
Lecture 10
Inheritance, polymorphism,
introspection
TDDD86: DALP

Utskriftsversion av Lecture in Data Structures, Algorithms and Programming Paradigms
October 2nd, 2023

IDA, Linköping University

10.1

Content

Contents

1 Derived Classes 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 A polymorphic class hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Introspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Dynamic type conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Common C++ mistakes and pitfalls (continue) 8 10.2

1 Derived Classes

1.1 Introduction

Derived Classes
C++ has a relatively complex model for derivation/inheritance
• it allows a subclass to inherit from multiple base classes

– simple inheritance — a single base class
– multiple inheritance — two or more direct base classes
– repeated inheritance — an indirect base class is inherited multiple times via multiple inheritance
– multiple and repeated inheritance can lead to ambiguitiess 10.3

Availability of base class members
• Availability of members of a base class depends on how the inheritance was specified

– public base class — public-members in base class become public in the inherited class (pro-
tected become protected)

– protected base class — public-members in base class become protected in the derived class
(protected become protected)

– private base class — public-members in base class become private in the derived class (pro-
tected become private)

– a class can appoints friends — a friend can access all members, even private
10.4

Polymorphic Behaviour
• A polymorphic behaviour refers to the ability for a type/variable to take multiple forms (ie Rectangle

and Circle can be treated as a Shape).
• Polymorphic behaviour is decided by the programmer

– object which should have a polymorphic behaviour should be referenced via pointers or refer-
ences

– only functions declared virtual can be dynamic and exhibit a polymorphic behaviour
10.5

1



1.2 A polymorphic class hierarchy

Person-Employee-Manager-Consultant — a polymorphic class hierarchy

• Person — a general representation of a person

– has a name and person number

– all employees common properties

– no object of type Person should be instantiated it will be an abstract class

• Employee — employees in general

– the date of recruitment, employee id, salary, section

– more specialised categories of employees are derived from this class

– those objects should be instantiable

• Manager — department heads

– responsible for a department and its employees

• Consultant — temporary employees

– no difference compared to a permanent employee except a distinction by type

10.6

Person

class Person
{
public:

virtual ~Person() = default;

virtual std::string str() const;
virtual Person* clone() const = 0;

std::string get_name() const;
void set_name(const std::string&);
CRN get_crn() const;
void set_crn(const CRN&);

protected:
Person(const std::string& name, const CRN& crn);
Person(const Person&) = default;

private:
Person& operator=(const Person&) = delete;

std::string name_;
CRN crn_;

};
10.7

Constructor that takes name and person number

Person::Person(const std::string& name, const CRN& crn)
: name_( name ), crn_( crn )

{}

• Ensures that a new person always has a name and person number

– default constructor is not generated

– only derived class can call the constructor — protected
10.8

2



Member functions str()

virtual std::string str() const;

Definition:

string Person::str() const
{

return name_ + ’ ’ + crn_.str();
}

Dynamic call if virtual method and object refered by pointer or reference:

• Dynamic type determines which virtual function is called

Person* p{ new Manager{name, crn, date, employment_number, salary, dept} };

cout << p->str() << endl;

– pointers p has static type Person*
– expression *p has dynamic type Manager

(*p).str()

* Manager::str() is called — prefer to use the arrow operator

p->str()

10.9

Member function clone()

virtual Person* clone() const = 0;

Polymorphic class sometimes needs a polymorphic copy function:

• to use polymorphic classes it often means you will need to allocate object dynamically and handle
them via pointers

– requires a polymorphic copy function clone()

– each subclass needs to provide its own implementation of clone()
10.10

Subclass Employee

class Employee : public Person
{
public:

Employee(const std::string& name,
const CRN& crn,
const Date& e_date,
int e_number,
double salary,
int dept = 0);

~Employee() = default;

std::string str() const override;
Employee* clone() const override; //return type covariant med Person*

int get_department() const;
Date get_employment_date() const;
int get_employment_number() const;
double get_salary() const;

protected:
Employee(const Employee&) = default;

10.11

3



Subclass Employee (continue)

private:
Employee& operator=(const Employee&) = delete;

friend class Manager;
void set_department(int dept);
void set_salary(double salary);

Date e_date_;
int e_number_;
double salary_;
int dept_;

};
10.12

Public constructor for Employee

Employee::Employee(const string& name,
const CRN& crn,
const Date& e_date,
int e_nbr,
double salary,
int dept)

