
Föreläsning 17
Hashing, Tree-based applications
TDDD86: DALP

Utskriftsversion av Föreläsing i Datastrukturer, algoritmer och programmeringsparadigm
19 november 2024

IDA, Linköpings universitet

17.1

Content

Contents

1 Hash tables 1
1.1 Collision management . 1
1.2 Choose a good hash function . 3

2 Tree-based applications 5
2.1 Text compression . 5
2.2 Prefix-trees . 6
2.3 Union/Find . 7
2.4 Geometric search . 10 17.2

1 Hash tables

Can we find something better than BST for sets?

Yes, with hash tables

• Idea: given a table T [0, . . . ,max] to store the elements find a table index for each element
• Find a function h such that h(key) ∈ [0, . . . ,max] and (ideally) k1 ̸= k2⇒ h(k1) ̸= h(k2)
• Store each key-value pair (k,v) in T [h(k)]

17.3

Hash table

• In practice the hash functions do not give unique values (they are not injective)
• We need to manage collisions

. . . and

• We need to find a good hash function
17.4

1.1 Collision management

Collision management
Two approaches for managing collisions:

• Open hashing or separate chaining. Maintain colliding data outside the table, e.g., using linked lists.
• Closed hashing or open addressing. Store all data in the table and let some algorithm decide which

index to use in case of a collision.
17.5

1

Example: hashing with separate chaining

• Hash table of size 13
• Hash function h with h(k) = k mod 13
• Store 10 keys: 54, 10, 18, 25, 28, 41, 38, 36, 12, 90

0

1

12

11

10

9

8

7

6

5

4

3

2 41 28 54

18

36 10

90 12 38 25 17.6

Separate chaining: find
Given: key k, hash table T , hash function h

• compute h(k)
• look-up k in the list T [h(k)]

Notation: probing= an access in the linked list

• 1 probing to access the head of the list(if non-empty)
• 1+1 probing to access the content of the first element
• 1+2 probing to access the content of the second element
• . . .

A probing (to follow a pointer) takes constant time. How many probings P are needed to get a data in the
hash-table? 17.7

Separate chaining: unsuccessful look-up

• n data elements
• m locations in the table

Worst case:

• all elements have the same hash value: P = 1+n

Average case:

• hash value uniformly distributed over m:
• average length α of a list: α = n/m
• P = 1+α

17.8

Separate chaining: successful look-up

Average case:

• access to T [h(k)] (beginning of the list L): 1
• traverse L⇒ k if found after: |L|/2
• expected |L| corresponds to α , so: expected P = α/2+1

17.9

2

Open addressing

• Store all elements inside the table
• Adopt a fixed algorithm to find a free place

Linear probing

• targeted hash index j = h(k)
• if conflict, move to next available position
• if reach end of the table, go to the start. . .

• Positions next to each other become full (primary clustering)
• How to remove(k)?

17.10

Open addressing — remove()
The element to be removed can be part of a collision chain – can we detect it?

If it is part of a collision chain, we can not just remove it!

• Rehash all keys?
• Check following elements in the list and rehash until hit first free position . . . ?
• Ignore – place a marker ”deleted” if next place is not empty. . .

17.11

What to do in case of collision?

• Linear probing by steps hash function h(K)+ i× c computes an increment in case of a collision
• Quadratic probing hash function h(K)+ c1× i2 + c2× i+ c3
• A second hash function h2(K, i) computes an increment based on the step and the key

Linear probing is double hashing with h2(k, i) = i× c Requirements on h2:

• h2(k, i) ̸= 0 for all k
• h2(k, i) should go through all positions in the table by iterating through i. E.g., Linear probing step

should not have common divisor with M (size of the table) for any k⇒ all positions in the table can
be reached

17.12

1.2 Choose a good hash function

What is a good hash function?
Let k be a natural number.

Hashing should give a uniform distribution of the hash values, but this depends on the distribution of
the keys in the considered data set.

