Föreläsning 13

Recursion

TDDD86: DALP

Utskriftsversion av Föreläsing i Datastrukturer, algoritmer och programmeringsparadigm 04 November 2024

IDA, Linköpings universitet

13.5

13.1 Content Contents Introduction 1 Recursion in C++ Algorithm analysis 13.2 Introduction Recursion • recursion: Defining an operation in terms of itself - To solve a problem recursively requires solving smaller instances of the same problem • recursive programming: Write functions that call themselves to solve problems recursively - As powerful as iteration (loops) - Particularly suitable for certain types of problems 13.3 Why learn recursion?? • "Cultural experience": Another way to think about problem solving. • powerful: can solve certain types of problems better than iteration • Can result in elegant, simple and short code (if used correctly) · Many (functional languages such as Scheme, ML and Haskell) programming languages use recursion exclusively (no loops) · A key component in many of the remaining labs in the course 13.4 Recursion and case analysis • Any recursive algorithm involves at least two cases: - base case: A simple instance of the problem that can be solved directly. - recursive case: A more complex instance of the problem for which the solution can be described in terms of solutions to smaller instances of the same problem.. - Some recursive algorithms have more than one base case. All have at least one. - Key to recursive programming is to identify these cases.

2 Recursion in C++

Recursion i C++

• Consider the following function to write a line of stars

```
// Prints a line containing the given number of stars.
// Precondition: n >= 0
void printStars(int n) {
   for (int i = 0; i < n; i++) {
      cout << "*";
   }
   cout << endl; // end the line of output
}</pre>
```

- Write a recursive version of the function (it should call itself).
 - Solve the problem without using loops.
 - Tips: Your solution should write a single star at a time.

Use recursion correctly

• Condense recursive cases to one case:

```
void printStars(int n) {
   if (n == 1) {
        // base case; just print one star
        cout << "*" << endl;
   } else {
        // recursive case; print one more star
        cout << "*";
        printStars(n - 1);
   }
}</pre>
```

"Recursion-zen"

• The actual, simpler, base case is when n is 0, not 1:

```
void printStars(int n) {
   if (n == 0) {
        // base case; just end the line of output
        cout << endl;
   } else {
        // recursive case; print one more star
        cout << "*";
        printStars(n - 1);
   }
}</pre>
```

Exercise - printBinary

- Write a recursive function printBinary that takes a natural number and that writes it in base 2 (binary)
 - Example: printBinary (7) prints 111
 - Example: printBinary(12) prints 1100

plats	10	1
värde	4	2

1	0	1	0	1	0
32	16	8	4	2	1

- Example: printBinary(42) prints101010
- Write a recursive function without loops

13.6

13.7

13.8

Case analysis

- · Recursion is about solving parts of a larger problem
 - what is 69743 in base 2?
 - * what do we know about its representation in base 2?
 - Case analysis:
 - * Which numbers are simple to write in base 2?
 - * Can we express a larger number in terms of (some) smaller one(s)?

13.10

Find the pattern

- Assume an arbitrary number N.
 - If the representation of N in base 2 is
 - Then the representation of (N/2)
 - and the representation of (N%2) is
 - * What can we deduce?

10010101011 1001010101

1

13.11

Solution - printBinary

```
// Prints the given integer's binary representation.
// Precondition: n >= 0
void printBinary(int n) {
   if (n < 2) {
      // base case; same as base 10
      cout << n;
   } else {
      // recursive case; break number apart
      printBinary(n / 2);
      printBinary(n % 2);
   }
}
```

13.12

Exercise - reverseLines

• Write a recursive function reverseLines that takes a file stream as input and that prints the lines Exempelindatafil:

> Roses are red, Violets are blue. All my base Are belong to you.

Förväntat utdata:

Are belong to you. All my base Violets are blue. Roses are red,

in reverse order

- Which cases should be considered?
 - * How can we solve part of the problem at a time?
 - * What would be a file that is easy to reverse?

13.13

Pseudocode for reversing

- Reverse lines in a file:
 - Read a line L from the file
 - Print the rest of the lines in reverse order.
 - Print the line L
- If we only could reverse the or the lines in the file...

Solution - reverseLines

```
void reverseLines(ifstream& input) {
    string line;
    if (getline(input, line)) {
        // recursive case
        reverseLines(input);
        cout << line << endl;
    }
}</pre>
```

• What is the base case?

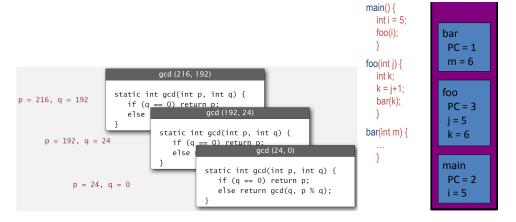
13.15

13.16

2.1 Implementation av recursion

Recall: stacks and function calls

- Compiler implement functions:
 - Function calls: push:a local context and return address
 - Return: pop:a return address and local context
 - This enables recursion.



2.2 Tail recursion

Tail recursion

A recursive call is *tail recursive* iff the first instruction after the control gets back after the call is a **return**.

