Lecture 7

An extensible array, amortised
analysis, common pitfalls

TDDD86: DALP

Utskriftsversion av Lecture in Data Structures, Algorithms and Programming Paradigms
September 25th, 2024

IDA, Linképing University

71

Content
Contents

[I__An extensible array|
1T DynamiC MEmMOIY| o v e v e e e e e e e
1.2 ArrayList| e

NN —

1.4 Increasecapacity| e e

™o

Amortised analysis| 3

=

Common C++ mistakes and pitfalls| 3

|4 vector vs dequeue| 5 7.2

1 An extensible array

1.1 Dynamic memory
Fields/array

e type name[length];
— a fix field; can not be resized
* typex name = new type[length];
— adynamically allocated arrays;
— assignment can be done later, to change the array size
— memory allocated dynamically must be freed manually otherwise there will be memory leaks
in the program
« there are other differences between the two syntax

— the objects are stored in different part of the memory; the first syntax uses the stack while the

other use the heap
7.3

Free memory

¢ delete[] name;
— Free the memory associated with the pointer
— Must be called for all fields created with new type|[]

= Otherwise, the program has a memory leak (No garbage collector unlike in Java)

* Leaked memory is freed when the program exit, but for applications with long running
time a memory leak can lead to exhausting the computer memory

intx a = new int[3];

al[0] = 42;
al[l] = -5;
al[z2] = 17;
for (int i = 0; i < 3; i++) {
cout << i << ": " << a[i] << endl;

}

delete[] a;

74
1.2 ArrayList
Example
* Write a class that implements an array of integers
— WecallitArrayList
— Behavior:
add (value) insert (index, wvalue)
get (index) set (index, value)
size () isEmpty ()
remove (index)
indexOf (value) contains (value)
toString ()
* The size of the list will be the number of elements inserted so far
— The actual length of the array (capacity) can be larger. Start with a size of 10 by default.
75
1.3 Destructor
Destructor
e // ClassName.h // ClassName.cpp
~ClassName () ; ClassName: :~ClassName () {
— Called when the object is destroyed by the program (when the object goes out of scope or delete
is used)
— Can be useful to:
* free temporary resources
= free dynamically allocated memory used by the members
* Does ArrayList need a destructor? What should it do?
— Yes; to free the memory associated with storing elements
7.6

1.4 Increase capacity

Increase capacity

valie | 3 |8 [9|7]s[12]a]s]1]e6
size 10 capacity 10

¢ What if the users wants to add more than ten elements?

list.add(75) //add a 1lth element

value | 3 [8|9[7]s[12]a|s[1]6[7s |0 o]ofofofofof0]
size 11 capacity 20

¢ Answer: double the size of the field

— Do not forget to release the memory used by the old array!

- int+ a new int[10];
intx b = new int[20];
std::copy(a, a+1l0, b);
delete[] a;

a = b;

2 Amortised analysis

An extensible array

We want a new type of array that automatically increase available size when full (when the number
of ellementsis 7 is same as the capacity N). Suppose the array always insert new element in the first free
position:

* Allocate a new array B with capacity 2N
» Copy Ali] to B[], fori =0,...,N—1
¢ Lets A = B, we let B take over the role A had.
In term of effectiveness, expanding the array is slow. But the algorithmic complexity is:

* O(1) most of the time
* O(n) for copying n element and O(1) for inserting after reallocation.

Amortised analysis
Using amortisation we can show that a sequence of insertion of element to our expandable array is
effective:

Proposition 1. Let S be a table implemented using an extensible array A, as previous. The total time to
insert n element in S, starting with an empty table S (which means that A has capacity N = 1) is O(n).

3 Common C++ mistakes and pitfalls

Common mistakes: delete vs delete]]

* Memory allocated with new must be freed with delete. Memory allocated with new [] must be
freed with delete]

* Using delete for memory allocated with new [] means only one destructor is called and it leads
to a crash

* can be tested with memory tracking tools, e.g., valgrind

intx g = new int;
delete g;

intx p = new int[20];
delete[] p;

Common mistakes: Returning a reference to a temporary

ints f£()

{
int a;
return a;

Common mistakes: Throwing exception from destructor

class A
{
public:
~A() { throw 0; }
bi
void f ()

7.7

7.8

7.9

7.10

711

throw 0;
int main ()

try { £0; }
catch(int) { }
return O;

* C++ does not know what to do when two exceptions are thrown in parallel!

