Forelasning 19

Heap-sort, merge-sort. Lower limit
for sorting. Sorting in linear time?

TDDD86: DALP

Utskriftsversion av Féreldsing i Datastrukturer, algoritmer och programmeringsparadigm
26 november 2024

IDA, Linképings universitet

Content

Contents

1
T Heap-sorf] 1
T2 Merge-sorl].ottt 5
... 10

[2~ATower limit for comparison based sorting] 11

|3 Sorting in linear time?| 13
3.1 Counting-sort] 14
B2 Bucket-sorfl 22
B3 Radix-sorfl 23

1 Sorting

1.1 Heap-sort
Sorting with a priority queue

» Use a priority queue to sort a number of comparable elements
— Insert the elements in the priority queue

— Remove the elements in a sorted order using removeMin-operations

» Execution time depends on the priority queue implementation:
— Unsorted sequence corresponds to a selection sort and an O(n?) time
— Sorted sequence gives insertion sort and an O(n?) time

¢ Can we achieve better?

procedure PQSORT(S)

P < empty priority queue

while —=S.ISEMPTY () do
e < S.REMOVE(S.FIRST())
P.INSERT(e)

while —P1SEMPTY () do
e + PREMOVEMIN()
S.INSERTLAST(e)

19.3

Height of a heap
Proposition 1. A heap with n keys has height O(logn)

Proof. The heap is a represented with a complete tree.

e Let & be the height of a heap with n keys

o There are 2/ keys at depths i = 0,...h — 1 and at least a key at depth . Therefore, n > 14244+
2

* Hence,n>2"and h < logon

djup nycklar

0 s
1 2 e
h-1 20l —mmm e
h 1 === 19.4
Insertion in a heap
¢ Method insert in ADT priority queue inserts key & in the heap
* Insertion algorithm involves three steps:
— Find location for inserting node z (new last leaf)
— Store kin z
- Restore heap property
z
nytt sista I6v
Z
19.5

Upheap (bubble up)

* Insertion of a key k might violate the heap property

* Method upheap restores the heap property by moving the key k upwards along the path to the root
* upheap terminates when key & reaches the root or a node whose parent is not larger than k

* Since the height of the heap is O(logn), the upheap method is in O(logn) time

e e -

Removal from a heap

¢ Method removeMin in ADT priority queue removes the root key from the heap
* Removal algorithm consists in 3 steps:

— Replace root key with the key from the last leaf w
— Remove w

- Restore heap property

w

N\

sista lovet

nytt sista IOv

Downheap (bubble down)

* Replacing root key with key & from last leaf might violate the heap property

* Method downheap restores the heap property by moving k downwards

* downheap terminate when key k reaches a leaf or a node where none of the children has a key smaller
than k

* Since the height of the tree is O(logn), the downheap method is in O(logn) time

Heap-sort

 Consider a priority queue with n elements implemented with a heap. For each one of the n elements:
— insert and removeMin take O(logn) time

— size, isEmpty and min take O(1) time

 With a heap based priority queue, we can sort a sequence of n elements in O(nlogn) time
* The resulting algorithm is called heap-sort
* Heap-sort is faster than a quadratic sorting algorithm.

Merging two heaps

* Given two heaps and a key k
» Create a new heap where the root node stores key k with the two heaps as sub-trees
* Run downheap to restore the heap property

19.7

19.8

19.9

o o e

o M

19.10

Example: Building a heap bottom-up

5 8 »_ o .
@ ® ® ®© @ © 6 o

— - ~< /// =~

| R
///// \\\ /’/ \\\\

Example: Building a heap bottom-up

Example: Building a heap bottom-up

Analysis

* We visualize a worst-case calls to downheap with paths that start right then continue left until the
heap bottom.

