Föreläsning 16 Splay-trees, Heaps, Skip-lists

Utskriftsversion av Föreläsing i *Datastrukturer, algoritmer och programmeringsparadigm* 18 November 2024

IDA, Linköpings universitet

Content Contents 1 Splay-trees 2 Priority queues 2.1 Heaps 3 Skip-lists

1 Splay-trees

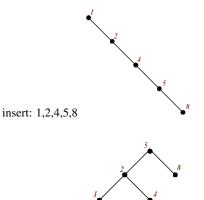
Binary search trees are not unique

Recall that binary search trees:

- Allow for simple insertion and deletion, but ...
- "balance" depends on insertion and deletion orders.

Combine with the heuristic: "keep last used first"?

• Elements that currently most often used should be close to the root!



insert: 5,2,1,4,8

Operation splay(k)

- Perform a normal search for k, and remember the nodes we pass...
- Let *P* be the last node we visit
 - If k is in the tree T, then it is in P,
 - otherwise, P is parent to an empty node in the tree
- Get back to the root and perform a rotation at each node to move P up in the tree ... (3 cases)

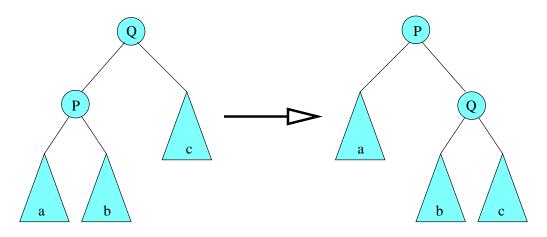
16.4

16.3

16.2

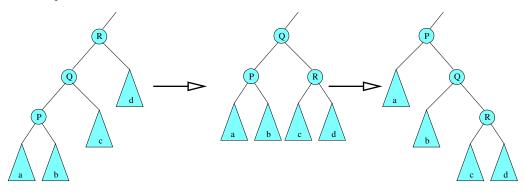
Operation splay(k)

• zig: parent(P) is root: rotate wrt. P



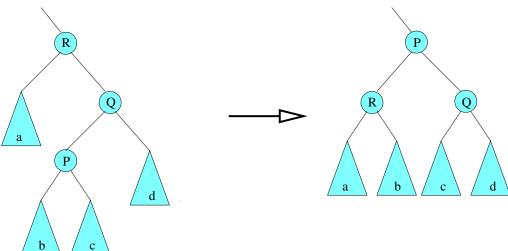
Operation splay(k)

• zig-zig: *P* and parent(*P*) are both left children (or both right children): perform two rotations to move *P* upwards



Operation splay(k)

• zig-zag: One of P and parent(P) is a left child and the other is a right child: perform two different rotations



Observe that rotations can increase the height of the tree!

16.6

16.5

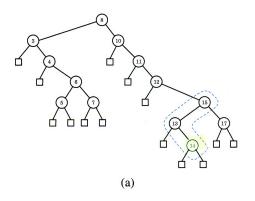
find and insert

function FIND(k,T) SPLAY(k,T)if KEY(ROOT(T)) = k then return (k,v)else return null

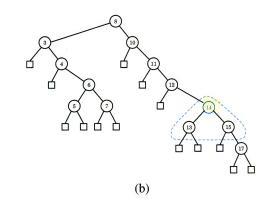
function INSERT(*k*, *v*, *T*)

insert (k, v) as in a binary search tree SPLAY(k, T)

Example: insertion of 14



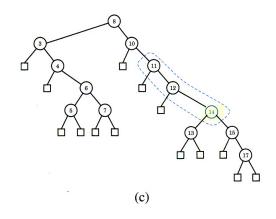
Example: insertion 14



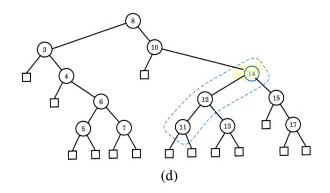
Example: insertion of 14

16.10

16.9

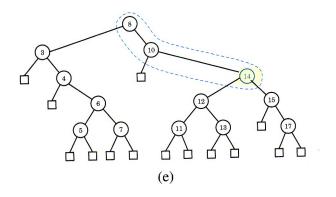


Example: insertion of 14

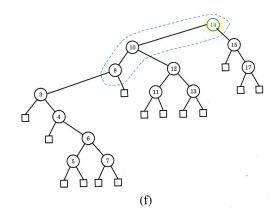


Example: insertion of 14

16.11



Example: insertion of 14



delete

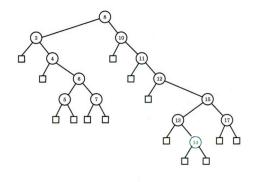
function DELETE(k, T)SPLAY(k, T) **if** KEY(ROOT(T)) = k **then** remove ROOT(T): gives T_{left} and T_{right} do SPLAY on max value in T_{left} , gives T'_{left} bind T_{right} to ROOT (T'_{left})

You can also use successor in inorder traversal.

