Forelasning 13

Recursion

TDDD86: DALP

Utskriftsversion av Féreldsing i Datastrukturer, algoritmer och programmeringsparadigm

04 November 2024

Content

Contents

[Tntroduction|
2__Recursion in C++

2.1 Implementation av recursion

B__Algorithm analysis

. Analysis of algorithms| . . .
. Recursive algorithms|
33 Common groth rates|. . . .

1 Introduction

Recursion

IDA, Linképings universitet

¢ recursion: Defining an operation in terms of itself

— To solve a problem recursively requires solving smaller instances of the same problem

* recursive programming: Write functions that call themselves to solve problems recursively

— As powerful as iteration (loops)

— Particularly suitable for certain types of problems

Why learn recursion??

e “Cultural experience”: Another way to think about problem solving.
e powerful: can solve certain types of problems better than iteration

* Can result in elegant, simple and short code (if used correctly)

* Many (functional languages such as Scheme, ML and Haskell) programming languages use recursion

exclusively (no loops)

¢ A key component in many of the remaining labs in the course

Recursion and case analysis

* Any recursive algorithm involves at least two cases:

— base case: A simple instance of the problem that can be solved directly.

(=)

(SR SN N S

o3 O™

— recursive case: A more complex instance of the problem for which the solution can be de-
scribed in terms of solutions to smaller instances of the same problem..

— Some recursive algorithms have more than one base case. All have at least one.

— Key to recursive programming is to identify these cases.

13.1

13.2

13.3

13.4

13.5

2 Recursion in C++

Recursion i C++
* Consider the following function to write a line of stars

// Prints a line containing the given number of stars.
// Precondition: n >= 0
void printStars (int n) {

for (int i = 0; 1 < n; i++) {

cout << "x";

}

cout << endl; // end the line of output
}

¢ Write a recursive version of the function (it should call itself).
— Solve the problem without using loops.

— Tips: Your solution should write a single star at a time.

Use recursion correctly
¢ Condense recursive cases to one case:

void printStars (int n) {

if (n == 1) {
// base case; just print one star
cout << "%" << endl;

} else {
// recursive case; print one more star
cout << "x";
printStars(n - 1);

“Recursion-zen”
* The actual, simpler, base case is when n is 0, not 1:

void printStars (int n) {

if (n == 0) {
// base case; just end the line of output
cout << endl;

} else {
// recursive case; print one more star
cout << "x";
printStars(n - 1);

Exercise - printBinary

* Write a recursive function printBinary that takes a natural number and that writes it in base 2
(binary)

— Example: printBinary (7) prints 111

Example: printBinary (12) prints 1100

plats [10(1 321161 8

virde | 4 | 2 1|10(1

Example: printBinary (42) prints 101010

— Write a recursive function without loops

13.6

13.7

13.8

13.9

Case analysis
* Recursion is about solving parts of a larger problem
— what is 69743 in base 2?
+ what do we know about its representation in base 2?
— Case analysis:

+* Which numbers are simple to write in base 2?
= Can we express a larger number in terms of (some) smaller one(s)?

Find the pattern

e Assume an arbitrary number N.
— If the representation of N in base 2 is
— Then the representation of (N /2)
— and the representation of (N %2) is

+ What can we deduce?

10010101011
1001010101
1

Solution - printBinary

// Prints the given integer’s binary representation.
// Precondition: n >= 0
void printBinary (int n) {
if (n < 2) {
// base case; same as base 10
cout << nj;

} else {
// recursive case; break number apart

printBinary(n / 2);

o)

printBinary(n % 2);

Exercise - reverselLines

* Write a recursive function reverseLines that takes a file stream as input and that prints the lines

Exempelindatafil: Férvantat utdata:

Roses are red,

Violets are blue. All my base

All my base Violets are blue.
Are belong to you. Roses are red,

in reverse order
— Which cases should be considered?
+* How can we solve part of the problem at a time?
= What would be a file that is easy to reverse?

Pseudocode for reversing
* Reverse lines in a file:
— Read a line L from the file
— Print the rest of the lines in reverse order.
— Print the line L

 If we only could reverse the or the lines in the file. ..

Are belong to you.

13.10

138.11

13.12

13.13

13.14

Solution - reverselLines

void reverselines (ifstream& input) {
string line;
if (getline(input, line)) {
// recursive case
reverselLines (input) ;
cout << line << endl;

}

¢ What is the base case?