* Since each node is traversed at most twice, the total number of such paths is O(n)

* Hence building the heap bottom-up requires at most O(n) steps

« This is faster than 7 calls to insert in the first phase of heap-sort

1.2 Merge-sort
Back to divide-and-conquer

* Merge-sort is a sorting algorithm based on the divide-and-conquer paradigm
¢ Similar to heap-sort:

— has an execution time in O(nlogn)

19.13

19.14

19.15

* Unlike heap-sort
— does not use a priority queue

— accesses data in a sequential fashion (adapted for sorting data on disk)
19.16

Merge-sort
Merge-sort on an input sequence S with 7 elements consists in 3 steps:

* Divide: partition S in two sequences S| and Sy, each with /2 elements
e Conquer: sort Sy and S, recursively
* Combine: merge S and S; into a sorted sequence

procedure MERGESORT(S)
if S.S1ZE() > 1 then
(S1,S2) <—PARTITION(S.SIZE()/2)
MERGESORT(S])
MERGESORT(S))

S <+~MERGE(S],53) 19.17

Merge two sorted sequences

* Combination step: merge two sequences A and B into a sorted sequence S containing the union of
elements in A and B

* Merging two sorted sequences, each with n/2 elements implemented with doubly linked lists takes
O(n) time

function MERGE(A, B)
S < empty sequence
while —A.ISEMPTY () A ~B.ISEMPTY() do
if A.FIRST.ELEMENT() < B.FIRST.ELEMENT() then
S.INSERTLAST(A.REMOVE(A.FIRST()))
else
S.INSERTLAST(B.REMOVE(B.FIRST()))

while —A.ISEMPTY () do
S.INSERTLAST(A.REMOVE(A.FIRST()))

while —B.ISEMPTY() do
S.INSERTLAST(B.REMOVE(B.FIRST()))

return S 19.18

Merge-sort tree

» Execution of merge-sort can be visualized with a binary tree
— Each node represents a recursive call to merge sort and represents

+ Unsorted sequence before execution and its partition
= Sorted sequence after execution

— Root is the original call

— Leaves are calls on sequences with lengths O or 1

(7-7) [2-2] [o-9] [4-4

19.19

Example: Execution of merge-sort

¢ Partition

- 19.20

Example: Execution of merge-sort

* recursive call, partition

- - - - - 19.21

Example: Execution of merge-sort

* recursive call, partition

19.22

Example: Execution of merge-sort

e recursive call, base case

¥

19.23

Example: Execution of merge-sort

¢ Recursive call, base case

ZE_E.T. .

Example: Execution of merge-sort

* merge

19.256

Example: Execution of merge-sort

e recursive call, ..., base case

7

19.26
Example: Execution of merge-sort
* Merge
19.27
Example: Execution of merge-sort
¢ Recursive call, ..., merge
19.28

Example: Execution of merge-sort

* Merge

19.29

Analysis of merge-sort

* Height h of merge-sort tree is O(logn)

— at each recursive call, the sequence is divided in the middle
* The total amount of work performed at depth i is O(n)

— we partition and merge 2/ sequences of lengths 1/2!

- we perform 2:+1 recursive calls
* The total execution time for merge-sort is O(nlogn)

19.30

Analysis of merge-sort

djup #sekv strl
0 1 n

1 2 n/2

i 2 n/2'

eoe cee cee 19.31

1.3 Summary

Summary so far

10

2 A lower limit for comparison based sorting

Comparison based sorting

e Many sorting algorithms are comparison based

— They sort by comparing pairs of elements

Algoritm Tid Noteringar
« in-place
selection-sort O(n?)
. langsam (bra fér sma indata)
« in-place
insertion-sort 0o(n?)

. langsam (bra fér sma indata)

— Example: insertion-sort, selection-sort, heap-sort, merge-sort, quick-sort, ...

