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1 Decomposition

Divide and conquer, söndra och härska

• A general paradigm for algorithms design::

– Split up the input S into 2 or more disjoint subsets S1,S2, . . .

– Solve partial problems recursively

– Combine the solutions to partial problems to a solution to S

• Base case is a subproblem of constant size
• Analysis can be performed using recurring relations

24.3

Example: Matrix multiplication

C = AB⇔
(

C11 C12
C21 C22

)
=

(
A11 A12
A21 A22

)(
B11 B12
B21 B22

)
Suppose we have n×n-matrices and n = 2k for any k

function MUL(A,B,n)
if n = 1 then return A ·B
C11 =ADD(MUL(A11,B11,

n
2 ),MUL(A12,B21,

n
2 ),

n
2 )

C12 =ADD(MUL(A11,B12,
n
2 ),MUL(A12,B22,

n
2 ),

n
2 )

C21 =ADD(MUL(A21,B11,
n
2 ),MUL(A22,B21,

n
2 ),

n
2 )

C22 =ADD(MUL(A21,B12,
n
2 ),MUL(A22,B22,

n
2 ),

n
2 )

return C

Analysis
T (1) = 1
T (n) = 8T

( n
2
)
+4 ·

( n
2
)2

}
⇒ T (n) ∈ O(n3)
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Example: Matrix multiplication (Strassen)(
c11 c12
c21 c22

)
=

(
a11 a12
a21 a22

)(
b11 b12
b21 b22

)
Can be calculated by m1 = (a12 − a22) · (b21 + b22) m2 = (a12 + a22) · (b11 + b22) m3 = (a11 − a21) ·

(b11 + b12) m4 = (a11 + a12) · b22 m5 = a11 · (b12 − b22) m6 = a22 · (b21 − b11) m7 = (a21 + a22) · b11
c11 = m1 +m2−m4 +m6 c12 = m4 +m5 c21 = m6 +m7 c22 = m2−m3 +m5−m7

Analysis
A total of 7 multiplications and 18 additions/subtractions. The multiplication of 2 n×n-matrices takes time

T (1) = 1
T (n) = 7T

( n
2
)
+18 ·

( n
2
)2

}
⇒ T (n)∼ n2.81

24.5

Strassen in practice

• Use Strassen’s matrix multiplication algorithm for large matrices (n > b).
• Use standard matrix multiplication for smaller matrices (n≤ b)

How should the breakpoint be chosen?

n = 512 24.6

Example: Multiplication of binary numbers

x = xn−1xn−2 . . .x n
2︸ ︷︷ ︸

a

x n
2−1 . . .x1x0︸ ︷︷ ︸

b

= a ·2
n
2 +b

y = yn−1yn−2 . . .y n
2︸ ︷︷ ︸

c

y n
2−1 . . .y1y0︸ ︷︷ ︸

d

= c ·2
n
2 +d

x · y = a · c ·2n +(a ·d +b · c)2
n
2 +b ·d

Suppose that n = 2k

function MULT(x,y,k)
if k = 1 then return x∗ y
else

[a,b]← x
[c,d]← y
p1←MULT(a,c,k−1)
p2←MULT(b,d,k−1)
p3←MULT(a,d,k−1)
p4←MULT(b,c,k−1)
return p1 ·2n +(p3 + p4) ·2

n
2 + p2

Analysis
T (1) = Θ(1) and

T (n) = 4T
(n

2

)
+Θ(n)

⇒ T (n) ∈ O(nlog2 4)
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Example: Smarter multiplication (Karatsuba)
A← a · c B← b ·d C← (a+b) · (c+d) D← A ·2n +(C−A−B) ·2 n

2 +B D = a · c ·2n +(a ·d +b · c) ·
2

n
2 +b ·d = x · y
function SMARTMULT(x,y,k)

if k ≤ 4 then return x∗ y
else

[a,b]← x
[c,d]← y
A←SMARTMULT(a,c,k−1)
B←SMARTMULT(b,d,k−1)
C←SMARTMULT(a+b,c+d,k−1)
return A ·2n +(C−A−B) ·2 n

2 +B

Analysis
T (4) = Θ(1)
T (n) = 3 ·T

( n
2
)
+Θ(n)

}
⇒ T (n) ∈ O(nlog2 3) ∈ O(n1,58)

24.8

2 Total search

Exhaustive search, total search

• Go through all possible solutions and check if the intended solution exists. This is best done recursi-
vely

• Often the number of possible solutions is exponential, and then it can only be used for small n. Total
search is a method that one can takes as a last resort.

