
Föreläsning 19
Heap-sort, merge-sort. Lower limit
for sorting. Sorting in linear time?
TDDD86: DALP

Utskriftsversion av Föreläsing i Datastrukturer, algoritmer och programmeringsparadigm
26 november 2024

IDA, Linköpings universitet

19.1

Content

Contents

1 Sorting 1
1.1 Heap-sort . 1
1.2 Merge-sort . 5
1.3 Summary . 10

2 A lower limit for comparison based sorting 11

3 Sorting in linear time? 13
3.1 Counting-sort . 14
3.2 Bucket-sort . 22
3.3 Radix-sort . 23 19.2

1 Sorting

1.1 Heap-sort

Sorting with a priority queue

• Use a priority queue to sort a number of comparable elements

– Insert the elements in the priority queue

– Remove the elements in a sorted order using removeMin-operations

• Execution time depends on the priority queue implementation:

– Unsorted sequence corresponds to a selection sort and an O(n2) time

– Sorted sequence gives insertion sort and an O(n2) time

• Can we achieve better?

procedure PQSORT(S)
P← empty priority queue
while ¬S.ISEMPTY() do

e← S.REMOVE(S.FIRST())
P.INSERT(e)

while ¬P.ISEMPTY() do
e← P.REMOVEMIN()
S.INSERTLAST(e)

1

19.3

Height of a heap

Proposition 1. A heap with n keys has height O(logn)

Proof. The heap is a represented with a complete tree.

• Let h be the height of a heap with n keys
• There are 2i keys at depths i = 0, . . .h− 1 and at least a key at depth h. Therefore, n ≥ 1+ 2+ 4+
. . .+2h−1 +1

• Hence, n≥ 2h and h≤ log2n

1

2

2h­1

1

nycklar
0

1

h­1

h

djup

19.4

Insertion in a heap

• Method insert in ADT priority queue inserts key k in the heap
• Insertion algorithm involves three steps:

– Find location for inserting node z (new last leaf)

– Store k in z

– Restore heap property

2

65

79

nytt sista löv

z

2

65

79 1z
19.5

Upheap (bubble up)

• Insertion of a key k might violate the heap property
• Method upheap restores the heap property by moving the key k upwards along the path to the root
• upheap terminates when key k reaches the root or a node whose parent is not larger than k
• Since the height of the heap is O(logn), the upheap method is in O(logn) time

1

25

79 6z

2

15

79 6z
19.6

2

Removal from a heap

• Method removeMin in ADT priority queue removes the root key from the heap
• Removal algorithm consists in 3 steps:

– Replace root key with the key from the last leaf w

– Remove w

– Restore heap property

2

65

79

sista lövet

w

7

65

9
w

nytt sista löv 19.7

Downheap (bubble down)

• Replacing root key with key k from last leaf might violate the heap property
• Method downheap restores the heap property by moving k downwards
• downheap terminate when key k reaches a leaf or a node where none of the children has a key smaller

than k
• Since the height of the tree is O(logn), the downheap method is in O(logn) time

7

65

9
w

5

67

9
w

19.8

Heap-sort

• Consider a priority queue with n elements implemented with a heap. For each one of the n elements:

– insert and removeMin take O(logn) time

– size, isEmpty and min take O(1) time

• With a heap based priority queue, we can sort a sequence of n elements in O(n logn) time
• The resulting algorithm is called heap-sort
• Heap-sort is faster than a quadratic sorting algorithm.

19.9

Merging two heaps

• Given two heaps and a key k
• Create a new heap where the root node stores key k with the two heaps as sub-trees
• Run downheap to restore the heap property

3

7

3

58

2

64

3

58

2

64

2

3

58

4

67
19.10

Example: Building a heap bottom-up

1516 124 76 2023

25

1516

5

124

11

76

27

2023

10 7 8 25 5 11 27 16 15 4 12 6 7 23 20

19.11

Example: Building a heap bottom-up

25

1516

5

124

11

96

27

2023

15

2516

4

125

6

911

20

2723
19.12

Example: Building a heap bottom-up

4

7

15

2516

4

125

8

6

911

20

2723

4

15

2516

5

127

6

8

911

20

2723
19.13

Example: Building a heap bottom-up

4

15

2516

5

127

10

6

8

911

20

2723

5

15

2516

7

1210

4

6

8

911

20

2723
19.14

Analysis

• We visualize a worst-case calls to downheap with paths that start right then continue left until the
heap bottom.

