
Föreläsning 14
Recursive search
TDDD86: DALP

Utskriftsversion av Föreläsing i Datastrukturer, algoritmer och programmeringsparadigm
04 November 2024

IDA, Linköpings universitet

14.1

Content

Contents

1 Recursive search 1
1.1 Exhaustive search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Backtracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 14.2

1 Recursive search

Recursive problem solving
if ( the problem is simple enough) {

• Solve the problem directly
• Return the solution

} else {

• Divide the problem into one or several similar smaller problems
• Solve the smaller problems
• Combine the results to get a solution to the original problem
• Return the solution

} 14.3

1.1 Exhaustive search

Generate all possibilities

• It is not rare that one needs to generate all objects satisfying a given constraint

– Word chains: Generate all words that only differ in a single letter

• The objects can often be generated iteratively
• In several cases it is better to think about a recursive method to generate all the possibilities.

14.4

Subsets

• Given a set S, we can generate a subset of S by chosing a number of elements from S
• Exampel:

– {0, 1, 2} is a subset of {0, 1, 2, 3, 4, 5}

– {dikdik, ibex} is a subset of {dikdik, ibex}

– {A, G, C, T} is a subset of {A, B, C, D, E, . . . , Z}

– {} ⊆ {a, b, c}

– {} ⊆ {}

• Many important problems in Computer Science can be solved by listing all possible subsets of a set
S and by finding the “best” one.

14.5

1



Generate subsets

14.6

Generate subsets

14.7

Generate subsets

14.8

Generate subsets

2



14.9

Generate subsets

14.10

Generate subsets

14.11

Generate subsets

3



• Base case:

– The only subset of the empty set is the empty set

• Recursive case:

– Choose an element x in the set original set

– Generate all subsets of the set obtained by excluding x from the set

– These subsets are also subsets to the original set

– All subsets obtained by adding x are also subsets to the original set
14.12

Follow the recursion

14.13

Follow the recursion

14.14

Follow the recursion

4



14.15

Follow the recursion

14.16

Follow the recursion

5



14.17

Follow the recursion

14.18

Follow the recursion

6



14.19

Follow the recursion

14.20

Analyzing the method

• How many subsets are there in a set with n elements?
• For each element, we choose if it will be part of the subset or not
• We make n choices with 2 possible outcomes for each choice. This results in 2n subsets.
• The returned set of subsets will use O(2n) in memory

14.21

Reducing memory usage

• We need often to perform some operations on each subset, without needing to save them.

– Idea: Generate each subset, handle it, then throw it away

* Question: How do we do that?
14.22

Permutations

• Write a function permute that takes a string parameter and that outputs all possible permutations
of the letters in the string. The order in which the permutations are output does not matter.

7



– Exampel: permute("MARTY") outputs the following sequence:

14.23

Let’s look at the problem

• Think about each permuation as a sequence of choices or decisions

– Which letter should be chosen first?

– Which letter should be chosen second?

– . . .

– Solutions’ space: set of all possible sets of decisions to be explored.

• We want to generate all possible sequences of decisions

– for (each possible first letter):

– for (each possible second letter):

– for (each possible third letter):

– . . .

– output the permuation!

– This amounts to a depth-first search
14.24

Decision tree

14.25

1.2 Backtracking

Backtracking

• A general algorithm to find solutions to a problem by testing solutions to subproblems and giving up
on them (“backtracking”) if they turn out to be not suitable

8



– a “brute force”-technique (tests all possibilites)

– Often (but not always) implemented recursively

• Applications:

– produce all permutations of a set of values

– parsing a language

– games: anagrams, crosswords, 8 queens, Boggle

– Combinatorial and logic programming
14.26

Backtracking algorithms
General pseudo-code for a backtracking algorithm:

• Explore(choice):

– if there are no further choices: stop

– otherwise, for each possible choice C:

* choose C

* Explore the remaining choices

* “Unchoose” C if needed (backtrack)
14.27

Backtracking strategies

• Ask the following questions when you use backtracking to solve a problem:

– What represents a “choice” in this problem?

* What is the “base case(s)”? How do I know there are no more choices left?

– How do I “choose”?

* do I need extra variables to remember my choices?

* do I need to modify the values of the existing variables?

– How do I explore the remaining choices?

* Do I need to remove the made choices from the list of choices?

– what should I do when I am done exploring the remaining choices?

– How do I “unchoose” a choice?
14.28

Permutations revisited

• Write a function permute that takes a string parameter and that outputs all possible permutations
of the letters in the string. The order in which the permutations are output does not matter.

– Exampel: permute("MARTY") outputs the following sequence:

– (In what way is this problem uniform? recursive?)