The hardest part of the total search is to make sure that you go through every possible solution one (and
preferably not more than one) time.

Sometimes even before building a solution one can see that it is not a possible solution. Then, one can
just ignore it and instead go back and construct the next possible solution. This is called backtracking. 24.9

TSP – salesman problem
TSP: Traveling salesman problem

what is the shortest possible route that visits each city exactly once and returns to the origin city?

Different variants of TSP:

• General TSP instance: graph with edge weights
• Euclidean TSP in dimension d. The cities given as coordinates in Rd

24.10

Example: Solving general TSP with total search
function TSP(n,d[1 . . .n,1 . . .n])

minlen← ∞

for i← 1 to n do visited[i]← false
for i← 1 to n do

perm[1]← i; visited[i]← true
CHECKPERM(2,0)
visited[i]← false

return minlen
procedure CHECKPERM(k, length)

if k > n then
totalLength← length+d[perm[n], perm[1]]

3



if totalLength < minlength then
minlength← totalLength

else
for i← 1 to n do

if ¬visited[i] then
perm[k]← i; visited[i]← true
CHECKPERM(k+1, length+d[perm[k−1], i])
visited[i]← false

24.11

3 Dynamic programming

Dynamic programming
A method for solving a complex problem by breaking it down into a collection of simpler subproblems,

solving each of those subproblems just once, and storing their solutions
• Determine the structure of the optimal solution
• Set up recursion for the optimal value
• Calculate the optimal values of partial problems from small to large
• Construct an optimal solution (poss. With additional information stored in step 3)

24.12

Dynamic programming
• Applicable to issues that at first glance seem to require a lot of time (perhaps exponentially):

– simple subproblems: a subproblrm can be defined in terms of some few variables
– The optimality of a subproblem: the globally optimal value can be defined in terms of optimal

subproblems
– Overlapping of partial problems: partial problems are not independent, instead they overlap

(and therefore should be constructed bottom-up)
24.13

Calculation the Fibonacci number
A serie of numbers calculated via a set of functions F0,F1, ...
• Fibonacci number is a recursive definition:F0 = 0F1 = 1Fi = Fi−1 +Fi−2 for i > 1
• A recursive algorithm (first attempt):

function BINARYFIB(k)
if k < 2 then

return k
else

return BINARYFIB(k−1)+BINARYFIB(k−2)
24.14

Analysis of Fibonacci with binary recursion
• Let nk denote the number of recursive calls made of BinaryFib(k)

– n0 = n1 = 1
– n2 = n1 +n0 +1 = 1+1+1 = 3
– n3 = n2 +n1 +1 = 3+1+1 = 5
– n4 = n3 +n2 +1 = 5+3+1 = 9
– n5 = n4 +n3 +1 = 9+5+1 = 15
– n6 = n5 +n4 +1 = 15+9+1 = 25
– n7 = n6 +n5 +1 = 25+15+1 = 41

• The value at least doubled for every other value nk, i.e. nk > 2k/2. The number of calls grows expo-
nentially!

24.15

A better algorithm for Fibonacci number
• Use dynamic programming instead:

function DYNPROGFIB(k)
int F[0..k]
F[0] = 0
F[1] = 1
for i = 2 to k do

F[i] = F[i-2] + F[i-1]
return F[k]

• The execution time is O(k)
24.16
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Example: Maximum triangle path
Problem: find the path from top to bottom that maximizes the sum of its individual numbers.