• Since each node is traversed at most twice, the total number of such paths is O(n)
• Hence building the heap bottom-up requires at most O(n) steps
• This is faster than n calls to insert in the first phase of heap-sort

19.15

1.2 Merge-sort

Back to divide-and-conquer

• Merge-sort is a sorting algorithm based on the divide-and-conquer paradigm
• Similar to heap-sort:

– has an execution time in O(n logn)

5

• Unlike heap-sort

– does not use a priority queue

– accesses data in a sequential fashion (adapted for sorting data on disk)
19.16

Merge-sort
Merge-sort on an input sequence S with n elements consists in 3 steps:

• Divide: partition S in two sequences S1 and S2, each with n/2 elements
• Conquer: sort S1 and S2 recursively
• Combine: merge S1 and S2 into a sorted sequence

procedure MERGESORT(S)
if S.SIZE()> 1 then

(S1,S2)←PARTITION(S.SIZE()/2)
MERGESORT(S1)
MERGESORT(S2)
S←MERGE(S1,S2) 19.17

Merge two sorted sequences

• Combination step: merge two sequences A and B into a sorted sequence S containing the union of
elements in A and B

• Merging two sorted sequences, each with n/2 elements implemented with doubly linked lists takes
O(n) time

function MERGE(A,B)
S← empty sequence
while ¬A.ISEMPTY()∧¬B.ISEMPTY() do

if A.FIRST.ELEMENT()< B.FIRST.ELEMENT() then
S.INSERTLAST(A.REMOVE(A.FIRST()))

else
S.INSERTLAST(B.REMOVE(B.FIRST()))

while ¬A.ISEMPTY() do
S.INSERTLAST(A.REMOVE(A.FIRST()))

while ¬B.ISEMPTY() do
S.INSERTLAST(B.REMOVE(B.FIRST()))

return S 19.18

Merge-sort tree

• Execution of merge-sort can be visualized with a binary tree

– Each node represents a recursive call to merge sort and represents

* Unsorted sequence before execution and its partition

* Sorted sequence after execution

– Root is the original call

– Leaves are calls on sequences with lengths 0 or 1

7 2  9 4 → 2 4 7 9

7  2 → 2 7 9  4 → 4 9

7 → 7 2 → 2 9 → 9 4 → 4

19.19

6

Example: Execution of merge-sort

• Partition

7 2 9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 2 → 2 9 4 → 4 9 3 8 → 3 6 1 → 1 6

7 → 2 → 9 → 4 → 3 → 8 → 6 → 1 →

7 2 9 4 ⏐ 3 8 6 1 → 1 2 3 4 6 7 8 9

19.20

Example: Execution of merge-sort

• recursive call, partition

 7 2 ⏐ 9 4 → 2 4 7 3 8 6 1 6666 8

7 2 → 2 9 4 → 4 9 3 8 → 3 6 1 → 1 6

7 → 2 → 9 → 4 → 3 → 8 → 6 → 1 →

7 2 9 4 ⏐ 3 8 6 1 → 1 2 3 4 6 7 8 9

19.21

Example: Execution of merge-sort

• recursive call, partition

 7 2 ⏐ 9 4 → 2 4 7 3 8 6 1 6→ 66 1 3 8

7 ⏐ 2 → 2 7 9 4 9→ 4 3 8 → 3 8 6 1 → 1 6

7 → 2 → 9 → 4 → 3 → 8 → 6 → 1 →

7 2 9 4 ⏐ 3 8 6 1 → 1 2 3 4 6 7 8 9

19.22

7

Example: Execution of merge-sort

• recursive call, base case

 7 2 ⏐ 9 4 → 2 4 7 3 8 6 1

7 ⏐ 2 → 2 9 4 → 4 9 3 8 → 3 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 ⏐ 3 8 6 1 6→ 1 2 3 4 6 7 8

