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1 Directed graphs

Introduction

• In a directed graph, all edges are directed
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Characteristics

• A graph G = (V,E) where each edge has one direction:

– Edge (a,b) travels from a to b but not from b to a.

• If G is simple (no parallel edges or loops), then m≤ n · (n−1), i.e. m ∈O(n2), where n is the number
of nodes and m is the number of edges.
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Political Blogosphere-graph

The Political Blogosphere and the 2004 US Election: Divided They Blog, Adamic och Glance, 2005 23.5

Implication graph

23.6

Applications
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directed graph node directed edge
transport intersection one-way street

www website hyperlink
food chain species predator-prey ratio
financial bank transaction

mobile phone personal dialed calls
... ... ...
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Some algorithmic graph problems

• Path. Is there a directed path from s to t?
• Shortest path. What is the shortest directed path from s to t?

• Strong connectivity. Is there a directed path between all pairs of nodes?

• Topological sorting. Is it possible to draw the directed graph so that all edges pointing upwards?

• Transitive cover. For each nodes v and w, there is a path from v to w?

• Page Rank. How important is a website?
23.8

Directed DFS

• We can adapt traversal algorithms (DFS and BFS) to directed graphs
• In the directed DFS algorithm, we get four types of edges

– ”discovery”-edges

– backward-edges

– forward-edges

– intersecting edges

• A directed DFS starting in node p determines which nodes are reachable from the s
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2 Connectivity

Reachability
DFS tree rooted at v: nodes reachable from v via directed paths
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Strong connection
Each node is reachable from all other nodes
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Algorithm to determine strong connections

• Choose a node v in G
• // Can all nodes be reached from v?Perform DFS from v in G

– If there is w which is not frequented, answer ”no”

• Let G′ be G with the direction of each arc reversed
• // Can v be reached from all nodes?Run DFS from v in G′

– If there is w which is not frequented, answer ”no”

– Otherwise, answer ”yes”

• Execution time: O(n+m)
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Strongly connected components

• Maximum subgraph such that each node can reach all the other nodes in the subgraph
• Can also be performed in O(n+m) time by using DFS in several stages

{ a , c , g }

{ f , d , e , b }
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3 Transitive coverage

Transitive coverage

• Given a directed graph G, let the transitive coverage of G be a directed graph G∗ such that

– G∗ has the same nodes as G

– if G has a directed path u to v (u 6= v), so G∗ has a directed edge from u to v

• The transitive coverage gives information about the reachability in a directed graph.
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Calculation of transitive coverage

• We can run DFS with a start from each node v1, . . . ,vn, thus O(n · (n+m))
• Alternatively, through the use of dynamic programming: Floyd-Warshall’s algorithm

23.15

Transitive coverage with Floyd-Warshall

• Number the nodes 1,2, . . . ,n.
• In phase k, consider only paths that use the nodes with numbers 1,2, . . . ,k as internediate nodes:

k

j

i

Stig med noder
numrerade 1,…,k-1

Stig med noder
numrerade 1,…,k-1

Använder bara noder numrerade 1,…,k
(lägg till bågen om den inte redan är med)

23.16

Floyd-Warshall algorithm

• Floyd-Warshall algorithm numbers nodes in G as v1, . . . ,vn and calculates a serie of directed graphs
G0, . . . ,Gn

– G0 = G

– Gk has a directed edge (vi,v j) if G has a directed path from vi to v j with intermediate nodes
from the set {v1, . . . ,vk}

• We see that Gn = G∗

• In phase k, the calculated graph Gk is outgoing from Gk−1
• Run time: O(n3) if areAdjacent becomes O(1)

23.17
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Floyd-Warshall algorithm
function FLOYDWARSHALL(G)

