
Föreläsning 15
Trees
TDDD86: DALP

Utskriftsversion av Föreläsing i Datastrukturer, algoritmer och programmeringsparadigm
08-11 November 2024

IDA, Linköpings universitet

15.1

Content

Contents

1 Symbol tables 1
1.1 Abstract datatypes . 1
1.2 Implementation . 1

2 Trees 2
2.1 Basic concepts . 2
2.2 ADT tree . 2
2.3 Representation of binary trees . 3
2.4 Tree traversals . 4
2.5 Binary search trees . 4
2.6 AVL-trees . 7
2.7 (2,3)-tree . 10
2.8 B-tree . 12 15.2

1 Symbol tables

Symbol tables

• Abstraction of key-value pairs

– insert a value with a specified key

– Given a key, search for a corresponding value
15.3

1.1 Abstract datatypes

1.2 Implementation

Implementation: Set, multiset, Map, Dictionary

• Table/array: sequence of adjacent memory locations

– Unordered: no order required between T [i] and T [i+1]

– Ordered: . . . order required between the keys T [i]< T [i+1]

• Linked lists

– unordered

– ordered

• (Binary) search trees
• Hashing
• Skip-lists

15.4

1

Table representation of a Dictionary

unordered table:
find with linear search

• unsuccessful look-up: n comparisons⇒ O(n) time complexity
• successful look-up, worst case: n comparisons⇒ O(n) time complexity
• successful look-up, average case with uniform partition of the query positions: 1

n (1+2+ . . .+n) =
n+1

2 comparisons⇒ O(n) time complexity

15.5

Table representation of a Dictionary

Ordered table (keys are linearly ordered):
find with binary search

• look-up: O(logn) time complexity
• . . . updates are however expensive!!

15.6

2 Trees

2.1 Basic concepts

Why trees?
Tree-like structures appear naturally in many situations

• File systems
• Decision trees
• Hierarchical organizations of

– Document: book, chapter, section

– XML-document

• To capture an ordering or a priority
15.7

Terminology

• A (rooted) tree T = (V,E) consists in a set V of nodes and edges E, where each edge is a pair
(u,v) ∈V ×V .

• Nodes v ∈V store data in a parent-child relationship.
• A parent-child relationship between the parent node u and the child node v is expressed with a directed

edge (u,v) ∈ E, from u to v.
• Each node has at most a parent; it can have many siblings.
• There are at most one node without a parent – the root node.

15.8

More terminology

• The degree of a node is the number of its children
• A node without children is a leaf or an external node. All other nodes are internal nodes.
• A path is a sequence of nodes (v1,v2, . . . ,vk), where k > 0 and (vi,vi+1) is an edge for each for

i = 1, . . . ,k−1.
• The length of a path (v1,v2, . . . ,vk) is k−1. Observe the length of the path (v1) with a single node is

0.
• A node n is an ancestor to a node v iff there is a path from n to v in T .
• A node n is a descendant to a node v iff there is a path from v to n in T .

15.9

More terminology

• Depth d(v) of a node v is the length of the path from the root node to v.
• Height h(v) of a node v is the length of the longest path from v to some descendant of v.
• Height h(T) of a tree T is the height of the root node.

15.10

2

Some tree types

• Ordered tree: linear ordering (as in left, right, or first, second etc) between the children of each node.
Do not confuse with Sorted trees.

• Binary tree: ordered tree where each node has a degree ≤ 2. A node can have a left child and a right
child.

• Empty binary tree (null): a binary tree without nodes.
• Full binary tree: non-empty binary tree where each node has a degree of 0 or 2. Consequence (by

induction on number of nodes): #leaves = 1 + #internal nodes.
• Perfect binary tree: full binary tree where all leaves have the same depth. Consequence (induction

on height) : #nodes = 2h+1−1 where h is the height of the tree.
• Complete binary tree: An approximation of perfect trees where rows are filled row after row from left

to right. Consequence: a complete binary tree with height h and n nodes satisfies 2h ≤ n≤ 2h+1−1.
15.11

2.2 ADT tree

Operations on a node v of a tree T

• parent(v) returns the parent of v, error if v is a root node
• children(v) returns set of children of v
• firstChild(v) returns first child of v or null if v is a leaf
• rightSibling(v) returns right sibling to v or null if no right sibling
• leftSibling(v) returns left sibling of v or null if no left sibling
• isLeaf (v) returns true iff v is a leaf
• isInternal(v) returns true iff v is not a leaf node
• isRoot(v) returns true iff v is a root node
• depth(v) returns depth of v in T
• height(v) returns height of v in T

15.12

Operations on a tree T

• size() returns number of nodes in T
• root() returns root node of T
• height() returns height of T