Example: remove 8

16.14

16.13



Performance

16.17

16.18

- Each operation might need to be executed on unbalanced trees
 - no guaranty to achieve $O(\log n)$ in worst case
- · Amortized time is logarithmic
 - each sequence of *m* operations, executed on an initially empty tree, take in total $O(m \log m)$ time complexity
 - therefore, the *amortized* cost for an operation is $O(\log n)$ even if individual operations can perform much worst

2 Priority queues

Priority queues

Naturally encountered:

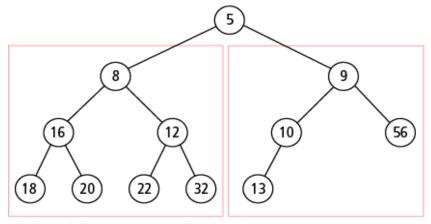
- waiting lists (among tasks, events in a simulation)
- If a resource is free, choose an element from the waiting list
- Choice based on a partial/linear order:
 - task with highest priority is chosen
 - each event is to occur at some time, events are to be processed in time order

ADT priority queue

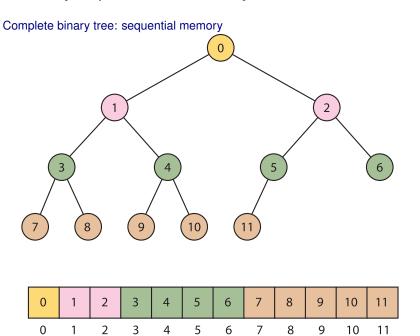
- Linearly ordered set of keys K
- We store pair (k, v) (as in a dictionary ADT), multiple pairs with same key are allowed
- A typical operation is to fetch a pair with a minimal key
- Operations on a priority queue *P*:
 - makeEmptyPQ()
 - isEmpty()
 - size()
 - $\min($): find pair (k, v) with minimal k in P; return (k, v)
 - $\operatorname{insert}(k, v)$: insert (k, v) in P
 - removeMin(): remove and return a pair (k, v) in P with a minimal k; error if P is empty

Implementation of priority queues

- One could use sorted linked lists or BSTs
- Another idea: use a complete binary tree where the root, in each (sub)tree, contains a minimal element in the (sub)tree



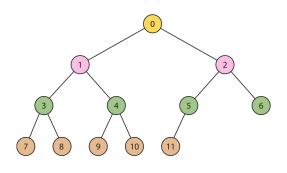
This is a partially sorted tree, also called a heap!



Sequential memory

Use a table table<key,info>[0..n-1]

- leftChild(i) = 2i + 1 (returns **null** if 2i + 1 \ge n)
- rightChild(i) = 2i + 2 (returns null if $2i + 2 \ge n$)
- isLeaf(i) = (i < n) and (2i + 1 > n)
- leftSibling(i) = i 1 (returns null if i = 0 or odd(i))
- rightSibling(i) = i + 1 (returns **null** if i = n 1 or even(i))
- parent(*i*) = $\lfloor (i-1)/2 \rfloor$ (returns **null** if *i* = 0)
- isRoot(i) = (i = 0)



7

2.1 Heaps

Updating a heap structure

• The last leaf is the last node when traversing level by level

```
• removeMin(PQ) // remove the root
```

- Replace root with last leaf
- Restore the partial ordering by pushing the node downwards with "down-heap bubbling"
- insert(PQ, k, v)
 - insert node (k, v) after the last leaf
 - Restore the partial order with "up-heap bubbling"

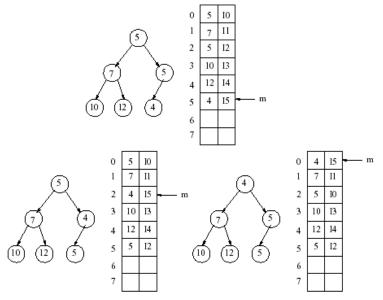
Properties

- size(), isEmpty(), min(): *O*(1)
- insert(), removeMin(): $O(\log n)$

Recall array representation of a complete binary tree ...

- Compact representation
- · "Bubble-up" and "bubble-down" have efficient implementations

Example: "bubble-up" after insert(4,15)



Recall ArrayList from lecture 7

- · Write a class that implements an array of integers
 - We call it ArrayList
 - Behavior:

```
add(value) insert(index, value)
get(index) set(index, value)
size() isEmpty()
remove(index)
indexOf(value) contains(value)
toString()
...
```

- The size of the list will be the number of elements inserted so far
 - The actual length of the array (capacity) can be larger. Start with a size of 10 by default.

