Forelasning 18
Sorting and selection

TDDD86: DALP

Utskriftsversion av Foérelasing i Datastrukturer, algoritmer och programmeringsparadigm
25 November 2024

IDA, Linképings universitet

Content
Contents

[T Inoductionl - . . . -« o oo et e

T3 QUICKSOM - - -« o o oo e e e e e e e

1 Sorting

1.1 Introduction

Sorting
Input:
¢ A list L containing data with keys from totally ordered set K
Output:
* Alist L' with the same data sorted in increasing order wrt. the keys

Example
8,2,9,4,6,10,1,4] — [1,2,4,4,6,8,9,10]

Sorting categories
* in-place vs out-of-place sorting
* internal vs external sorting
* stable vs non-stable sorting
» Comparison vs non-comparison sorting

Strategies

Sorting by insertion
Look for the right place to insert each new element that needs to be added to the sorted sequence. .. Insertion
sort, Shell sort, ...

Sorting by selection
Look, at each iteration, in the unsorted sequence for the least element left and add it to the end of sorted
sequence. .. Selection sort, Heap sort, . ..

Sorting by permutation
Search in some pattern and permute places each time a pair is found to violate the targeted order... Quick
sort, Merge sort, ...

18.1

18.2

18.3

18.4

18.5

1.2 Insertion sort

(Linear) insertion sort

¢ An in-place algorithm!
* Partition the array that is to be sorted A[0,...,n — 1] into two parts:

- Assorted A[0,...,i— 1] part

— Anunsorted A[i,...,n— 1] part

Initially, i = 1 and A[0,....,0] is (trivially) sorted

procedure INSERTIONSORT(A[O, ...,n—1])
fori=1ton—1do
insert in A[{] in the right position in A[0, ...,i— 1]

Example: Visualizing insertion sort

Worst case analysis for insertion sort

1. procedure INSERTIONSORT(A[O,...,n—1])

2 fori=1ton—1do

3 J i x Al

4 while j > 1 and A[j — 1] > x do

5 Alj]Alj—1]; j«j—1

6 Alj] +x
* 1: n—1 times
e f3: n— 1 times
e t4: Let I be the number of iterations in the worst case for the inner loop:

[=142+...+(n—1)=n(n—1)/2= (n*—n)/2

e t5: [time
* t5: n—1 time

o Total: t 413414415+t = 3(n— 1)+ (n> —n) = n> +2n—3 So O(n?) in the worst case. ..
if the sequence is almost sorted

1.3 Selection sort

Selection sort

¢ An in-place algorithm
* Partition the array to be sorted A[0,...,n — 1] into two parts

— Asorted A[0,...,i— 1] where all elements are smaller or equal to A[i,...,n—1]
— An unsorted sequence A[i,...,n— 1]

Initially i = 0, hence, the sorted part is empty (and hence trivially sorted)

procedure SELECTIONSORT(AO,...,n—1])
fori=0ton—2do
find minimal element A[j] in A[i,...,n— 1]
swap A[i] and A[j]

18.6

18.7

but good

18.8

18.9

Example Visualizing Selection-sort

Worst case analysis of Selection-sort
: procedure SELECTIONSORT(A[O, ..., n—1))

all
Pl

1

2 fori=0ton—2do

3: S

4: for j>i+1ton—1do

5 if A[j] <A[s] then s+ j
6 SWAP(A[i],A[s])

e tp: n—1 times
e 13: n— 1 times
* t4: Let I be the number of iterations of the inner loop in the worst case:

I=n=2)+(n=3)4...41=n—-1)(n—2)/2=(n*—3n+2)/2

e t5: 1 times
* t5: n—1 times
o Total: tr+ 13414 +15+16 =3(n— 1)+ (n% —3n+2) =n*> — 1 € O(n?)

