinth
— We mark each crossing and dead end we encounter (nodes)
— We mark each corridor we walk through (edges)

— We keep how to get back to the start node (recursion stack)

ER—
[t | T
b ||

20.23

20.24

20.25

Properties

Property 1

DFS(G,v) visits all nodes and edges in the connected part of G that includes v

Property 2

The “discovery”-edges that are marked by a DFS(G, v) execution result in a spanning tree for the connected

component of G containing v

Analysis of DFS
* Marking/checking marking of node/edge

takes O(1) time
¢ Each node is marked twice:

— one time as UNEXPLORED
— one time as VISITED
» Each edge is marked twice:
— once as UNEXPLORED
— once as DISCOVERY or BACK

* The method incidentEdges is called once
for each node

* DFS is executed in time O(n+ m) given
the graph is represented as an adjacent list

- Recall Y, deg(v) =2m

Find paths

procedure DFS(G)

for all u € G.VERTICES() do
SETLABEL(u, UNEXPLORED)

for all ¢ € G.EDGES() do
SETLABEL(e,UNEXPLORED)

for all v € G.VERTICES() do
if GETLABEL(v) = UNEXPLORED then

DFS(G,v)

procedure DFS(G,v)
SETLABEL(v,VISITED)
for all ¢ € G.INCIDENTEDGES(v) do
if GETLABEL(¢) = UNEXPLORED then
W <—OPPOSITE(v,e)
if GETLABEL(w) = UNEXPLORED then
SETLABEL (e, DISCOVERY)
DFS(G,w)
else
SETLABEL (e, BACK)

* We can specialize DFS to find a path between two given nodes v and z

* We call DFS(G,v) with v as a start node

* We use a stack S to maintain the path from the start node to the current node
* As soon as we find the target node z, we return the content of the stack as the path

procedure PATHDFS(G,v,z)
SETLABEL(v, VISITED)
S.PUSH(v)
if v = z //found path then
print labels in S
else
for all ¢ € G.INCIDENTEDGES(v) do

if GETLABEL(e) = UNEXPLORED then

w <—OPPOSITE(v, e)

if GETLABEL(w) = UNEXPLORED then

SETLABEL (e, DISCOVERY)

S.PUSH(e)
PATHDFS(G,w,z)
S.poP() // e
else
SETLABEL (e, BACK)
S.POP() //v
Find cycles

* We can specialize the DFS algorithm to find simple cycles
* We use a stack S to maintain a path to the start node from the current node
* As soon as we encounter an edge (v,w) that leads to an ancestor we return the content of the cycle

from the stack

20.26

20.27

20.28

procedure CYCLEDFS(G,v,z)
SETLABEL(v,VISITED)
S.PUSH(v)
for all e € G.INCIDENTEDGES(v) do
if GETLABEL(¢) = UNEXPLORED then
w <—OPPOSITE(v, ¢)
S.PUSH(e)
if GETLABEL(w) = UNEXPLORED then
SETLABEL (e, DISCOVERY)
CYCLEDFS(G,w)
else // found cycle
GETLABEL(w) = VISITED
//w has to be in S
print labels in S between w and v
S.POP() /e

S.POP() //v

2.2 BFS
BFS: Breadth first search

* BFS is a generic technique to traverse a graph
e BFSinagraph G

— Visits all nodes and edges in G

Checks whether G is connected
— Computes connected components in G

— Computes a spanning forest in G

 BFS on a graph with n nodes and m edges takes O(n +m) time
* BFS can be augmented to solve other graph problems:

— Find and return a shortest path between two given nodes in a graph

— Find a simple cycle in a graph, if any exists

Algorithm for BFS

procedure BFS(G)
mark all nodes/edges with UNEXPLORED
for all v € G.VERTICES() do

if GETLABEL(v) = UNEXPLORED then BFS(G, v)

procedure BFS(G,s)

Lo < new empty sequence; Ly.INSERTLAST(s); SETLABEL(s,VISITED); i < 0

while —L; ISEMPTY() do
L;+1 < new empty sequence
for all v € L; ELEMENTS() do
for all ¢ € G.INCIDENTEDGES(v) do

if GETLABEL(e) = UNEXPLORED then

W <—OPPOSITE(v, e)

if GETLABEL(w) = UNEXPLORED then

SETLABEL (e, DISCOVERY)
SETLABEL(w,VISITED)
L;11.INSERTLAST(w)

else
SETLABEL (e, CROSS)

i+—i+1

10

20.29

20.30

20.31

@ unexplored node

@ explored node
unexplored edge
—— discovery edge

- — =» Cross edge

Example

Ll

Properties
Let Gy be the connected component of G that includes s

Property 1
BFS(G,s) visits all nodes and edges in Gy

Property 2
“discovery”-edges marked by BFS(G, s) are a spanning tree Ty for Gj

Property 3
For each node v in L;:

» The path in 75 from s to v has i edges
* Any path from s to v in G; has at least i edges

11

20.32

20.33

Analysis of BFS

Mark/check marking of a node/edge takes
O(1) time
Each node is marked twice

— once as UNEXPLORED
— once as VISITED
Each edge is marked twice
— once as UNEXPLORED
— once as DISCOVERY or CROSS

Each node is inserted once in a sequence
L;

Method incidentEdges is called once for
each node

BFS executes in O(n+m) time given the
graph is represented with adjacent lists

procedure BFS(G)
mark all nodes/edges with UNEXPLORED
for all v € G.VERTICES() do
if GETLABEL(v) = UNEXPLORED then
BFS(G,v)

procedure BFS(G,s)
L <+ new empty sequence
L. INSERTLAST(s)
SETLABEL(s,VISITED)
i+~0
while ~L; ISEMPTY() do
L; 1 < new empty sequence
for all v € L; ELEMENTS() do
for all ¢ € G.INCIDENTEDGES (v) do
if GETLABEL(¢) = UNEXPLORED then
w <—OPPOSITE(v, €)
if GETLABEL(w) = UNEXPLORED then
SETLABEL(e, DISCOVERY)
SETLABEL(w,VISITED)
L1 INSERTLAST(w)
else
SETLABEL (e, CROSS)

- Recall ¥, deg(v) = 2m il
2.3 DFSvsBFS
Applications
Applications | DFS | BFS |
Spaning tree, connected components, paths, cycles Vv Vv
Shortest path Vv
2-connected components Vv

\
|
|
)

Edges to already visited nodes
edge to ancestor

* w is an ancestor to v in the tree of “discovery”-edges

12

20.34

20.35

20.36

DFS crossing edge

* w is in the same level as v or in the next level in the tree of “’discovery”’-edges

BFS 2037

13

	Graphs
	Introduction
	ADT graph
	Data structures

	Search in undirected graphs
	DFS
	BFS
	DFS vs BFS