: Person(name, crn), e_date_(e_date), e_number_(e_nbr), salary_(salary),
dept_(dept)

{}

• Person-subobject is initialised first

– Person-constructor is first in the list of initialiser
– call the corresponding constructor of person

• Employees own members are initialised in declaration order

– write initialiser in same order

• a constructor should explicitly initialise all base class and non-static data member
10.13

Member functions str() implementation

string Employee::str() const
{

return Person::str() + " (Employee) " + e_date_.str()
+ ’ ’ + std::to_string(dept_);

}

• call str() for Person-subobject to generate the first part of the string

– qualified name Person::str() is used to avoid recursion
10.14

Member function clone() implementation

Employee* clone() const
{

return new Employee{ *this };
}

• Return a copy of the object on which clone() is called
• copy constructor is the natural operation to make a copy

– in turn, it will also call the copy constructor for Person

• when the return type belongs to a polymorphic class hierarchy, we can adapt the returned type

Employee* p1{ new Employee{ name, crn, date, employment_nbr, salary} };

Employee* p2 = p1->clone(); // no need to do a type conversion
// clone() return Employee*

Person* p3 = p1->clone(); // implicit conversion o Person* - upcast

– types are said to be covariant
10.15

4



Subclass Manager
class Manager : public Employee
{
public:

Manager(const std::string& name,
const CRN& crn,
const Date& e_date,
int e_number,
double salary,
int dept);

~Manager() = default;

std::string str() const override;
Manager* clone() const override;

void add_department_member(Employee* ep) const;
void remove_department_member(int e_number) const;
void print_department_list(std::ostream&) const;
void raise_salary(double percent) const;

protected:
Manager(const Manager&) = default;

private:
Manager& operator=(const Manager&) = delete;

// Manager does not own the Employee-object,
// Manager should not delete Employee-object
mutable std::map<int, Employee*> dept_members_;

};

10.16

Public constructor for Manager

Manager(const std::string& name,
const CRN& crn,
const Date& e_date,
int e_number,
double salary,

int dept)
: Employee( name, crn, e_date, e_number, salary, dept )

{}

• All parameters are passed as argument to the direct base class Employee
• dept_members has a default constructor, no need to list it in the initialiser list

10.17

Member function str() and clone() implementation

string Manager::str() const
{

return Person::str() + " (Manager) " + get_employment_date().str() + ’ ’
+ std::to_string(get_department());

}

Manager* clone() const
{

return new Manager{ *this };
}

Assume we have forgotten to supply a clone() implementation for Manager:

• The last override would be Employee::clone()
• instead of a Manager clone() returns an Employee

10.18

Employees of a department are handled by a manager

void Manager::add_department_member(Employee* ep) const
{

// Division of an employee is the same as the manager
ep->set_department(get_department()); // need friendship

// Add to the list of employees
dept_members_.insert(make_pair(ep->get_employment_number(), ep));

}

• Manager must be friend of Employee to get access to the private-member set_department in
this context

5



– parameter ep is a pointer to Employee

– only public-operation are allowed with ep, if Manager is not a friend of Employee

– if ep was a pointer to Manager and set_department was protected then there would be
no need for friend

• A member function in Manager

– can use private-member of itself and other Manager pointer

– can use protected-member (including inherited ones) of itself and other Manager pointer

– can only access public-members of object of type Employee and Consultant, unless it is a
friend

10.19

Subclass Consultant

class Consultant final : public Employee // No subclass of Consultant allowed
{
public:

using Employee::Employee; // inherit constructor

~Consultant() = default;

std::string str() const override;
Consultant* clone() const override;

protected:
Consultant(const Consultant&) = default;

private:
Consultant& operator=(const Consultant&) = delete;

};
10.20

Initialisation and destruction of derived types

• an object of a derived type is composed of sub-items

– a sub-item corresponds to the base-class

– in addition to own members

• initialisation is top-down

– base class is initialised before the sub-class

– first constructor called is the constructor to the most derived class

• destructor order is reversed to the initialisation — bottom-up

– data members of subclass are destroyed before the members of the base class

– first called is the most derived class destructor

– the data members of the class are destroyed in the reverse order of declaration

• it is important that the root class of the hierarchy has a virtual destructor

Person* p{ new Consultant(...) };
...
delete p; // ~Person() or ~Consultant() ?