- The stack is not needed
- Tail recursive functions can be rewritten into iterative functions

The recursive call in FACT is not tail recursive:

```
function FACT(n)

if n = 0 then return 1

else return n \cdot FACT(n-1)
```

First instruction after the return from the recursive call is a *multiplication* to b kept on the stack

 \Rightarrow n needs

A tail recursive function

```
function BINSEARCH(v[a,\ldots,b],x) if a < b then m \leftarrow \lfloor \frac{a+b}{2} \rfloor if v[m].key < x then return BINSEARCH(v[m+1,\ldots,b],x) else return BINSEARCH(v[a,\ldots,m],x) if v[a].key = x then return a else return 'not found'
```

The two recursive calls are tail recursive.

13.18

Eliminating tail recursion

The two tail recursive calls can be eliminated:

```
1: function BINSEARCH(v[a,...,b],x)
2:
        if a < b then
             m \leftarrow \lfloor \tfrac{a+b}{2} \, | \,
3:
             if v[m].\overline{key} < x then
4:
                 a \leftarrow m+1 {was: return BinSearch(v[m+1,...,b],x)}
5:
             else b \leftarrow m {was: return BINSEARCH(v[a, ..., m], x)}
6:
7:
             goto (2)
        if v[a].key = x then return a
8:
        else return 'not found'
9:
```

13.19

Tail recursive factorial

fact can be rewritten by using a help function:

```
function {\rm FACT}(n)

return {\rm FACT2}(n,1)

function {\rm FACT2}(n,f)

if n=0 then return f

else return {\rm FACT2}(n-1,n\cdot f)
```

FACT2 is tail recursive \Rightarrow memory usage after eliminating the recursive in O(1)

13.20

2.3 One more exercise

Exercise - pow

- Write a recursive function pow that takes two natural numbers as arguments: a base and an exponent and that returns the base to the power of the exponent.
 - Example: pow (3, 4) returns 81
 - Solve the problem recursively without loops

13.21

Solution - pow

```
// Returns base ^ exponent.
// Precondition: exponent >= 0
int pow(int base, int exponent) {
   if (exponent == 0) {
      // base case; any number to 0th power is 1
      return 1;
   } else {
      // recursive case: x^y = x * x^(y-1)
      return base * pow(base, exponent - 1);
   }
}
```

13.22

An optimization?

• Observe the following mathematical properties:

```
3^{12} = 531441 = 9<sup>6</sup>
= (3^2)^6
531441 = (9^2)^3
= ((3^2)^2)^3
```

- When does this work?
- How can we leverage on it?
- Why use it when the code already works?

Solution 2 - pow

```
// Returns base ^ exponent.
// Precondition: exponent >= 0
int pow(int base, int exponent) {
   if (exponent == 0) {
      // base case; any number to 0th power is 1
      return 1;
   } else if (exponent % 2 == 0) {
      // recursive case 1: x^y = (x^2)^(y/2)
      return pow(base * base, exponent / 2);
   } else {
      // recursive case 2: x^y = x * x^(y-1)
      return base * pow(base, exponent - 1);
   }
}
```

13.24

3 Algorithm analysis

3.1 Analysis of algorithms

Analysis of algorithms

What is analysis?

- Correctness (not in this course)
- Termination (not in this course)
- · Efficiency, resources, complexity

Time complexity — how long it takes an algorithm in the worst case?

- as a function of what?
- what is a time step?

Memory complexity — how much memory is required?

- · as a function of what?
- how is it measured?
- · remember that code and function calls also takes memory

13.25

How can you compare different effectiveness

- Study execution time (or memory consumption) in function of the size of input data.
- When can we say that two algorithms have "similar effectiveness"?
- When can we say that an algorithm is better than an other?

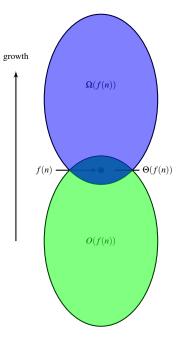
Comparison between some elementary functions

n	$\log_2 n$	n	$n\log_2 n$	n^2	2^n
2	1	2	2	4	4
16	4	16	64	256	$6.5 \cdot 10^4$
64	6	64	384	4096	$1.84 \cdot 10^{19}$

 $1.84 \cdot 10^{19} \mu \text{ seconds} = 2.14 \cdot 10^8 \text{ days} = 583.5 \text{ millennia}$

13.26

How complexity can be specified?



- How does the complexity grow with the size *n* of input data?
- Asymptotic complexity what happens when *n* grows to infinity?
- Much easier if we ignore constant factors
- O(f(n)) grows at most as fast as f(n)
- $\Omega(f(n))$ growth at least as fast as f(n)
- $\Theta(f(n))$ grows as fast as f(n)

Ordo-notation

f,g: grow from \mathbb{N} to \mathbb{R}^+

- $f \in O(g)$ if and only if it exists $c > 0, n_0 > 0$ such as $f(n) \le c \cdot g(n)$ for all $n \ge n_0$ Intuition: ignoring the constant factor, f does not grow faster than g
- $f \in \Omega(g)$ if and only if it exists $c > 0, n_0 > 0$ such as $f(n) \ge c \cdot g(n)$ for all $n \ge n_0$ Intuition: ignoring the constant factor, f grows at least as fast as g
- $f(n) \in \Theta(g(n))$ if and only if $f(n) \in O(g(n))$ and $g(n) \in O(f(n))$ Intuition: ignoring the constant factor, f and g have similar growth

Note: Ω is the opposite of O, i.e. $f \in \Omega(g)$ if and only if $g \in O(f)$.