* Let’s deduce a lower limit for the worst-case execution time of any comparison-based algorithm that

sorts a sequence of n elements x1,xp,...,x,

Count comparisons

* Let us just count the number of comparisons
» Each execution of the algorithm corresponds to a path from the root to a leaf in a decision tree

nej

11

19.32

19.33

19.34

Example: Decision tree

Sort X, x,, ..., X[

Each node is marked with indices i : j for i, j € {1,2,...,n}
* Left sub-tree shows remaining comparisons if x; < x;
* Right sub-tree shows remaining comparisons if x; > x;

Example: Decision tree

Sort [X,, x,, X,
=[9,4,6 [

Each node is marked with indices i : j for i, j € {1,2,...,n}
* Left sub-tree shows remaining comparisons if x; < x;
* Right sub-tree shows remaining comparisons if x; > x;

Example: Decision tree

Sort [X,, x,, X,
=[9,4,6 0

Each node is marked with indices i : j for i, j € {1,2,...,n}
* Left sub-tree shows remaining comparisons if x; < x;
* Right sub-tree shows remaining comparisons if x; > x;

Example: Decision tree

Sort X, x,, x;[]
=[9,4,6 0

12

19.35

19.36

19.37

Each node is marked with indices i : j fori,j € {1,2,...,n}

* Left sub-tree shows remaining comparisons if x; < x;
* Right sub-tree shows remaining comparisons if x; > x;

Example: Decision tree

Sort X, x,, X,
=[19,4,6[

Each leaf corresponds to a permutation (7(i), 7(2),...,7(n)) to indicate that x(1) <xz(2) < ... <xg(p
was established

Decision tree model
Decision trees can model executions of any comparison based sorting algorithm:

* A tree for each input size

» Consider that execution is forked in two each time two elements are compared
» Tree contains all comparisons along all possible executions

» Execution time for the algorithm = length of the path to be traversed

» Execution time in worst case = height of the tree

Height of decision tree

* Height of decision tree is a lower limit to the worst case execution time
» Each possible permutation of input data need to result in a separate output leaf

— Otherwise, some input sequence ...4...5... would result in the same output as ...5...4...
which would be wrong

* Since there are n! = 1-2-...-n leaves, the height of the tree is at least log(n!)

Lower limit

» Each comparison based sorting algorithm uses at least log(n!) steps in the worst case
* Such an algorithm would therefore use at least

log(n!) > log (%)% = (n/2)log(n/2) steps

* The worst-case execution time of any comparison based sorting algorithm is therefore in Q(nlogn)

3 Sorting in linear time?

Some cases where sorting can be faster than nlogn

* Only a constant number of different elements to sort
— ©(n) with Counting sort

* The elements to be sorted are uniformly distributed in a given interval
— O(n) with bucket-sort

* Elements to be sorted are strings with d ”digits” (S[i] = s; 1512 . ..5i.4)
- O(nd) with radix-sort
— If d is constant we get linear time complexity

— If we count the number of digits in the input sequence, we get a linear time complexity @(N),
with N = nd

13

19.38

19.39

19.40

19.41

19.42

19.43

3.1 Counting-sort

Counting sort
Require: A[l,...,n], withA[j] € {1,2,...,k}
function COUNTINGSORT(A)
an array for counting: C[1,..., k]
an array for storing the result: Res[1,...,n]
for i< 1tokdo
Cli]+0
for j < 1 tondo
ClAL)] « ClAlll+1 > Cli] = [{key = i}|
for i < 2 to k do
Cli] + Cli]+C[i—1] > Cli] = |{key <i}|
for j <— n downto i do
Res[C[A[]]]] < A[]]
ClA[)] « ClAlll -1
return Res