19.23

Example: Execution of merge-sort

• Recursive call, base case

 7 2 ⏐ 9 4 → 2 4 7 3 8 6 1 → 1 3

7 ⏐ 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2→2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 ⏐ 3 8 6 1 → 1 2 3 4 6 7 8

19.24

Example: Execution of merge-sort

• merge

 7 2 ⏐ 9 4 → 2 4 7 3 8 6 1 → 1 3 8

7 ⏐ 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2→2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 ⏐ 3 8 6 1 → 1 2 3 4 6 7 8

19.25

8

Example: Execution of merge-sort

• recursive call, . . . , base case

 7 2 ⏐ 9 4 → 2 4 7 3 8 6 1 → 1 3 8

7 ⏐ 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2→2 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 ⏐ 3 8 6 1 → 1 2 3 4 6 7 8

9 → 9 4 → 4
19.26

Example: Execution of merge-sort

• Merge

 7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

19.27

Example: Execution of merge-sort

• Recursive call, . . . , merge

 7 2 ⏐ 9 4 → 2 4 7 9 3 8 6 1 → 1 3 6 8

7 ⏐ 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2→2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 ⏐ 3 8 6 1 → 1 2 3 4 6 7 8 9

19.28

9

Example: Execution of merge-sort

• Merge

 7 2 ⏐ 9 4 → 2 4 7 9 3 8 6 1 → 1 3 6 8

7 ⏐ 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2→2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 ⏐ 3 8 6 1 → 1 2 3 4 6 7 8 9

19.29

Analysis of merge-sort

• Height h of merge-sort tree is O(logn)

– at each recursive call, the sequence is divided in the middle

• The total amount of work performed at depth i is O(n)

– we partition and merge 2i sequences of lengths n/2i

– we perform 2i+1 recursive calls

• The total execution time for merge-sort is O(n logn)
19.30

Analysis of merge-sort
djup #sekv strl

0 1 n

1 2 n/2

i 2i n/2i

… … … 19.31

1.3 Summary

Summary so far

10

19.32

2 A lower limit for comparison based sorting

Comparison based sorting

• Many sorting algorithms are comparison based

– They sort by comparing pairs of elements

– Example: insertion-sort, selection-sort, heap-sort, merge-sort, quick-sort, . . .

• Let’s deduce a lower limit for the worst-case execution time of any comparison-based algorithm that
sorts a sequence of n elements x1,x2, . . . ,xn

r xÄ i < xj?

ja

nej

19.33

Count comparisons

• Let us just count the number of comparisons
• Each execution of the algorithm corresponds to a path from the root to a leaf in a decision tree

xi < xj ?

xa < xb ?

xm < xo ? xp < xq ?xe < xf ? xk < xl ?

xc < xd ?

19.34

11

Example: Decision tree

1:2

2:3

123 1:3

132 312

1:3

213 2:3

231 321

Sort 〈x1, x2, …, xn〉

Each node is marked with indices i : j for i, j ∈ {1,2, . . . ,n}
• Left sub-tree shows remaining comparisons if xi ≤ x j
• Right sub-tree shows remaining comparisons if xi > x j 19.35

Example: Decision tree

1:2

2:3

123 1:3

132 312

1:3

213 2:3

231 321

9 ≥ 4Sort 〈x1, x2, x3〉
= 〈 9, 4, 6 〉:

Each node is marked with indices i : j for i, j ∈ {1,2, . . . ,n}
• Left sub-tree shows remaining comparisons if xi ≤ x j
• Right sub-tree shows remaining comparisons if xi > x j 19.36

Example: Decision tree

1:2

2:3

123 1:3

132 312

1:3

213 2:3

231 321

9 ≥ 6

Sort 〈x1, x2, x3〉
= 〈 9, 4, 6 〉:

Each node is marked with indices i : j for i, j ∈ {1,2, . . . ,n}
• Left sub-tree shows remaining comparisons if xi ≤ x j
• Right sub-tree shows remaining comparisons if xi > x j 19.37

Example: Decision tree

1:2

2:3

123 1:3

132 312

1:3

213 2:3

231 321

4 ≤ 6

Sort 〈x1, x2, x3〉
= 〈 9, 4, 6 〉:

12

Each node is marked with indices i : j for i, j ∈ {1,2, . . . ,n}
• Left sub-tree shows remaining comparisons if xi ≤ x j
• Right sub-tree shows remaining comparisons if xi > x j