1.4 Divide-and-conquer
The divide-and-conquer paradigm in algorithm construction

e divide: divide the problem in smaller independent problems
* conquer: solve the sub-problems recursively (or directly if trivially)
» combine solutions of the sub-problems into a solution to the original problem

Example: Divide-and-conquer

(4]10/6]8[12)7]9]1]5]8]13 2]5]1620] 3]

(4]10/6|8)12/7]9]1] 15]8[13/2|5 1620/ 3]
468 N2g79f1] [5]8132] [5[16203]
410 [6]8] 27| |9[1] [5]8] [32| [5]16 203
410 [6[8] [7[12 [1]9] [5]8] [2[13 [5[16 [3]20
4l6[sfo [1]7]ofiz [2|5[813 [3[5[1620

'1|4]6]7]|8]9/1012 12|3]5]5|813/1620

11|2[3]4]5]|5|6]7]8]|8|910121316)20

3

18.10

18.11

18.12

18.13

T EiGe sz o1 s [s gz s hed)

4]6|7|1|5]2]5/|3] 10/8[12/9 |8 131620
6/7]5/5] [10)8]9]8] (12131620

1]2] [4]3] [5]5] [6]7] [8]8] 109 [1213 [1620

1.5 Quick-sort

Quick-sort
Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm

 Divide: randomly choose an element x (called pivot) and partition S to
— L elements smaller than x
— E elements equal to x
— G elements larger than x

* Conquer: sort L and G
e Combine L, E and G

Illllll
0 1 01

Partitioning

* Partition input sequence S as follows:

— We remove, one element at a time, each element y from S and

— Insert y in L, E or G depending on the result of the comparison with the pivot-element x

* Each insertion or removal takes place at the beginning or end of a sequence and requires O(1) time

* The partitioning step takes O(n) time

function PARTITION(S, p)
L,E,G <+ empty sequences
X < S.REMOVE(p)
while —S.ISEMPTY() do
y < S.REMOVE(S.FIRST())
if y < x then
L.INSERTLAST(y)
else if y = x then
E.INSERTLAST(y)
else

G.INSERTLAST(y)
return L.E,G

18.14

18.15

18.16

Quick-sort tree

» Execution of quick-sort can be visualized as a binary tree
— Each node represents a recursive call to quick-sort and stores

+ Unsorted sequence before execution and the pivot
% Sorted sequence after execution

— Root is the original call

— Leaves are calls to sub-sequences of lengths 0 or 1

18.17

Example: Execution of quick-sort

* Choice of a pivot
e example: 6,2, 3,7

- - 18.18

Example: Execution of quick-sort

* Partitioning, recursive call, choice of a pivot

<

18.19

Example: Execution of quick-sort

« Partitioning, recursive call, base case

- 18.20

¢ Recursive call, ..., base case, combine

Example: Execution of quick-sort

18.21

Example: Execution of quick-sort

* Recursive call, choice of pivot

18.22

Example: Execution of quick-sort

« Partitioning, ..., recursive call, base case

151 959

44
18.23
Example: Execution of quick-sort
e Combine
151 959
4 >4
18.24
Execution time in worst-case
* Worst case for quick-sort happens when the pivot element is a unique minimal or maximal element
* One of L or G is n — 1 elements long and the other is of length 0
» Execution time is then proportional to the sum
n+mn—1)+...+2+1
+ The worst case execution time of quick-sort is then O(n?)
18.25

Execution time in worst-case

djup tid
0

n-1 1

18.26

Expected execution time

 Consider a recursive call in quick-sort on a sequence of length s
— A good call: length of L and G are both < 3s/4
— A bad call: one of L or G has length > 3s/4

Bra anrop Daligt anrop

¢ A call is good with probability 1/2

— Half of all possible pivots result in a good call:

\ J \\ ~ 7 \\ v J

Daliga Bra pivotel. Daliga

18.27

Expected execution time

* Probabilistic fact: Expected number of coin flips to obtain k heads is 2k
 For a node at depth 7, we expect:
— i/2 ancestors are good calls
— length of the input sequence is at most (3/4)7/2n
* Consequently:
— For a node at depth 2log, /3 n, the expected input sequence length is at most 1
— The expected height of the quick-sort tree is O(logn)

» Amount of work performed at the same depth is O(n)

* Therefore, the expected execution time for quick sort is O(nlogn)
18.28

Expected execution time

forvantad hojd tid per niva

T [s(r)] ************* O(n)

O(log n)

forvantad total tid: O(n log n) __ 1829
Quick-sort with constant extra memory

* Quick-sort can be implemented as an in-place sorting algorithm

* In the partitioning step, we rearrange the elements in the input sequence so that:
— elements that are less than the pivot element have a rank that is smaller than &
— elements that are equal to the pivot element have a rank between % and k