In addition, for a binary tree

• left(v) returns left child of v or error
• right(v) returns right child of v or error
• hasLeft(v) checks if v is a left child
• hasRight(v) checks if v is a right child

15.13

2.3 Representation of binary trees

A linked representation
class treeNode<T> nodeInfo: T N: integer children: array[1..N] of treeNode<T>

Or, for a binary tree

class treeNode<T> nodeInfo: T leftChild: treeNode<T> rightChild: treeNode<T>

LC RC

LC RC

RC

leftChild rightChild

15.14

3

Complete binary tree: sequential memory

15.15

Sequential memory
Use a table table<key,info>[0..n-1]

• leftChild(i) = 2i+1 (returns null if 2i+1≥ n)
• rightChild(i) = 2i+2 (returns null if 2i+2≥ n)
• isLeaf(i) = (i < n) and (2i+1 > n)
• leftSibling(i) = i−1 (returns null if i = 0 or odd(i))
• rightSibling(i) = i+1 (returns null if i = n−1 or even(i))
• parent(i) = ⌊(i−1)/2⌋ (returns null if i = 0)
• isRoot(i) = (i = 0)

15.16

2.4 Tree traversals

Traversal of a tree Generic routine for traversing a tree

procedure VISIT(node v)
for all u ∈CHILDREN(v) do

VISIT(u)

Call visit(root(T)) and each node in T will be visited exactly once! 15.17

4

Traversing a tree
procedure PREORDERVISIT(node v)

DOSOMETHING(v) ▷ before children
for all u ∈CHILDREN(v) do

PREORDERVISIT(u)

procedure POSTORDERVISIT(node v)
for all u ∈CHILDREN(v) do

POSTORDERVISIT(u)
DOSOMETHING(v) ▷ after children

15.18

Traversing a tree (here, for binary trees)
procedure INORDERVISIT(node v)

INORDERVISIT(LEFTCHILD(v))
DOSOMETHING(v) ▷ after all left descendants
INORDERVISIT(RIGHTCHILD(v))

15.19

Traversing a tree
procedure LEVELORDERVISIT(node v)

Q←MAKEEMPTYQUEUE()
ENQUEUE(v,Q)
while not ISEMPTY(Q) do

v←DEQUEUE(Q)
DOSOMETHING(v)
for all u ∈CHILDREN(v) do

ENQUEUE(u,Q)

A breadth first traversal. 15.20

2.5 Binary search trees

Binary search trees
A binary search tree (BST) is a binary tree such that:

• information associated with a node is (key,value). The keys are ordered as foolows.

The key in each node is:

• larger than or equal to each key appearing in all left descendants, and
• less than the key appearing in all right decendants.

15.21

ADT Map with a binary search tree
procedure FIND(k,v)

if v = null then return null
else if KEY(v) = k then return v
else if k <KEY(v) then

FIND(k,LEFTCHILD(v)) ▷ unsuccessful if no leftChild
else

FIND(k,RIGHTCHILD(v)) ▷ unsuccessful if no rightChild

Worst case: HEIGHT(T)+1 comparisons. 15.22

5

ADT Map with a binary search tree
insert(k,v): insert (k,v) as a new leaf if unsuccessful find, otherwise update the node

procedure FIND(k,v)
if v = null then return null
else if KEY(v) = k then return v
else if k <KEY(v) then

FIND(k,LEFTCHILD(v))
else

FIND(k,RIGHTCHILD(v))

33

15

10

5

20

21

47

38

39

51

49 55

Worst case: HEIGHT(T)+1 comparisons 15.23

ADT Map with a binary search tree
remove(k): find, then. . .

• if v is a leaf (e.g., 5, 49), remove v
• if v has a child u, replace v with u (e.g., 10, 20)
• if v has two children (e.g., 15, 33), replace v with its successor in inorder and remove the successor
• (alternatively with its predecessor in inorder and remove the predecessor)

33

15

10

5

20

21

47

38

39

51

49 55

Worst case: HEIGHT(T)+1 comparisons. 15.24

ADT Map with binary search tree

Heights of randomly chosen binary trees

6

Worst case: HEIGHT(T)+1 comparisons. 15.25

Binary search trees are not unique
Same data can result in different binary search trees

insert: 1,2,4,5,8

insert: 5,2,1,4,8 15.26

Successful look-up

BST in worst case

• BST degenerates to a linear sequence
• expected number of comparisons is (n+1)/2

Balanced BST

• depth of leaves does not differ by more than 1
• O(log2 n) comparisons

15.27

Therefore — Strive to maintain them balanced!
Some common balanced trees:

• AVL-trees
• (2,3)-trees, (a,b)-trees,
• Red-black trees,
• B-trees,
• Splay-trees

15.28

2.6 AVL-trees

AVL-tree

• Self balancing BST
• AVL = Adelson-Velskii and Landis, 1962
• Idea: Maintain balance information at each node
• AVL-property

– The difference in height between the children of each node is at most 1

– alternatively, let b(v) = height(leftChild(v))−height(rightChild(v)) for node v in T . An AVL-
tree T satisfies b(v) ∈ {−1,0,1} for each v in T .