7

3

0

7

54

2

8

8

1

4

562

4

n = the number of rows It exists 2n−1 paths to try ai j = element j in row i 24.17

Dynamic programming solution

• Optimal solution structure path made up of sub-paths
• RecursionLet V [i, j] = the value of the best path from ai j down to row n

V [i, j] =
{

ai j if i=n (last row)
ai j +max(V [i+1, j],V [i+1, j+1]) otherwise

• Calculation
for j = 1 to n do

V [n, j]← an j

for i = n−1 downto 1 do
for j = 1 to i do

V [i, j]← ai j +max(V [i+1, j],V [i+1, j+1])

return V [1,1]

Time complexity: O(n2) 24.18

Partial sequences

• A partial sequence of a string x0x1x2 . . .xn−1 is a string in the form xi1 x12 . . .xik , where i j < i j+1
• Not the same as substring!

Example: ABCDEFGHIJK

• Partial string: CDEF
• Partial sequence: ACEGIJK
• Partial sequence: DFGHK
• Not a partial sequence: DAGH

24.19

The longest common subsequence problem (LCS)

• Given 2 strings X and Y , LCS is the problem of finding the longest common subsequence of X and Y
• Has applications in testing the matching between DNA strands (the alphabet is {A, C, G, T })

Example
ABCDEFG and XZACKDFWGH have ACDFG as a the longest common subsequence

24.20

A bad way to approach the LCS problem

• A brute-force solution

– Enumerate all partial sequences of X

– Test which also are partial sequences of Y

– Select the longest

• Analysis

– If X has length n it contains 2n partial sequences

– This algorithm requires exponential time!
24.21
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Dynamic programming and LCS-problem

• Let L[i, j] be the length of the longest common subsequence of X [0 . . . i] and Y [0 . . . j]
• Allow −1 as the index, so that L[−1,k] = 0 and L[k,−1] = 0 to indicate that null-subsequence of X

or Y does not match at all the second string
• Then we can define L[i, j] in the general case as follows:

– If X [i] = Y [ j], L[i, j] = L[i−1, j−1]+1 (we have a hit here)

– If X [i] 6= Y [ j], L[i, j] = max{L[i−1, j],L[i, j−1]} (we have no hit here)

Fall 1: Fall 2:

24.22

An algorithm for LCS
function LCS(X ,Y, |X |= n, |Y |= m)

for i =−1 to n-1 do
L[i,−1] = 0

for j = 0 to m-1 do
L[−1, j] = 0

for i = 0 to n−1 do
for j = 0 to m−1 do

if X [i] = Y [ j] then
L[i, j] = L[i−1, j−1]+1

else
L[i, j] = max{L[i−1, j],L[i, j−1]}

return array L
24.23

Visualization of the LCS-algorithm
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n

m
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Analysis of the LCS-algorithm
• We have two nested loops

– The outer iterates n times
– The inner iterates m times
– In each iteration of the inner loop, a constant amount of work is performed
– Thus, the total execution time is O(nm)

• The answer is in L[n,m] (and subsequence can be created from the table L)
24.25

4 Greedy algorithms

Greedy algorithms
Algorithms that solve a piece of the problem at a time. In each step performed, the algorithm gives

better return.
• The greedy method is a general paradigm for algorithm design based on the following:

– configurations: different choices, collections or values to find
– objective function: configurations assigned a score that we want to maximize or minimize

• It works fine when applied on problems with the greedy-choice-property:

– a globally optimal solution can always be found by a series of local improvements from an
initial configuration

For many problems greedy algorithms do not provide optimal solutions but maybe decent approximate
solutions. 24.26

Give change
• You need to give x cents in a change, using coins of values 1, 5, 10 and 25 cents. What is the minimum

number of coins needed to provide the change?
• Greedy approach:

– Take as many 25-cent coins as possible, then
– Take as many 10-cent coins as possible, then
– Take as many 5-cent coins as possible, then
– Take as many 1-cent coins as needed to finish.

• Example: 99 cent = 3∗25 cent + 2∗10 cent + 0∗5 cent + 4∗1 cent
• Is it optimal?
• 1, 5, 10 and 25 cent: greedy algorithm provides optimum
• 1, 6 and 10 cent: greedy algorithm does not provide optimum

24.27
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