8

16.25

16.23

16.24

Destructor

- // ClassName.h // ClassName.cpp ~ClassName(); ClassName::~ClassName() { ...
 - Called when the object is destroyed by the program (when the object goes out of scope or delete is used)
 - Can be useful to:
 - * free temporary resources
 - * free dynamically allocated memory used by the members
- Does ArrayList need a destructor? What should it do?
 - Yes; to free the memory associated with storing elements

Increase capacity

ſ	index	0	1	2	3	4	5	6	7	8	9
I	value	3	8	9	7	5	12	4	8	1	6
I	size	10	сара	acitv	10						

• What if the users wants to add more than ten elements?

list.add(75) //add a 11th element

index	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
value	3	8	9	7	5	12	4	8	1	6	75	0	0	0	0	0	0	0	0	0
size	size 11 capacity 20																			

• Answer: double the size of the field

- Do not forget to release the memory used by the old array!

```
- int* a = new int[10];
int* b = new int[20];
std::copy(a, a+10, b); // Do not use memcpy(b, a, 10 * sizeof(int))!
delete[] a;
a = b;
std::copy(first, after, output);
```

Amortised analysis

We want a new type of array that automatically increase available size when full (when the number of ellements n is same as the capacity N). Suppose the array always insert new element in the first free position:

- Allocate a new array B with capacity 2N
- Copy A[i] to B[i], for i = 0, ..., N-1
- Lets A = B, we let B take over the role A had.

In term of effectiveness, expanding the array is slow. But the algorithmic complexity is:

- O(1) most of the time
- O(n) for copying *n* element and O(1) for inserting after reallocation.

3 Skip-lists

Skip-lists

- A hierarchical linked list...
- A randomized alternative to implementing a dictionary ADT
- Insertion uses randomization ("coin tossing")
- Good expected performance
- Worst behavior occurs extremely rarely (for more than 250 data elements, the risk that the search time is more than 3 times the expected time is less than 10^{-6})

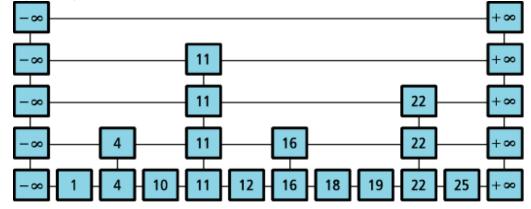
16.27

16.28

The skip-list data-structure

- Levels L_1, \ldots, L_h of nodes (keys, values)
- Same nodes on several levels (tower)
- Special keys: $-\infty$ and $+\infty\ldots$ smaller/larger than all real keys...
- Several *levels* of doubly linked lists, the higher the sparser
 - Level 1: all nodes are part of a doubly linked list from $-\infty$ to $+\infty$, ordered according to '<'-relation
 - In average, half the nodes from L_i are also part of L_{i+1}
 - Special keys $-\infty$ and $+\infty$ are part of all levels
 - Only $-\infty$ and $+\infty$ are part of L_h

Example: a skip-list



Search

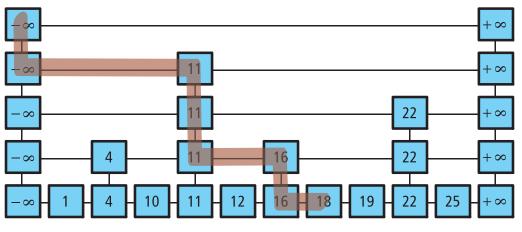
Seach key k:

- Follow the list at the highest level...
 - Stop just before passing some $k_i > k$
 - If found *k*, return the result, otherwise ...
- We stopped at some level:
 - Did we find the key?
 - No, change the lower level (using the "last tower") and continue searching
 - Return: largest key $k_i \leq k$ (which could be $+\infty$)

Searching

Searching for key k:

- · Similarities with binary search, but for lists
- Example: find(18)



16.31

16.32

16.33

Insert

function INSERT(*x*)

 $P \leftarrow FIND(x)$

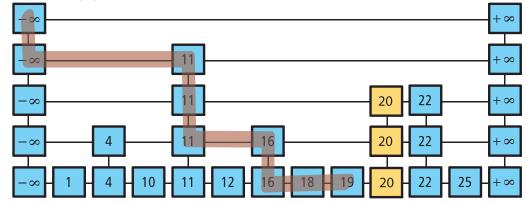
if *P.value* < x then

insert a new node after P

"toss a coin" to decide how high the "tower" should be:

- while "tossing a coined"=yes do
 - increase tower with one level
 - (might increase the height of the skip-list)

Example: insert(20)



Deletion ... and properties

- Similar to search:
 - Search
 - if found, remove and repair links between the towers
- Worst case for find, insert and remove in a skip-list with *n* elements is O(n+h)
- But expected execution time (assuming the keys are uniformly distributed) is $O(\log n)$ if the search starts at height $\lfloor \log n \rfloor$

16.35