
Lecture 4
ADT Set, Map, Dictionary. Iterators
TDDD86: DALP

Utskriftsversion av Lecture in Data Structures, Algorithms and Programming Paradigms
September 12th, 2024

IDA, Linköping University

4.1

Content

Contents

1 Symbol table 1
1.1 Abstract datatype . 1
1.2 Associative container i C++ . 2

2 Iterators 3 4.2

1 Symbol table

Symbol table

• Abstraction of key-value pairs

– Submit a value with the specified key

– Given a key, search by the corresponding values
4.3

1.1 Abstract datatype

ADT Set

• Storage of keys

• Typical operations:

– size() the number of keys

– isEmpty() returns true if there are no keys

– contains(k) returns true if k is used in the container, otherwise false

– put(k) add k to the container

– remove(k) remove k from the container
4.4

ADT Map

• Storage of pairs (key, value) with at most one pair per key. More than one key may map to the same
value!

• Typical operations:

– size() number of pairs in the map

– isEmpty() checks if the map is empty

– get(k) returns the value associated with k or null if the key is not in the map

– put(k,v) add (k,v) to the container and returns null if k is new; otherwise replace the value with
v and returns the old value

– remove(k) remove the pair (k,v) and return v; return null if the key is not in the map
4.5

1

ADT Dictionary

• Storage of pairs (key, value), possibly several pairs per key Contains the relationship between a key
and one or several values!

• Typical operations:

– size() number of elements

– isEmpty() check if the container is empty

– find(k) returns any item with k or null if there are none

– findAll(k) return a list of value with key k

– insert(k,v) add (k,v) and return the new entry

– remove(k,v) remove (k,v) and returns the value; return null if there are no matching pair

– entries() returns a list of all entries
4.6

1.2 Associative container i C++

pair class
Class for storing pairs — for example, used by all map-containers.

• has a helper function make_pair to create a pair object

vector< pair<int, string> > v;
int i = 4711;
string s = "foobar";
v.push_back(make_pair(i, s)); // exactly like pair<int, string>(i, s);

• it is easy to access the pair content:

pair<int, string> myPair;
myPair.first = 4711;
myPair.second = "foobar";

4.7

Associative container
Quick access to data based on key search

• In the following associative containers keys are in order — iterating over them follow the ordering of
the key

map multimap set multiset

• set-containers stores only a key
• map-containers store key-values pairs - using pair to store a key and the associated value
• non-multi variant allows for a unique key
• Moreover, there are corresponding unordered associative container:

unordered_map unordered_multimap unordered_set unordered_multiset

4.8

Associative containers — operations

4.9

2

Associative containers — operations

4.10

Associative containers — operations

4.11

Exercise — count unique word

• Write a program that counts the number of unique words in a large text file
4.12

Exercise — count words

• Write a program that determines which words are most common in a large text file
4.13

Exercise — anagram

• Write a program that computes the largest amount of anagrams from a dictionary
4.14

2 Iterators

Iterators
Can be seen as a pointer that can point to elements in a container and know how to move between

elements

• Container iterator

– point to an element in the container

– each container class has its own iterator

• Stream iterator

– bound to a stream

– allows us to read from and write to streams using iterator operations

• insert iterator

– bound to an iterator

3

– used to insert into the iterator

• move iterator

– element values are moved from the source to the destination, instead of being copied - source
elements zeroed typically

• past-the-end iterator

– a special iterator value indicating the end of a container, a stream or other type of range of
values

– primarily used to compare with other iterators: “Have we reached the end?”
4.15

Iterators

• access to the element with * or -> (like a pointer)
• many operations on containers use iterators as arguments and/or return an iterator
• almost all algorithms use iterator for operation on containers and other datastructure, including

streams
• improper use of an iterators can lead to execution errors, such as “segmentation fault”

4.16

Container iterator
Each type of container has its own specific iterator implementation:

• Containers have the following types:

– iterator iterates from the beginning to the end of a container

– const_iterator can be used to read but not modify

– reverse_iterator iterates from the end to the beginning of a container

– const_reverse_iterator

• Here are the functions to return iterators: begin(), end(), cbegin(), cend(), rbegin(), rend(), crbegin(),
crend()

• Example:

for(vector<int>::const_iterator it = v.cbegin(); it != v.cend(); ++it)
{

cout << *it << ’ ’;
}

• If nothing should be changed during the operation, use the const version
4.17

Iterator position

• Reverse iterator vs normal iterator:

for(vector<int>::const_reverse_iterator it = v.crbegin();
it != v.crend(); ++it)

{
cout << *it << ’ ’;

}
// Equivalent to:
for(vector<int>::const_iterator it = v.cend(); it != v.cbegin(); --it)
{

cout << *(it-1) << ’ ’;
}

4.18

4

Iterator category
An iterator “points” to a value. All operators supports ++it and it++
Different applications require different iterators. There is a hierarchy among iterator categories:

• InputIterator: can be referenced to read value.
• OutputIterator: can be referenced for writing a value.
• ForwardIterator: can both read and write.
• BidirectionalIterator: can move back and forth.
• RandomAccessIterator: allow pointer arithmetic and arbitrary index.

4.19

Operations on iterators

4.20

Example — iterator operations

4.21

5

	Symbol table
	Abstract datatype
	Associative container i C++

	Iterators