6



10.21

Use Person, Employee, Manager, Consultant
Person* pp= nullptr; // can point to Employee-, Manager- or

// Consultant-object (Person is abstract)
Employee* pe= nullptr; // can point to Employee-, Manager- or

// Consultant-object
Manager* pm= nullptr; // can only point to a Manager-objekt
Consultant* pc= nullptr; // can only point to a Consultant-objekt

pm = new Manager(name, crn, date, employment_nbr, salary, 17);

pp = pm; // upcast is automatic
// Manager* -> Person*

pm = dynamic_cast<Manager*>(pp); // downcast must be explicit
// Person* -> Manager*

if (pm != nullptr) // is it a Manager?
{

pm->print_department_list(cout);
}

• polymorphic pointers can point to the object of corresponding type and subtype
• upcast is an automatic and safe conversion
• downcast must be explicit and checked

– print_department_list() is specific to Manager and can only be used with a pointer
of type Manager*

10.22

1.3 Introspection

Introspection
One way to determine an object type is to use typeid-operator — including <typeinfo>

if (typeid(*pp) == typeid(Manager)) ...

• can be used with type name, object and all kind of expressions
• a typeid-operator returns an object of type type_info
• type control can be done by comparing two type_info-objects

10.23

typeid-operator
typeid-operator:

typeid(*p) returns a type_info-object for the type of object pointed by p
typeid(r) return a type_info-object for the type of object referenced by r
typeid(T) return a type_info-object for the type T
typeid(p) is usually a mistake if p is a pointer — it returns type_info-object for a pointer type

type_info-operations:

== test if two type_info-objects are the same
!= test if two type_info-objects are different
name() return the “name” as a C-string

10.24

7



Introspection (continue)
Type control can also be done with dynamic_cast

• use of polymorphic pointers:

Manager* pm{ dynamic_cast<Manager*>(pp) };

if (pm != nullptr)
{

pm->print_department_list(cout);
}

– dynamic_cast returns nullptr if pp is not pointing to an object of type Manager or a
subclass of Manager

• the use of polymorphic reference — rp assumed to have type Person&

dynamic_cast<Manager&>(rp).print_department_list(cout);

– if rp is not an object of type Manager or a subtype of Manager, a bad_cast exception is cast

– there is no “empty-reference-value” — a reference is always bound to a value
10.25

1.4 Dynamic type conversion

Dynamic type conversion
With the operator dynamic_cast we can convert a pointer or a reference:

dynamic_cast<T*>(p) converts pointer p to “pointer of T”
dynamic_cast<T&>(r) converts reference r to “reference of T”

• downcast from base class pointer to subclass pointer
• upcast is an automatic and safe conversion
• with multiple inheritance it is also possible to “crosscast”

10.26

2 Common C++ mistakes and pitfalls (continue)

Inheriting from the same class twice

• When inheriting from the same base class twice, the resulting structure contains the base class twice,
and it triggers ambiguity

• A solution is virtual inheritance
• Use multi-inheritance, but avoid common ancestor

10.27

Virtual troubles

• Missing virtual in base class
• Missing virtual destructor

– If a class has any virtual functions, it should most likely have a virtual destructor
10.28

Copy

class A {};
class B : public A {};

B b;
A a = b; // What is the type of a?

10.29

8



Array of polymorphic objects

class Employee
{
public:

void raise_salary(double by_percent);
};
class Manager : public Employee
{

// ...
};
void make_them_happy(Employee* e, int ne)
{ for (int i = 0; i < ne; i++)

e[i].raise_salary(0.10);
}
int main()
{

Employee e[20];
Manager m[5];
m[0] = Manager("Joe Bush", "Sales");
// ...
make_them_happy(e, 20);
make_them_happy(m + 1, 4); // let’s skip Joe
return 0;

}
10.30

Array of polymorphic objects

• It compiles:

make_them_happy(m + 1, 4); // let’s skip Joe

• But:

– the array increment on Employee* and on Manager* is different:

Employee* em = m;
std::cout << em[1] << " " << m[1] << std::endl;
// -> 0x77124800 0x77124802

10.31

operator= does not call parent operator

• Constructors and destructors automatically call the base one
• operator= does not:

Manager& Manager::operator=(const Manager& b)
{

if (this == &b) return *this;
Employee::operator=(b);
_dept = b._dept
return *this;

}

10.32

9


	Derived Classes
	Introduction
	A polymorphic class hierarchy
	Introspection
	Dynamic type conversion

	Common C++ mistakes and pitfalls (continue)