14.29

9



Solution

// Outputs all permutations of the given string.
void permute(string s, string chosen = "") {

if (s == "") {
cout << chosen << endl; // base case: no choices left

} else {
// recursive case: choose each possible next letter
for (int i = 0; i < s.length(); i++) {

char c = s[i]; // choose
s.erase(i, 1);
permute(s, chosen + c); // explore
s.insert(i, 1, c); // un-choose

}
}

}
14.30

Combinations

• Write a function combinations that takes a string and a natural number k and that outpus all
possible k-long-strings that can be obtained from unique letters from the string. The order in which
the resulting combinations are output does not matter.

– Exampel: combinations("GOOGLE", 3) outputs the sequence of lines to the right.

– To simplify the problem, we assume the string contains at least k unique letters.

14.31

First attempt

// Outputs all unique k-letter combinations of the given string.
void combinations(string s, int length, string chosen = "") {

if (length == 0) {
cout << chosen << endl; // base case: no choices left

} else {
for (int i = 0; i < s.length(); i++) {

if (chosen.find(s[i]) == string::npos) {
char c = s[i];
s.erase(i, 1);
combinations(s, length - 1, chosen + c);
s.insert(i, 1, c);

}
}

}
}

• Problem: writes the same string several times.
14.32

Solution

// Outputs all unique k-letter combinations of the given string.
void combinations(string s, int length) {

Set<string> found;
combinHelper(s, length, "", found);

10



}

void combinHelper(string s, int length, string chosen, Set<string>& found) {
if (length == 0 && !found.contains(chosen)) {

cout << chosen << endl; // base case: no choices left
found.add(chosen);

} else {
for (int i = 0; i < s.length(); i++) {

if (chosen.find(s[i]) == string::npos) {
char c = s[i];
s.erase(i, 1);
combinHelper(s, length - 1, chosen + c, found);
s.insert(i, 1, c);

}
}

}
}

14.33

Rolling dices
• Write a function diceRoll that takes a natural number representing a number of 6-sided dices to

be rolled. Output all possible combinations of values that can be obtained.

14.34

Study the problem
• We want to generate all possible sequences of decisions

– for (each possible first letter):
– for (each possible second letter):
– for (each possible third letter):
– . . .
– output!
– This is a depth-first search

• How can we exhaustively explore this large search space? 14.35

Decision tree

14.36

11



Solution

// Prints all possible outcomes of rolling the given
// number of six-sided dice in {#, #, #} format.
void diceRolls(int dice) {

vector<int> chosen;
diceRollHelper(dice, chosen);

}

// private recursive helper to implement diceRolls logic
void diceRollHelper(int dice, vector<int>& chosen) {

if (dice == 0) {
cout << chosen << endl; // base case

} else {
for (int i = 1; i <= 6; i++) {

chosen.add(i); // choose
diceRollHelper(dice - 1, chosen); // explore
chosen.remove(chosen.size() - 1); // un-choose

}
}

}
14.37

DiceSum

• Write a function diceSum that resembles diceRoll but that also takes a sum and that only writes
those combinations whose sum is the given sum.

14.38

Minimal modifications

// Prints all possible outcomes of rolling the given
// number of six-sided dice in {#, #, #} format.
void diceRolls(int dice, int desiredSum) {

vector<int> chosen;
diceSumHelper(dice, desuredSum, chosen);

}
void diceRollHelper(int dice, int desiredSum, vector<int>& chosen) {

if (dice == 0) {
if (sumAll(chosen) == desiredSum) {

cout << chosen << endl; // base case
}

} else {
for (int i = 1; i <= 6; i++) {

chosen.add(i); // choose
diceSumHelper(dice - 1, desiredSum, chosen); // explore
chosen.remove(chosen.size() - 1); // un-choose

}
}

}
int sumAll(const vector<int>& v) {

12



int sum = 0;
for (int k : v) { sum += k; }
return sum;

}
14.39

Wasteful decision tree

14.40

Optimizations

• We do not need to explore each branch in the tree

– Some branches will obviously not give any solution.

– We can terminate or “prune” these branches

• Innefficiencies in the previous solution:

– The current sum is sometimes already too high. (even a 1 in the next roll would exceed the
targeted sum)

– The current sum is sometimes too low. (even sixes in all remaining rolls would not be enough
to obtain the targeted sum.)

– Each time there are no more choices, the sums are computed.
14.41

Solution

void diceSum(int dice, int desiredSum) {
vector<int> chosen;
diceSumHelper(dice, 0, desiredSum, chosen);

}

void diceSumHelper(int dice, int sum, int desiredSum, vector<int>& chosen) {
if (dice == 0) {

if (sum == desiredSum) {
cout << chosen << endl; // base case

}
} else if ((sum + 1 * dice <= desiredSum) && (sum + 6*dice >= desiredSum)) {

for (int i = 1; i <= 6; i++) {
chosen.add(i); // choose
diceSumHelper(dice - 1, sum + i, desiredSum, chosen); // explore
chosen.remove(chosen.size() - 1); // un-choose

}
}

}
14.42

13


	Recursive search
	Exhaustive search
	Backtracking