Example: Hashing of English words

• hash function: ASCII-value of the first letter poor choice: not an even distribution.
17.13

3

String hashing in Java
hashCode() for String in Java 1.1

• For long strings: only consider a finite number of characters.

• Advantage: save time
• Disadvantage: high risk for a collision patterns

17.14

Ideas for hash functions

• Memory addresses

– Interpret memory address of an object as an integer

– Works well when using pointers as keys (difference between equality and identity).

• Interpret as integers

– Interpret the bits in a key as an integer

– Can work for keys with few numbers of bits

• Sum of components

– Divide the bits in the key into components of fixed length (e.g. 16 or 32 bits) and sum the
components (Ignoring overflows.)

– Can work for numerical keys of fixed lengths with more bits than those in an integer
17.15

Possible hash functions

• Polynomial accumulation

– Divide the bits in a key into a sequence of components of fixed lengths (e.g., 8, 16 or 32 bits)

a0a1an−1

– Evaluate the polynom
p(z) = a0 +a1z+a2z2 + . . .+an−1zn−1

for some fixed value z. (Ignore overflows)

– Works well for hashing strings . (e.g. z = 33 gives at most 6 collisions for 50000 English
words.)

• Polynom p(z) can be evaluated in O(n) steps with Horner’s evaluation:

– Iterative evaluation. Each polynom can be evaluated in O(1) steps based on the previous poly-
nom in the sequence

p0(z) = an−1

pi(z) = an−i−1 + zpi−1(z) (i = 1,2, . . . ,n−1)

• with p(z) = pn−1(z)
17.16

String hashing in Java
hashCode() for String in Java

17.17

4

Algorithmic complexity attacks
Is the assumption on the uniform distribution of the keys important in practice?
• In critical applications you want to avoid timing “surprises”
• An attacker could craft inputs or packages to produce a hash-collision based DOS-attack [Crosby-

Wallach 2003]
• Regular expression denial of service [Staicu-Pradel-2018]

0

1

12

11

10

9

8

7

6

5

4

3

2 41 28 54

18

36 10

90 12 38 25 17.18

2 Tree-based applications

2.1 Text compression

Text compression
Greedy algorithms: algorithms that solve a piece of the problem at a time. Each step performs the best

“local” actions.
• The greedy approach is a general paradigm when designing algorithms, it builds on the following:

– Configurations: different choices, sets or values to find
– objective function: Configurations are assigned a score to be maximized or minimized

• The approach works best for problems that enjoy the greedy-choice-property:

– a globally optimal solution can always be found via a series of local improvements starting
from a configuraiton

for many problems, the greedy approach does not give an optimal solution but good approximations. 17.19

Text compression
• Given a string X , encode X as a shorter string Y

– Saves memory/bandwidth

• A good way to do it: Huffman encoding

– Compute the frequency f (c) of each character c
– Use short codes for frequent characters
– No code is a prefix of another code
– Use an optimal coding tree to determine the codes

17.20

An encoding tree example
• A code maps each character of an aplhabet to a binary code
• A prefix-code is a binary code ensures no code word is prefix of another code word
• An encoding tree represents a prefix-code

– Each external node stores a character
– The code-word for a character is given by the path from the root to the external node that stores

the character (0 for the left child and 1 for the righ child)

a

b c

d e

00 010 011 10 11

a b c d e

17.21

5

Optimization of encoding trees

• Given a string X , we want to find a prefix-encoding for the characters in X that gives a short encoding
of X

– Common characters should get short code-words

– Unusual characters can get get longer code-words

Exampel: X = abrakadabra

• T1 encodes X with 29 bits
• T2 encodes X with 24 bits

a b k d r
5 2 1 1 2

k

a r

d b a

k d

b r

T1 T2

17.22

Huffman’s algorithm

• Given a string X , Huffman’s algorithm constructs a prefix-encoding that minimizes the size of the
resulting encoding of X