2.1 Implementation av recursion

Recall: stacks and function calls
* Compiler implement functions:
— Function calls: push:a local context and return address
— Return: pop:a return address and local context
— This enables recursion.

main() {
inti=5;
foo(i);

foo(int j) {
intk;
k=j+1;
bar(k);

gcd (216, 192)
B B static int gcd(int p, int q) {
p =216, q = 192 i b
else gcd (192, 24) }
static int gcd(int p, int q) {
p =192, q = 24 if (q_==0 e n p:

else gcd (24, 0)

}

static int gcd(int p, int @) {
if (q == 0) return p;
else return gcd(q, p % q);

}

2.2 Tail recursion

Tail recursion

bar(int m) {

13.15

13.16

A recursive call is tail recursive iff the first instruction after the control gets back after the call is a

return.

¢ The stack is not needed
¢ Tail recursive functions can be rewritten into iterative functions

The recursive call in FACT is not tail recursive:

function FACT(n)
if n = 0 then return 1
else return n-FACT(n — 1)

First instruction after the return from the recursive call is a multiplication
to b kept on the stack

A tail recursive function
function BINSEARCH(V[a, . . ., b].x)

if a < b then
m— [%J
if v[m].key < x then

return BINSEARCH(v[m + 1,...,b],x)

else return BINSEARCH(V]a, .. .,m],x)

if v[a].key = x then return a

else return ’not found’

The two recursive calls are tail recursive.

= nneeds
13.17

13.18

Eliminating tail recursion
The two tail recursive calls can be eliminated:

: function BINSEARCH(V[a, . ..,b].x)
if a < b then
b
m— L%J
if v[m].key < x then
a < m+ 1 {was: return BINSEARCH(v[m + 1,...,b],x)}

else b < m {was: return BINSEARCH(V[, ..., m],x)}
goto (2)

if v]a].key = x then return a

else return *not found’

¥ e 2 arhwdN2

Tail recursive factorial
fact can be rewritten by using a help function:

function FACT(n)
return FACT2(n, 1)

function FACT2(n, f)
if n = 0 then return f
else return FACT2(n— 1,n- f)

FACT?2 is tail recursive = memory usage after eliminating the recursive in O(1)

2.3 One more exercise
Exercise - pow
* Write a recursive function pow that takes two natural numbers as arguments: a base and an exponent
and that returns the base to the power of the exponent.
— Example: pow (3, 4) returns 81

— Solve the problem recursively without loops

Solution - pow

// Returns base ~ exponent.
// Precondition: exponent >= 0
int pow(int base, int exponent) {
if (exponent == 0) {
// base case; any number to 0Oth power is 1
return 1;

} else {
// recursive case: x"y = x * x"(y-1)
return base » pow(base, exponent - 1);

An optimization?

* Observe the following mathematical properties:

312 = 531441 =96
- (32)6
531441 =(92)3
= (32

— When does this work?
— How can we leverage on it?

— Why use it when the code already works?

13.19

13.20

13.21

13.22

13.23

Solution 2 - pow

// Returns base ~ exponent.
// Precondition: exponent >= 0
int pow(int base, int exponent) {
if (exponent == 0) {
// base case; any number to 0Oth power is 1
return 1;

} else if (exponent % 2 == 0) {
// recursive case 1: x"y = (x°2)"(yv/2)
return pow (base * base, exponent / 2);
} else {
// recursive case 2: x"y = x * x"(y-1)
return base » pow(base, exponent - 1);

3 Algorithm analysis

3.1 Analysis of algorithms
Analysis of algorithms
What is analysis?

* Correctness (not in this course)
¢ Termination (not in this course)
 Efficiency, resources, complexity

Time complexity — how long it takes an algorithm in the worst case?

* as a function of what?
* what is a time step?

Memory complexity — how much memory is required?

* as a function of what?
* how is it measured?
* remember that code and function calls also takes memory

How can you compare different effectiveness

* Study execution time (or memory consumption) in function of the size of input data.
e When can we say that two algorithms have “similar effectiveness”?
* When can we say that an algorithm is better than an other?

Comparison between some elementary functions

n | logygn n nlogyn n? 2"

2 1 2 2 4 4

16 4 16 64 256 6.5-10*
64 6 64 384 4096 1.84-10'°

1.84-10' useconds = 2.14- 103 days = 583.5 millennia

How complexity can be specified?