19.38

Example: Decision tree

1:2

2:3

123 1:3

132 312

1:3

213 2:3

231 321

4 ≤ 6 ≤ 9

Sort 〈x1, x2, x3〉
= 〈 9, 4, 6 〉:

Each leaf corresponds to a permutation ⟨π(i),π(2), . . . ,π(n)⟩ to indicate that xπ(1) ≤ xπ(2) ≤ . . .≤ xπ(n)
was established 19.39

Decision tree model
Decision trees can model executions of any comparison based sorting algorithm:

• A tree for each input size
• Consider that execution is forked in two each time two elements are compared
• Tree contains all comparisons along all possible executions
• Execution time for the algorithm = length of the path to be traversed
• Execution time in worst case = height of the tree

19.40

Height of decision tree

• Height of decision tree is a lower limit to the worst case execution time
• Each possible permutation of input data need to result in a separate output leaf

– Otherwise, some input sequence . . .4 . . .5 . . . would result in the same output as . . .5 . . .4 . . .,
which would be wrong

• Since there are n! = 1 ·2 · . . . ·n leaves, the height of the tree is at least log(n!)
19.41

Lower limit

• Each comparison based sorting algorithm uses at least log(n!) steps in the worst case
• Such an algorithm would therefore use at least

log(n!)≥ log
(n

2

) n
2
= (n/2) log(n/2) steps

• The worst-case execution time of any comparison based sorting algorithm is therefore in Ω(n logn)
19.42

3 Sorting in linear time?

Some cases where sorting can be faster than n logn

• Only a constant number of different elements to sort

– Θ(n) with Counting sort

• The elements to be sorted are uniformly distributed in a given interval

– Θ(n) with bucket-sort

• Elements to be sorted are strings with d ”digits” (S[i] = si,1si,2 . . .si,d)

– Θ(nd) with radix-sort

– If d is constant we get linear time complexity

– If we count the number of digits in the input sequence, we get a linear time complexity Θ(N),
with N = nd

19.43

13

3.1 Counting-sort

Counting sort
Require: A[1, . . . ,n], with A[j] ∈ {1,2, . . . ,k}

function COUNTINGSORT(A)
an array for counting: C[1, . . . ,k]
an array for storing the result: Res[1, . . . ,n]
for i← 1 to k do

C[i]← 0
for j← 1 to n do

C[A[j]]←C[A[j]]+1 ▷ C[i] = |{key = i}|
for i← 2 to k do

C[i]←C[i]+C[i−1] ▷ C[i] = |{key≤ i}|
for j← n downto i do

Res[C[A[j]]]← A[j]
C[A[j]]←C[A[j]]−1

return Res 19.44

Example

Counting-sort

A: 4 1 3 4 3

Res:

1 2 3 4 5

C:

1 2 3 4

19.45

Example

Loop 1

A: 4 1 3 4 3

Res:

1 2 3 4 5

C: 0 0 0 0

1 2 3 4

for i ← 1 to k do
 C[i] ← 0

19.46

Example

14

Loop 2

A: 4 1 3 4 3

Res:

1 2 3 4 5

C: 0 0 0 1

1 2 3 4

for j ← 1 to n do
 C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{nyckel = i}|

19.47

Example

Loop 2

A: 4 1 3 4 3

Res:

1 2 3 4 5

C: 1 0 0 1

1 2 3 4

for j ← 1 to n do
 C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{nyckel = i}|

19.48

Example

15

Loop 2

A: 4 1 3 4 3

Res:

1 2 3 4 5

C: 1 0 1 1

1 2 3 4

for j ← 1 to n do
 C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{nyckel = i}|

19.49

Example

Loop 2

A: 4 1 3 4 3

Res:

1 2 3 4 5

C: 1 0 1 2

1 2 3 4

for j ← 1 to n do
 C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{nyckel = i}|

19.50

Example

16

Loop 2

A: 4 1 3 4 3

Res:

1 2 3 4 5

C: 1 0 2 2

1 2 3 4

for j ← 1 to n do
 C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{nyckel = i}|

19.51

Example

Loop 3

A: 4 1 3 4 3

Res:

1 2 3 4 5

C: 1 0 2 2

1 2 3 4

C': 1 1 2 2

for i ← 2 to k do
 C[i] ← C[i] + C[i–1] ⊳ C[i] = |{nyckel ≤ i}|

19.52

Example

17

Loop 3

A: 4 1 3 4 3

Res:

1 2 3 4 5

C: 1 0 2 2

1 2 3 4

C': 1 1 3 2

for i ← 2 to k do
 C[i] ← C[i] + C[i–1] ⊳ C[i] = |{nyckel ≤ i}|

19.53

Example

Loop 3

A: 4 1 3 4 3

Res:

1 2 3 4 5

C: 1 0 2 2

1 2 3 4

C': 1 1 3 5

for i ← 2 to k do
 C[i] ← C[i] + C[i–1] ⊳ C[i] = |{nyckel ≤ i}|

19.54

Example

18

Loop 4

A: 4 1 3 4 3

Res: 3

1 2 3 4 5

C: 1 1 3 5

1 2 3 4

C': 1 1 2 5

for j ← n downto 1do
Res[C[A[j]]] ← A[j]
C[A[j]] ← C[A[j]] – 1

19.55

Example

Loop 4

A: 4 1 3 4 3

Res: 3 4

1 2 3 4 5

C: 1 1 2 5

1 2 3 4

C': 1 1 2 4

for j ← n downto 1do
Res[C[A[j]]] ← A[j]
C[A[j]] ← C[A[j]] – 1

19.56

Example

19

Loop 4

A: 4 1 3 4 3

Res: 3 3 4

1 2 3 4 5

C: 1 1 2 4

1 2 3 4

C': 1 1 1 4

for j ← n downto 1do
Res[C[A[j]]] ← A[j]
C[A[j]] ← C[A[j]] – 1

19.57

Example

Loop 4

A: 4 1 3 4 3

Res: 1 3 3 4

1 2 3 4 5

C: 1 1 1 4

1 2 3 4

C': 0 1 1 4

for j ← n downto 1do
Res[C[A[j]]] ← A[j]
C[A[j]] ← C[A[j]] – 1

19.58

Example

20

Loop 4

A: 4 1 3 4 3

Res: 1 3 3 4 4

1 2 3 4 5

C: 0 1 1 4

1 2 3 4

C': 0 1 1 3

for j ← n downto 1do
Res[C[A[j]]] ← A[j]
C[A[j]] ← C[A[j]] – 1

19.59

Analysis

for i ← 1 to k do
 C[i] ← 0

Θ(n)

Θ(k)

Θ(n)

Θ(k)

for j ← 1 to n do
 C[A[j]] ← C[A[j]] + 1

for i ← 2 to k do
 C[i] ← C[i] + C[i–1]

for j ← n downto 1 do
Res[C[A[j]]] ← A[j]
C[A[j]] ← C[A[j]] – 1

Θ(n + k)
19.60

Execution time
If k ∈ O(n) Counting sorting takes Θ(n) time

• But sorting takes Ω(n logn) time!
• What is wrong?

Answer:

• Comparison based sorting requires Ω(n logn) steps
• Counting-sort is not comparison based
• No comparison between the elements!

19.61

Stable sorting
Counting-sort is a stable sorting algorithm: it preserves order among equal elements

21

A: 4 1 3 4 3

Res: 1 3 3 4 4

To reflect:
Which other sorting algorithms are stable?

19.62

3.2 Bucket-sort

Bucket-sort

• Let S be a sequence of n pairs (key, value) with keys in [0,N−1]
• Bucket-sort uses keys as indices in an array B of sequences

– Phase 1: Empty the sequence S by moving each pair (k,v) to the end of the bucket B[k]

– Phase 2: For i = 0, . . . ,N−1 move the pairs in bucket B[i] to the end of the sequence S

• Analysis:

– Phase 1 takes O(n) steps

– Phase 2 takes O(n+N) steps

Bucket-sort has O(n+N) time complexity

procedure BUCKETSORT(S,N)
B← array with N empty sequences
while ¬S.ISEMPTY() do

f ← S.FIRST()
(k,o)← S.REMOVE(f)
B[k].INSERTLAST((k,o))

for i← 0 to N−1 do
while ¬B[i].ISEMPTY() do

f ← B[i].FIRST()
(k,o)← B[i].REMOVE(f)
S.INSERTLAST((k,o))