3.2 Recursive algorithms

Execution time for recursive algorithms

- Characterize execution time with a recursive relation
- Find a solution in closed form the recursive relation
- If you do not recognize the recursive relation, you can
 - "Unroll" the relation a number of times to formulate a hypothesis for a possible solution of the form $T(n) = \dots$
 - Prove the hypothesis about T(n) by induction. If it does not work, modify the hypothesis and try again...

Example: Factorial function

```
function FACT(n)

if n = 0 then return 1

else return n \cdot \text{FACT}(n-1)
```

Execution time:

- time for comparison: t_c
- time for multiplication: t_m
- time for calls and returns: t_r

13.27

13.28

Total execution time T(n). $T(0) = t_r + t_c$ $T(n) = t_r + t_c + t_m + T(n-1)$, if n > 1 Hence, for n > 0:

$$T(n) = (t_r + t_c + t_m) + (t_r + t_c + t_m) + T(n - 2) =$$

$$= (t_r + t_c + t_m) + (t_r + t_c + t_m) + (t_r + t_c + t_m) + T(n - 3) = \dots =$$

$$= \underbrace{(t_r + t_c + t_m) + \dots + (t_r + t_c + t_m)}_{n \text{ ggr}} + t_r + t_c = n \cdot (t_r + t_c + t_m) + t_r + t_c \in \Theta(n)$$

13.30

Example: Binary search

function BINSEARCH($v[a,\ldots,b]$,x)

if a < b then $m \leftarrow \lfloor \frac{a+b}{2} \rfloor$ if v[m].key < x then
return BINSEARCH($v[m+1,\ldots,b]$,x)
else return BINSEARCH($v[a,\ldots,m]$,x)

if v[a].key = x then return a else return 'not found'

Let T(n) be the time, in the worst case, to search among n numbers with BINSEARCH.

$$T(n) = \left\{ \begin{array}{l} \Theta(1) \ \ \text{if} \ \ n = 1 \\ T\left(\left\lceil \frac{n}{2} \right\rceil \right) + \Theta(1) \ \ \text{if} \ \ n > 1 \end{array} \right.$$

If $n = 2^m$ we get

$$T(n) = \begin{cases} \Theta(1) \text{ if } n = 1\\ T\left(\frac{n}{2}\right) + \Theta(1) \text{ if } n > 1 \end{cases}$$

We can then conclude that $T(n) = \Theta(\log n)$.

13.31

Master theorem

Sats 1 ("Master theorem"). Assume $a \ge 1, b > 1, d > 0$. The recursive relation

$$\left\{ \begin{array}{lcl} T(n) & = & aT\left(\frac{n}{b}\right) + f(n) \\ T(1) & = & d \end{array} \right.$$

has the following asymptotic solution

- $T(n) = \Theta(n^{\log_b a})$ if $f(n) \in O(n^{\log_b a \varepsilon})$ for some $\varepsilon > 0$
- $T(n) = \Theta(n^{\log_b a} \log n)$ if $f(n) \in \Theta(n^{\log_b a})$
- $T(n) = \Theta(f(n))$ if $f(n) \in \Omega(n^{\log_b a + \varepsilon})$ for some $\varepsilon > 0$ and $af\left(\frac{n}{b}\right) \le c \cdot f(n)$ for some constant c < 1 for all large enough n.

Examples:

- T(n) = 9 T(n/3) + n
- T(n) = T(2n/3) + 1
- $T(n) = 3 T(n/4) + n \log n$

13.32

3.3 Common growth rates

Common growth rates

Growth	typical code	description	example	T(2n)/T(n)
1	a = b + c	instruction	add two numbers	1
$\log_2 n$	while (n > 1)	divide	binary search	≈ 1
105211	$\{ n = n / 2; \ldots \}$	in halves	omary scarcii	~ 1
n	for (int $i = 0$; $i < n$, $i++$)	loop	find	2.
	{ }		maximum	<u> </u>
$n\log_2 n$	see lecture on mergesort	divide	mergesort	≈ 2
1105211	see lecture on mergesort	and conquer	mergesort	2
	for (int $i = 0$; $i < n$, $i++$)	double	check	
n^2	for (int $j = 0; j < n, j++)$	loop	all pairs	4
	{ }			
	for (int i = 0; i < n, i++)			
n^3	for (int $j = 0; j < n, j++)$	triple-	check all	8
Ti.	for (int $k = 0$; $k < n$, $k++$)	loop	triples	0
	{ }			
2^n	see next lecture	total-	check all	T(n)
2	see next lecture	search	subsets	I(n)