Example

Counting-sort

Example

Loop 1

Res: I

fori — 1tokdo
C[i] <« 0O

Example

14

19.44

19.45

19.46

Res: I

for; — [tondo
CTA[/1] < ClA[/]]1 + 1 = C[i] = |{nyckel = i}|

19.47

Example
Loop 2
1 2 4 5 1 2 3 4
A: 141113143 C:| 17001

Res: I

for; — [tondo
ClA[/1] < CA[j11+ 1 = Cli] = [{inyckel = i}

19.48

Example

15

Res: I

for; — [tondo
CTA[/1] < ClA[/]]1 + 1 = C[i] = |{nyckel = i}|

19.49

Example
Loop 2
1 2 4 5 1 2 3 4
A 141113143 C:|1]0]1]|2

Res: I

for; — [tondo
ClA[/1] < CA[j11+ 1 = Cli] = [{inyckel = i}

19.50

Example

16

Res: I

for; — [tondo
CTA[/1] < ClA[/]]1 + 1 = C[i] = |{nyckel = i}|

19.51

Example

Loop 3
1 2 4 5 1 2 3 4
A |4 1]3]4]3 C:|1]0]2]2

Res: I C-11|11]2]2

fori — 2to kdo
Cli] « C[i] + C[i-1] = C[i] = |{nyckel < i}

19.52

Example

17

fori — 2to kdo
Cli] « C[i] + C[i-1] = C[i] = |{nyckel < i}

19.53

Example
Loop 3
1 2 4 5 1 2 3 4
A: 141|314 |3 C:11]10]2 /|2

fori — 2to kdo
Cli] « C[i] + C[i-1] = C[i] = |{nyckel < i}

19.54

Example

18

Res: 3 | C-|1 1|25

for ; — n downto Ido
Res[C[A[j]]] < AlJ]
ClA[j]] < ClA[]]1 -1

1955

Example

Loop 4
12 4 5 2 3
A |41 |3]4]3 C:l1]1|2]5

Res: 3 4I C-|1]1]2]4

for ; — n downto ldo
Res[C[A[j]]] < A[/]
ClA[j]] < ClA[]]1 -1

1956

Example

19

12 4 5 P2 3 4
A:l4l1]3]4]3 cli]1]2]4
Res: 313 4 C-|1]1]1]4

for ; — n downto Ido
Res[C[A[j]]] < AlJ]
ClA[j]] < ClA[]]1 -1

1957

Example

Loop 4

12 4 5 P2 3 4
A |41 13]4]3 C:l1|1]1]4
Res:| 1|3 |3 4 C:|0[1|1]|4

for ; — n downto ldo
Res[C[A[j]]] < A[/]
ClA[j]] < ClA[]]1 -1

__ 1958

Example

20

for ; — n downto Ido
Res[C[A[j]]] < AlJ]
ClA[j]] < ClA[]]1 -1

Analysis

for/i — 1to kdo
O(k) { Cli] « 0

for; - 1tondo

ClA[/]] «~ Cl4l1+1

for/ — 2to kdo

C[i] « C[i] + C[i-1]

forj/ — ndownto 1 do
Res[CIA[/]]] < AlJ]
ClAL/]] « ClAl]] -1

A e

©O(n + k)

Execution time
If k € O(n) Counting sorting takes ©(n) time

* But sorting takes Q(nlogn) time!
* What is wrong?

Answer:

e Comparison based sorting requires Q(nlogn) steps
» Counting-sort is not comparison based
* No comparison between the elements!

Stable sorting
Counting-sort is a stable sorting algorithm: it preserves order among equal elements

21

19.59

19.60

19.61

Res:

To reflect:
Which other sorting algorithms are stable?

19.62
3.2 Bucket-sort

Bucket-sort

* Let S be a sequence of n pairs (key, value) with keys in [0, N — 1]
* Bucket-sort uses keys as indices in an array B of sequences

— Phase 1: Empty the sequence S by moving each pair (k,v) to the end of the bucket B[k]

— Phase 2: For i =0,...,N — 1 move the pairs in bucket B[i| to the end of the sequence §
¢ Analysis:

— Phase 1 takes O(n) steps
— Phase 2 takes O(n+ N) steps
Bucket-sort has O(n+ N) time complexity

procedure BUCKETSORT(S,N)
B« array with N empty sequences
while —S.ISEMPTY() do
f < S.FIRST()
(k,0) + S.REMOVE(f)
BIk].INSERTLAST((k,0))
fori< OtoN—1do
while —B[i].ISEMPTY() do
f < Bli].FIRST()
(k,0) < B[i].REMOVE()
S.INSERTLAST((k,0)) 19.63

Example: keys in [0,9]

19.64

Properties and extensions
Type of keys:

» Keys are used as indices in an array and can therefore not be of arbitrary types

Stable sorting

» The relative order among pairs with equal keys is preserved

Extensions

22

* Integers in [a,b]

— Insert a pair (k,v) in bucket B[k — q]
* String keys from a finite set of strings D
— Sort D and compute the range r(k) for each string k € D in the sorted sequence

— Insert pair (k,v) in bucket B[r(k)]

3.3 Radix-sort

Radix-sort

* Origin: Herman Holleriths sorting machine for 1890’s census in USA
* digit-by-digit sorting

 Sort starting with the least significant digit first with an external stable sorting routine

Example: Execution of radix-sort

329
457
657
839
436
720
355

720
355
436
4357
657
329
839

720
329
436
839
355
457
657

329
355
436
457
657
720
839

N

Correctness of radix-sort

Use induction over digit positions

¢ Assume the numbers are sorted according to the t — 1 least significant digits
* Sort according to digit ¢

720
329
436
839
355
457
657

329
355
436
457
657
720
839

N

23

19.65

19.66

19.67

19.68

Correctness of radix-sort
Use induction over digit positions

* Assume the numbers are sorted according to the t — 1 least significant digits
* Sort according to digit ¢

— Two numbers that differ in the digit # are correctly sorted

720 329
329 355
436 436
839 457
355 657
457 720
657 839

N

Correctness for radix-sort
Use induction over digit positions

* Assume the numbers are sorted according to their 7 — 1 least significant digits
» Sort according to digit ¢

— Two numbers that differ in the digit ¢ are correctly sorted

— Two numbers with equal digit # keep their relative order = correct ordering

720 329
329 355
436—%» 436
839 457
355 657
457 720
657 839

N

Analysis of radix-sort

* Assume counting sort is used as the external sorting algorithm
 Sorting of n machine words with b bits each
* We can consider each word has d = b/r digits in base 2"

Example:
8 8 8 8

32-bitsword [T []
r =8 = b/r = 4: radix-sort with 4 counting-sort passes on digits in base 28
or r = 16 = b/r = 2: radix-sort with 2 passes on digits in base 2'°

How many passes?

24

19.69

19.70

19.71

Analysis of radix-sort

Recall: counting-sort takes ®(n + k) execution time to sort n numbers from [0,k — 1]. If each b-bits
word is partitioned into r-words then each counting-sort pass takes ®(n +2") time. With b/r passes (one
pass for each r-bits part of b bits), we get:

b
T(n,b) =0 (f (n+2r))
r
Choose r to minimize T (n,b)

 Increasing r gives less passes but if » > logn the required time increases exponentially in r.

Choose r =log(n)

T(n,b) =0 <€ (n+2’))

Minimize T (n,b) by deriving and finding a minimum. Or, observe that we want to avoid 2" >> n and
that it does not hurt asymptotically to have a large r as long as we avoid 2" > n. Choosing r = logn gives
T(n,b) = ®(bn/logn).

Recall there are b/r = d digits in each b-bits word. With r = log(n), we getd = b/log(n) = radix-sort
runs in 7' (n,b) = ©(bn/logn) = O©(dn) time complexity.

Conclusions
In practice, radix-sort is fast for large input data and simple to encode and maintain

Example: ~ 2000 words in 32-bit integers

* Choosing r = 10g(2000) ~ 11
e At most 3 passes in radix sort.
* Merge-sort and quick-sort use at least [log2000| = 11 passes

Disadvantages: You cannot sort in place with counting-sort. Radix sort does requires digits to sort.
Comparison based algorithms are more general. In addition, quick-sort exhibits a good locality (repeatedly
accessing addresses already in the cache). So a fine tuned quick-sort implementation can be faster on a
modern processor with a steep memory hierarchy.

25

19.72

19.73

19.74

	Sorting
	Heap-sort
	Merge-sort
	Summary

	A lower limit for comparison based sorting
	Sorting in linear time?
	Counting-sort
	Bucket-sort
	Radix-sort