15.29

7

Maximal height of an AVL-tree

Proposition 1. Height of an AVL-tree with n nodes is O(logn).

As a result,

Proposition 2. find, insert and remove can be written, for AVL-trees, to have time complexity in O(logn)
while preserving the AVL-property.

15.30

Exampel: an AVL-tree

44

17

32

78

50

48 62

88

3

1

0

2

1

0 0

0

15.31

Insert in an AVL-tree

• The new node might change the heights in a way that the tree needs to be balanced.

– You can track heights of the subtrees by

* storing the hights explicitly in each node

* storing the difference in each node

• Balancing is usually described with right or left rotations of subtrees.
• It is enough to use rotations to balance the tree.

15.32

Insert in an AVL-tree (simple case)

15.33

8

Four different rotations

T0
T1

T2

T3 T0 T1 T2

T3

a=z

c=x
a=z

b=y

c=xenkel rotation
b=y

• Start from new node. Look for first x with unbalanced ”grand-parent” z.
Denote with y the parent of x.

– Rename x,y,z to a,b,c based on occurence in an inorder traversal

– Let T0,T1,T2,T3 be an enumeration, in an inorder traversal, of sub-
trees of x, y och z. (none of x, y or z is root to these subtrees.)

– Replace z by b. The children of b are now a and c.

– T0 and T1 are children to a. T2 and T3 are children to c.

Simple rotation if b = y:
”Rotate y up over z”

15.34

Fyra olika rotationer

T0

T1

T2

T3

T0

T1 T2 T3

enkel rotationc=z

a=x
b=y

c=z

b=y

a=x

• Start from new node. Look for first x with unbalanced ”grand-parent” z.
Denote with y the parent of x.

– Rename x,y,z to a,b,c based on occurence in an inorder traversal

– Let T0,T1,T2,T3 be an enumeration, in an inorder traversal, of sub-
trees of x, y och z. (none of x, y or z is root to these subtrees.)

– Replace z by b. The children of b are now a and c.

– T0 and T1 are children to a. T2 and T3 are children to c.

Simple rotation if b = y:
”Rotate y up over z”

15.35

Fyra olika rotationer

T0

T0

T1

T2 T3 T1

T2

T3

a=z
a=z

b=x

c=ydubbel rotation

b=x
c=y

• Start from new node. Look for first x with unbalanced ”grand-parent” z.
Denote with y the parent of x.

– Rename x,y,z to a,b,c based on occurence in an inorder traversal

– Let T0,T1,T2,T3 be an enumeration, in an inorder traversal, of sub-
trees of x, y och z. (none of x, y or z is root to these subtrees.)

– Replace z by b. The children of b are now a and c.

– T0 and T1 are children to a. T2 and T3 are children to c.

Double rotation if b = x:
"Rotate x up over y",
"then over z"

15.36

9

Fyra olika rotationer

T0 T3
T0 T1

T2

T3 T1

T2

a=y

b=x

c=zdubbel rotation
c=z

b=x
a=y

• Start from new node. Look for first x with unbalanced ”grand-parent” z.
Denote with y the parent of x.

– Rename x,y,z to a,b,c based on occurence in an inorder traversal

– Let T0,T1,T2,T3 be an enumeration, in an inorder traversal, of sub-
trees of x, y och z. (none of x, y or z is root to these subtrees.)

– Replace z by b. The children of b are now a and c.

– T0 and T1 are children to a. T2 and T3 are children to c.

Double rotation if b = x:
"Rotate x up over y",
"then over z"

15.37

Insertion algorithm

• Start from the new node. Look for the first x with an unbalanced ”grand-parent” z. Denote with y the
parent of x.

– Rename x,y,z to a,b,c based on the occurence in an inorder traversal

– Let T0,T1,T2,T3 be an enumeration, in an inorder traversal, of the subtrees of x, y och z. (none
of x, y or z is root to these subtrees.)

– Replace z by b. The children of b are now a and c.

– T0 and T1 are children to a. T2 and T3 are children to c.
15.38

Exempel: insertion in an AVL-tree

44

17 78

50

48 62

88

4

1

0

3

2

0 1

0

54

32

T

T

0

1

3

y/a

T

z/c

x/b

• Start from the new node. Look for the first x with an unbalanced
”grand-parent” z. Denote with y the parent of x.

– Rename x,y,z to a,b,c based on the occurence in an in-
order traversal

– Let T0,T1,T2,T3 be an enumeration, in an inorder traver-
sal, of the subtrees of x, y och z. (none of x, y or z is root
to these subtrees.)