• The algorithm runs in O(n+ d logd) time complexity, where n is the size of X and d is the number
of distinct charachters in X

• A heap based priority queue is used as an extra data-structure

function HUFFMANENCODING(X , |X |= n)
C← DISTINCTCHARACTERS(X)
COMPUTEFREQUENCIES(C,X)
Q← new empty heap
for all c ∈C do

T ← new single node tree to encode c
Q.INSERT(GETFREQUENCY(c),T)

while Q.SIZE()> 1 do
f1← Q.MIN()
T1← Q.REMOVEMIN()
f2← Q.MIN()
T2← Q.REMOVEMIN()
T ← JOIN(T1,T2)
Q.INSERT(f1 + f2,T)

return Q.REMOVEMIN()
17.23

2.2 Prefix-trees

Prefix-trees (Trie)

• trie: An ordered tree datastructure used to store a data set, usually strings, an optimized to perform
prefix-searches

– Example: Are there words in the set that start with the prefix mart?

– Lexicon-class in labb5 uses such a datastructure

– Idea: instead of a binary tree, use a “26-ary” tree

* Each node may have 26 children: one for each letter A-Z

* insert a word in the trie by following the suitable pointers associated to the children

6

17.24

Trie-node

struct TrieNode {
bool word;
TrieNode* children[26];

TrieNode() {
this->word = false;
for (int i = 0; i < 26; i++) {

this->children[i] = nullptr;
}

}
};

17.25

Trie with data

• After having inserted “am”, “ate”, “me”, “mud”, “my”, “one”, “out”:

17.26

2.3 Union/Find

Partitions with Union/Find-operations

• makeSet(x): create a singleton containing x and returns the position where x is stored
• union(A,B): returns the set A∪B, consumes the old A and B.
• find(p): returns the set that contains the element at position p.

17.27

Example: Connectivity

7

Quesiton: is there a path between p and q?

• Pixels in a digital photo
• Computers in a network
• Friends in a social media
• Transistors in a chip
• Elements in a mathematical set
• Variable names in a computer program

17.28

List based implementation

• Each set is stored as a sequence captured by a linked list
• Each node contains an element and a reference to the set name

17.29

Analysis of the list based representation

• When creating unions, always move elements from the smaller set to the larger set

– Each time an element is moved, it will be a member of a set that is at least twice as large as the
old set

– Hence, an element can be moved a maximum of O(logn) times

• Total time to perform n union and find-operations is O(n logn)
17.30

Tree based implementation

• Each element is saved in a node that contains a pointer to a set name
• A node v that points to itself is also a set name
• Each set is captured with a tree with a self-pointing node as a root
• ex. sets ”1”, ”2” och ”5”:

8

17.31

Operations

• To perform a union, just let the root of the tree point to the root of the other tree

• To perform a find, follow the pointer from the given node to the self-pointing one

2

63

5

108

12

11

9

2

63

5

108

12

11

9
17.32

A heuristic

• Union by sizes:

– When performing a union, let the root of the smaller tree point to the root of the larger one

• Results in O(n logn) steps to perform n unions and find operations:

– Each time we follow a pointer, we get to a tree that is at least twice the size of the previous
subtree

– Hence, we will follow at most O(logn) pointers during find

2

63

5

108

12

11
9

17.33

9

One more heuristic

• Path compression:

– After find is executed, make all nodes on the path point to the root

2

63

5

108

12

11

9

2

63

5

108

12

11

9
17.34

2.4 Geometric search

One dimension range search

• Extending ordered symbol tables

– insert key-value pairs

– search for key k

– Range seach: find all keys between k1 and k2

– Range size: the number of keys between k1 and k2

• Applications

– Database queries

• Geometric interpretation:

– Keys are points on a line

– Find/count the number of points in a given range

17.35

Range search in one dimension with BSTs

• Find all keys between k1 and k2

– Find, recursively, all keys in the left subtree (if any can be in the range)