19.63

Example: keys in [0,9]

19.64

Properties and extensions
Type of keys:

• Keys are used as indices in an array and can therefore not be of arbitrary types

Stable sorting

• The relative order among pairs with equal keys is preserved

Extensions

22

• Integers in [a,b]

– Insert a pair (k,v) in bucket B[k−a]

• String keys from a finite set of strings D

– Sort D and compute the range r(k) for each string k ∈ D in the sorted sequence

– Insert pair (k,v) in bucket B[r(k)]
19.65

3.3 Radix-sort

Radix-sort

• Origin: Herman Holleriths sorting machine for 1890’s census in USA
• digit-by-digit sorting
• Sort starting with the least significant digit first with an external stable sorting routine

19.66

Example: Execution of radix-sort

3 2 9
4 5 7
6 5 7
8 3 9
4 3 6
7 2 0
3 5 5

7 2 0
3 5 5
4 3 6
4 5 7
6 5 7
3 2 9
8 3 9

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

19.67

Correctness of radix-sort
Use induction over digit positions

• Assume the numbers are sorted according to the t−1 least significant digits
• Sort according to digit t

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

19.68

23

Correctness of radix-sort
Use induction over digit positions
• Assume the numbers are sorted according to the t−1 least significant digits
• Sort according to digit t

– Two numbers that differ in the digit t are correctly sorted

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

19.69

Correctness for radix-sort
Use induction over digit positions
• Assume the numbers are sorted according to their t−1 least significant digits
• Sort according to digit t

– Two numbers that differ in the digit t are correctly sorted

– Two numbers with equal digit t keep their relative order⇒ correct ordering

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

19.70

Analysis of radix-sort

• Assume counting sort is used as the external sorting algorithm
• Sorting of n machine words with b bits each
• We can consider each word has d = b/r digits in base 2r

Example:

32-bits word
8 8 8 8

r = 8⇒ b/r = 4: radix-sort with 4 counting-sort passes on digits in base 28

or r = 16⇒ b/r = 2: radix-sort with 2 passes on digits in base 216

How many passes? 19.71

24

Analysis of radix-sort
Recall: counting-sort takes Θ(n+ k) execution time to sort n numbers from [0,k− 1]. If each b-bits

word is partitioned into r-words then each counting-sort pass takes Θ(n+ 2r) time. With b/r passes (one
pass for each r-bits part of b bits), we get:

T (n,b) = Θ

(
b
r
(n+2r)

)
Choose r to minimize T (n,b)

• Increasing r gives less passes but if r≫ logn the required time increases exponentially in r.
19.72

Choose r = log(n)

T (n,b) = Θ

(
b
r
(n+2r)

)
Minimize T (n,b) by deriving and finding a minimum. Or, observe that we want to avoid 2r ≫ n and

that it does not hurt asymptotically to have a large r as long as we avoid 2r ≫ n. Choosing r = logn gives
T (n,b) = Θ(bn/ logn).

Recall there are b/r = d digits in each b-bits word. With r = log(n), we get d = b/log(n) ⇒ radix-sort
runs in T (n,b) = Θ(bn/ logn) = Θ(dn) time complexity. 19.73

Conclusions
In practice, radix-sort is fast for large input data and simple to encode and maintain

Example: ∼ 2000 words in 32-bit integers

• Choosing r = log(2000)∼ 11
• At most 3 passes in radix sort.
• Merge-sort and quick-sort use at least ⌊log2000⌋= 11 passes

Disadvantages: You cannot sort in place with counting-sort. Radix sort does requires digits to sort.
Comparison based algorithms are more general. In addition, quick-sort exhibits a good locality (repeatedly
accessing addresses already in the cache). So a fine tuned quick-sort implementation can be faster on a
modern processor with a steep memory hierarchy. 19.74

25

	Sorting
	Heap-sort
	Merge-sort
	Summary

	A lower limit for comparison based sorting
	Sorting in linear time?
	Counting-sort
	Bucket-sort
	Radix-sort