– Replace z by b. The children of b are now a and c.

– T0 and T1 are children to a. T2 and T3 are children to c.

15.39

Exempel: insertion in an AVL-tree

10

• Start from the new node. Look for the first x with an
unbalanced ”grand-parent” z. Denote with y the parent
of x.

– Rename x,y,z to a,b,c based on the occurence in
an inorder traversal

– Let T0,T1,T2,T3 be an enumeration, in an inorder
traversal, of the subtrees of x, y och z. (none of x,
y or z is root to these subtrees.)

– Replace z by b. The children of b are now a and c.

– T0 and T1 are children to a. T2 and T3 are children
to c.

15.40

Deletion in an AVL-tree

• find and remove are similar to a simple binary search tree
• Update the balance information on the way up to the root
• If unbalanced, restructure using rotations:

– when restoring balance in a part, we can create unbalance in another place

– Repeat balancing untill the root

– At most O(logn) rebalancings
15.41

2.7 (2,3)-tree

Another approach: drop some requirements

• AVL-tree: binary trees, accept some controlled unbalance. . .
• Recall

– Full binary trees: non-empty trees with node degrees of 0 or 2

– Perfect binary trees: full where all leaves have the same depth

• Maintain a perfect tree and drop the binary requirement? obtained tree would be perfectly balanced.
15.42

(2,3)-tree
in a binary search tree:

• a "pivot" element
• If larger, look to the right
• If smaller, look to the left

In a (2,3)-tree:

• Allow several (here 1–2) pivot elements
• Number of children of an internal node is 1 plus the number of pivot elements (here 2–3)

8

5

2

5 10

2 8 12
15.43

11

More generally (a,b)-tree

• a,b satisfy 2≤ a≤ (b+1)/2
• Each internal node, except for the root, has a to b children
• The root is either a leaf or it has 2 to b children

• find as in a BST with the additional pivots
• insert has to handle overfull nodes, in which case nodes have to be divided
• remove has to handle underfull nodes, in which case values need to be transferred between the nodes,

or nodes need to be merged

Proposition 3. Height+1 of an (a,b)-tree with n nodes is between logb(n+1) and loga(n+1).

⇒ more flat trees, but more work in the nodes 15.44

Inserting in an (a,b)-tree with a = 2 and b = 3

10

5 10

Insert(10)

Insert(15)

5 15

5

Insert(18)

• If there is place in a child, add the element. . .

• If full, divide the node and promote the pivot element up. This may need to be repeated.

10

5 15 18

Insert(17)
10

5 15 17 18

10 17

5 15 18
15.45

Deletion in a (2,3)-tree
We consider three cases:

• A key is deleted without violating the requirements
• The last key in a leaf node is deleted and becomes empty

– transfer some key from another node: ok if a sibling has 2+ elements

– otherwise, merge

• A key in an internal node is deleted

10 17

5 15 18

30

25 35 40

20

10 17

5 15 18

35

30 40

20
Delete(25)

30

? 35 40

?

30 35 40

verf ringÖ ö
av 30 och 35

15.46

12

Deletion in a (2,3)-tree

• A key is deleted without violating the requirements
• The last key in a leaf node is deleted and becomes empty

– transfer some key from another node: ok if a sibling has 2+ elements

– otherwise, merge

• A key in an internal node is deleted

10 17

5 15 18

35

30 40

20 Delete(18)

10 17

5 15 ?

10

5 15 17

10

5 15 17

35

30 40

20

15.47

Deletion in a (2,3)-tree

• A key in an internal node is deleted

– replace predecessor or successor in order and repair inconsistencies with replacements and
merging

10

5 17

35

30 40

20

Delete(20)

10

5 ?

35

30 40

?

Ers tt...ä
...sl ihop l vå ö

17 ?

5 10

35

30 40

17

F r f element internt...ö å
...sl ihop noderå

5 10 30 40

17 35

15.48

2.8 B-tree

B-tree

• Used for indexing external data: (e.g. content on a hard drive)
• A B-tree is an (a,b)-tree where a = ⌈b/2⌉
• We can choose b so that it exactly occupies a hard drive memory block
• With a = ⌈b/2⌉ we ensure internal nodes are half full and merging results in a block

• B-tree (and variants of such as B+-trees) are used in many filesystems and databases

– Windows: HPFS

– Mac: HFS, HFS+

– Linux: ReiserFS, XFS, Ext3FS, JFS

– Databaser: ORACLE, DB2, INGRES, PostgreSQL
15.49

13

	Symbol tables
	Abstract datatypes
	Implementation

	Trees
	Basic concepts
	ADT tree
	Representation of binary trees
	Tree traversals
	Binary search trees
	AVL-trees
	(2,3)-tree
	B-tree