13.24

13.256

13.26

growth

¢ How does the complexity grow with the size n of input data?
* Asymptotic complexity — what happens when n grows to infinity?
e Much easier if we ignore constant factors

* O(f(n)) — grows at most as fast as f(n)
* Q(f(n)) — growth at least as fast as f(n)
* O(f(n)) — grows as fast as f(n)

Ordo-notation
f,g: grow from N to R

* f€0(g) if and only if it exists ¢ > 0,n9 > 0 such as f(n) < ¢-g(n) for all n > ng Intuition: ignoring
the constant factor, f does not grow faster than g

* f€Q(g) if and only if it exists ¢ > 0,19 > 0 such as f(n) > ¢- g(n) for all n > ny Intuition: ignoring
the constant factor, f grows at least as fast as g

e f(n) € ©(g(n)) if and only if f(n) € O(g(n)) and g(n) € O(f(n)) Intuition: ignoring the constant
factor, f and g have similar growth

Note: Q is the opposite of O, i.e. f € Q(g) if and only if g € O(f).

3.2 Recursive algorithms
Execution time for recursive algorithms

¢ Characterize execution time with a recursive relation
¢ Find a solution in closed form the recursive relation
* If you do not recognize the recursive relation, you can

— “Unroll” the relation a number of times to formulate a hypothesis for a possible solution of the
form T'(n) =...

— Prove the hypothesis about T'(n) by induction. If it does not work, modify the hypothesis and
try again. ..

Example: Factorial function

function FACT(n)
if n = 0 then return 1
else return n-FACT(n — 1)

Execution time:

e time for comparison: ?,
¢ time for multiplication: ¢,
¢ time for calls and returns: ¢,

13.27

13.28

13.29

Total execution time 7'(n). T(0) =t,+1t. T(n) =t,+tc +t,, + T(n—1),if n > 1 Hence, for n > 0:

T(”) = (tr+tc+[l11)+([r +Tc+tm)+T(l’l—2) =
=(tr+te+tm)+tr+te+tm)+trtte+tm) +T(R=3)=...=
= (ty+itc+tm)+...+(tr i+ tm)+r+te =n-(ty +1c+ 1) +1,+1. € O(n)

n ggr

Example: Binary search

function BINSEARCH(V[q, ..., D] x)
if a < b then
m— [#J
if v[m].key < x then
return BINSEARCH(v[m + 1,...,b],x)

else return BINSEARCH(Va, ..., m],x)
if v[a].key = x then return a
else return ’not found’

Let T'(n) be the time, in the worst case, to search among n numbers with BINSEARCH.
[e()if n=1
Tim) = { T([8])+0(1) if n>1

If n=2" we get
[e()ifn=1
T(")*{ T (%) +0(1)ifn>1
We can then conclude that 7' (n) = @(logn).

—
~—

Master theorem
Sats 1 (“Master theorem™). Assume a > 1,b > 1,d > 0. The recursive relation

{T(n) = aT(%)+.f(n)
T(l) = d

has the following asymptotic solution
o T(n) = O(n'°%9) if f(n) € O(n'°%9~¢) for some € > 0
* T(n) = O(n'°%logn) if f(n) € O(n'°%*)

* T(n) =O(f(n)) if f(n) € Q(n'°%9¢) for some € >0 and af (%) < c- f(n) for some constant ¢ < 1

for all large enough n.

Examples:

e T(n)=9T(n/3)+n

e T(n)=T(2n/3)+1

e T(n)=3Tn/4)+nlogn

3.3 Common growth rates

Common growth rates

Growth typical code description example T(2n)/T (n)
. . add two
1 a=>b + c instruction 1
numbers
log, n while (n > 1) e binary search ~1
2 {n=n/2; ...} in halves y -
for (int i = 0; i < n, i++) find
n loop - 2
{ } maximum
nlog,n see lecture on mergesort Lizics mergesort ~2
£2 & and conquer g =
for (int 1 = 0; i < n, i++) double check
n? for (int j = 0; J < n, J++) loop all pairs 4
{ ...}
for (int i = 0; i < n, i++)
3 for (int j = 0; J < n, J++) triple- check all 3
for (int k = 0; k < n, k++) loop triples
{ ...}
o see next lecture total- check all T(n)
search subsets

13.30

13.31

13.32

13.33

	Introduction
	Recursion in C++
	Implementation av recursion
	Tail recursion
	One more exercise

	Algorithm analysis
	Analysis of algorithms
	Recursive algorithms
	Common growth rates