Common mistakes: Using Invalidated Iterators and Pointers

* When modifing a container, assume the old iterator is not valid anymore!
¢ For instance when removing elements:

std::vector<int> v{3,4,12,-1,4,5};

for (auto it = v.begin(); it !'= v.end(); ++it)
{
if(«it == 4) { v.erase(it); } // it invalid after the erase!
t
Instead:

std::vector<int> v{3,4,12,-1,4,5};

for (auto it = v.begin(); it !'= v.end();)

{
if («it == 4) { it = v.erase(it); } // new it is valid after the erase!
else { ++it; }

}
¢ Or adding elements:

std::vector<int> v{3,4,12,-1,4,5};

auto it = v.begin();

intx first = &vI[0];

v.push_back (2);

//it and first are not valid because of the push_back
std::cout << *it << " " << xfirst << std::endl; //bad

Use C++ library as much as possible instead of the the C standard library

* Most C functions have C++ equivalents and are safer to use:
¢ For instance use std: : copy and not memcpy:

memcpy (dst, src, length » sizeof (int));
std::copy(src, src + length, dst);

e Use std: :string and not C-strings:

const charx sl = "hello";
const charx s2 = "hello";
if (sl == s2)
{
std::cout << "Never_shown!" << std::endl;

}

e Use ifstreamor ofstreamand not fopen, printf, fclose

Conversion

¢ C++ automatically convert most numbers without warning
* Integer division even though saving into float:

int nX = 7;
int nY = 2;
float fvalue = nX / nY; // fValue = 3 (not 3.5!)

Fixed with:

float fValue = static_cast<float> (nX) / nY; // fValue = 3.5

* mixing signed and unsigned integers

unsigned u = 10;

int i = -42;

cout << i + i << endl; // -84

cout << u + i << endl; // 4294967265

Side effects
¢ Should the following print 25, 30 or 36?

void multiply (int x, int y)
{
using namespace std;
cout << x * y << endl;

int main ()

int x = 5;
multiply (x, ++x);
}

« order of evaluation of arguments is undefined!

Switch statements without break

switch (v)
{
case 1:
str = "one";
case 2:
str = "two";
case 1:
str = "three";

i
¢ The correct way is:

switch (v)
{
case 1:
str = "one";
break;
case 2:
str = "two";
break;
case 1:
str = "three";
break;

}i

4 vector vs dequeue

push_back: vector and dequeue

// Vector test code

vector<int> v;

// Insert at the start of the vector

for (int i = 0; 1 < N; i++)
v.push_back (i) ;

// Clear by using pop_front (erase)

for (int i = 0; i < N; i++)
v.pop_back () ;

// Deque test code

deque<int> d;

// Insert elements using push_front

for (int i = 0; 1 < N; i++)
d.push_back (i) ;

// Clear by using pop_front

for (int i = 0; i < N; i++)

d.pop_back () ;

<vector> | <deque>
N =10 000 000 40ms 250ms
N =1000000 000 | 2200ms 2200 ms

push_front: vector and dequeue

// Vector test code
vector<int> v;
// Insert at the start of the vector
for (int i = 0; i < N; i++)

v.insert (v.begin(), 1i);
// Clear by using pop_front (erase)
for (int i = 0; 1 < N; i++)

v.erase (v.begin());

// Deque test code

deque<int> d;

// Insert elements using push_front

for (int i = 0; 1 < N; i++)
d.push_front (i);

// Clear by using pop_front

for (int i = 0; i < N; i++)
d.pop_front () ;

<vector> <deque>
N = 10000 10ms Oms
N = 100000 660ms Oms
N = 1000000 TO Sms
N = 10000000 | TO 40ms

Timeout TO = 30 seconds.

7.18

7.19

	An extensible array
	Dynamic memory
	ArrayList
	Destructor
	Increase capacity

	Amortised analysis
	Common C++ mistakes and pitfalls
	vector vs dequeue