— elements that are larger than the pivot element have a rank that is larger than k

L E G

h k

18.30

Algorithm for quick-sort with constant extra memory

procedure INPLACEQUICKSORT(S, ,r)
if [> r then return

i < randomly chosen rank between / and r
x < S.ELEMATRANK(i)

(h,k) < INPLACEPARTITION (x)
INPLACEQUICKSORT(S,[,h—1)

INPLACEQUICKSORT(S,k+1,r) 18.31

Partitioning with constant extra memory

« Perform partitioning using two indices to partition S in L and E UG (a similar method can be used to
partition £ UG in E and G)

h k
(isioressivessies) -0

* Repeat until / and k cross each other (i.e., & > k):
— Sweep A to the right until an element > than the pivot element is found
— Sweep k to the left until an element < pivot element is found

— Swap the elements at indices 4 and k

——h Kk

v

18.32

2 Selection

2.1 Introduction

Selection problem

* Given an integer i and n elements x,x3,...,X, from a total order, find the ith smallest element in the
sequence.

* We could sort the sequence in O(nlogn) time and then index the i:th element in constant time.

=3 (7496224679 |

* Can we solve the selection problem faster?
18.33

2.2 Quick-select
Quick-select
Quick-Select is a randomized selection algorithm based on the prune-and-search paradigm:
* Prune: choose x randomly and partition S into
— L elements smaller than x
— E elements equal to x
— G elements larger than x

* Search: depending on i, the solution is either in E or we need to continue recursively in L or G
DHDH 0
G Y

i<|L|] i>|L|+|E|

Ooo K
T

i=i-|L|-|E|

|[L| <i<|L|+|E|
(klart) 18.34

Partitioning
e Partition input sequence as in quick-sort:
— We pick, one element at a time, each element y from S and
— Insert y in L, E or G depending on the result of comparison with the pivot x

* Each insertion or removal is in the beginning or the end of a sequence, and therefore takes O(1) time
 Consequently, the partitioning step in quick-select takes O(n) time

function PARTITION(S, p)
L,E,G < empty sequences
X < S.REMOVE(p)
while —S.ISEMPTY() do

y < S.REMOVE(S.FIRST())

if y < x then
L.INSERTLAST(y)

else if y = x then
E.INSERTLAST(y)

else
G.INSERTLAST(y)

return L.E. G 18.35

10

Visualizing Quick-select
» Execution of quick-select can be visualized with the recursion path

— Each node represents a recursive call to quick-select and stores i and the remaining sequence S

[125,82(749%26518)]

(i=2,8=(7 4 |9 658 |

(i=2, S=(7 |4 65 |

(i=1,8=(7 6 5) |

18.36

Expected execution time
» Consider a recursive call to quick-select on a sequence of length s
— Good call: lengths of L and G are both < 3s/4
— Bad call: one of L or G has a length > 3s/4
(729435761) (72943761]
~ = « ~
(2431 794376

Bra anrop Daligt anrop

¢ A call is good with probability 1/2

— Half of all the possible pivot elements result in good calls:

1123415167819 (10{11]12|13(14[{15]|16
(¢ v I\ ~ AN v J
Daliga pivotelement Bra pivotelement Daliga pivotelement 1837

Expected execution time

* Probabilistic fact: The expected number of coin flips to get a head is two.
* Probabilistic fact: Expected function is linear

- E(X+Y)=E(X)+E(Y)
— E(cxX) =cxE(X) for any constant ¢

¢ Let T'(n) be the expected execution time for quick-select
* Wehave T'(n) <b-n-g(n)+T(3n/4) where:

— b is some constant
— g(n) is the expected number of call before a good call -
Expected execution time
* Consequently:
- T(m)<b-n-g(n)+T(3n/4)
 Since a good call is expected to happen in two steps:
- T(n)<2-b-n+T(3n/4)
* Hence, T'(n) is bounded by a geometric series:
- T(n)<2-b-n+2-b-n-(3/4)+2-b-n-(3/4)>+2-b-n-(3/4)>+...

e Asaresult, T(n) € O(n)

* We can solve the selection problem in O(n) expected time (worst case is O(n?) time)
18.39

11

	Sorting
	Introduction
	Insertion sort
	Selection sort
	Divide-and-conquer
	Quick-sort

	Selection
	Introduction
	Quick-select