– Control key in current node

– Find, recursively, all keys in the right subtree (if any can be in the range)

10

17.36

Two dimensions range search

• Extending ordered symbole tabkes ti 2D-keys

– insert a 2D-key

– Search for a 2D-key

– Range search: find all keys in a 2D-range

– Range size: number of keys in a 2D-range

• Applications:

– Networks, Chip design, databases

• Geometric interpretation:

– Keys are points in a plane

– Find/count keys in a given rectangle

17.37

Range search in two dimensions with a grid

• Divide the plane into a grid with M×M squares
• Create a list of points in each square
• Use 2D-array to directly index the squares
• Range search: only examine the squares that overlap the query

17.38

11

Clustering

• Grid implementation:

– Fast, simple solution for well distributed points

• Problem: Clustering is a known phenomenon for geometrical data

– Some lists get too long, although the average length is shor

– Need for a data-structe that adapts to the data

17.39

Clustering

• Grid implementation:

– Fast, simple solution for well distributed points

• Problem: Clustering is a known phenomenon for geometrical data

– Exempel: kartdata

17.40

Tree structures
Use a tree to recursively partition the plane

• Grid: Divide the plane uniformly into squares
• Quadtree: Divide the plane recursively into four squares
• 2D-tree: Divide the plane recursively into two half planes
• BSP-tree: (Binary Search Partition) Divide the tree recursively into two regions

17.41

12

Applications

• Ray-tracing
• Range search in 2 dimensions
• Fligh simulators
• N-body simulations
• Collision detection
• Astronomical databases
• Search for closest neighbors
• Adaptative grid generation
• Remove hidden surfaces and shading

17.42

Quadtree

• Idea: Divide tha plane recursively into 4 squares
• Implementation: 4-way tree (actually a trie)

• Advantage: Good performance when clustered data
• Drawback: Arbitrary depth!

17.43

Quadtree: range search in 2D

• find recursively all keys in NE sqaure (if any can be found there)
• find recursively all keys in NW sqaure (if any can be found there)
• find recursively all keys in SE sqaure (if any can be found there)
• find recursively all keys in SW sqaure (if any can be found there)

17.44

13

The dimensionality problem

• Range search in k dimensions

– Main application: Multidimensional databases

– 3D: Octree: divide recursively the 3D space in 8 octants

– 100D: Centree: Divide recursively the 100D space into 2100 centrants???

17.45

2D-tree
Divide recursively the plane into two half plances

17.46

2D-tree

• Data structures: BST, but alternate using x- and y-coordinates as key

– Seach returns a rectangle containing a point

– Insertion further divides the plane

17.47

14

2D-tree: Range search in 2D
Find all points in a rectangle given by the query (rectangle sides are parallel with the coordinates)

• Control if current points is in the rectangle
• Recursively search in the left/top subtrees (if any can be part of the rectangle)
• Recursively search in the righ/lower subtrees (if any can be part of the rectangle)

17.48

2D-tree: Search for closest neighbor
Find a point that is closest to a given point

• Control distance from current point to the point in the query
• Search recursively in the left/top subtree (if they can contain a closer point)
• Search recursively in the right/lower subtree (if they can contain a closer point)
• Set up the recurisve search so that it starts looking for the point in the query

• Typical execution time: logN
• Worst case (even if the tree is balanced): N

17.49

KD-trees

• KD-tree: Recursively partition the k-dimensional space in two half spaces

– Implementation: BST, but cycle through the dimensions like in a 2D-tree

• Efficient, simple datastructure to manage k-dimensional data

– Wide usage

– Adapts well to high dimensional and clustered data

– Discovered by a student (Jon Bentley) in an algorithm course!
17.50

15

	Hash tables
	Collision management
	Choose a good hash function

	Tree-based applications
	Text compression
	Prefix-trees
	Union/Find
	Geometric search