G0← G
for k← 1 to n do

Gk← Gk−1
for i← 1 to n (i 6= k) do

for j← 1 to n ( j 6= i,k) do
if Gk−1.AREADJACENT(vi,vk) then

if Gk−1.AREADJACENT(vk,v j) then
if ¬Gk.AREADJACENT(vi,v j) then

Gk.INSERTDIRECTEDEDGE(vi,v j,k)

return Gn 23.18

Example: Floyd-Warshall
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Floyd-Warshall, iteration 1
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Floyd-Warshall, iteration 2
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Floyd-Warshall, iteration 3
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Floyd-Warshall, iteration 4
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Floyd-Warshall, iteration 5
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Floyd-Warshall, iteration 6
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Floyd-Warshall, termination
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4 Topological sorting

Directed acyclic graphs and topological order

• A directed acyclic graph (DAG) is a directed graph that has no directed cycles
• A topological order of a graph is a total order v1, . . . ,vn of nodes such that each edge (vi,v j) fulfills

i < j
• Example: In a directed graph that corresponds to an instance of task scheduling, a topological order

is a sequence of data that fulfill the requirements of the order between data

Proposition 1. A directed graph can be arranged using topological order if it is a DAG
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Topological sorting
Number the nodes, so that (u,v) ∈ E⇒ u < v
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Algorithms for topological sort
procedure TOPOLOGICALSORT(G)

S← new empty stack
for all u ∈ G.VERTICES() do

let INCOUNTER(u) be the in-degree of u
if INCOUNTER(u) = 0 then

S.PUSH(u)
i← 1
while ¬S.ISEMPTY() do

u← S.POP()
let u gets number i in the topological order
i← i+1
for all outgoing edge (u,w) from u do

INCOUNTER(w)← INCOUNTER(w)−1
if INCOUNTER(w) = 0 then

S.PUSH(w)

Execution time: O(n+m). 23.29

Alternative algorithms for topological sort
procedure TOPOLOGICALSORT(G)

H← G . temporary copy of G
n← G.NUMVERTICES

while H is not empty do
let v be node without outgoing edges
mark v with n

10



n← n−1
remove v from H

Execution time: O(n+m). 23.30

Algorithms for topological sort via DFS
Simulating the algorithm using a depth first search

procedure TOPOLOGICALDFS(G)
n← G.NUMVERTICES

set all nodes and edges UNEXPLORED as in DFS
for all v ∈ G.VERTICES() do

if GETLABEL(v) =UNEXPLORED then
TOPOLOGICALDFS(G,v)

procedure TOPOLOGICALDFS(G,v)
SETLABEL(v,V ISIT ED)
for all e ∈ G.INCIDENTEDGES(v) do

if GETLABEL(e) =UNEXPLORED then
w←OPPOSITE(v,e)
if GETLABEL(w) =UNEXPLORED then

SETLABEL(e,DISCOV ERY )
TOPOLOGICALDFS(G,w)

else
e is a cross edge or forward edge

mark v with a topological number n
n← n−1 23.31

Example: Topological sort

23.32

Example: Topological sort
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Example: Topological sort
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Example: Topological sort
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Example: Topological sort
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Example: Topological sort
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Example: Topological sort
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Example: Topological sort
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Example: Topological sort
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Example: Topological sort
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5 Weighted graphs

Weighted graphs

• In a weighted graph, each arc is associated with a numerical value called the edge weight.
• Edge weights can represent distances, costs, etc.

23.42

Google maps

23.43

The flight routes of the Continental company in USA (august 2010)
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Apllications

• map applications
• Seam carving
• Robot navigation
• Texture mapping
• Typesetting in TeX
• Traffic in urban environments
• Routing of messages in telecom.
• Routing protocols for networks (OSPF, BGP, RIP)

23.45

6 Shortest paths

The problem of shortest paths

• Given a weighted graph and 2 nodes u and v we will find a path between u and v with minimal total
weight.

– The length of a path is the sum of the weights of the path edges

Example
Shortest road between Providence and Honolulu

17
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Properties of shortest paths

• A subpath of a shortest path is also a shortest path
• There is a tree of shortest paths from a start node to all other nodes

Example
A tree of shortest roads from Providence
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Dijkstra algorithm

• The distance from one node v to a node s is the length of the shortest route between s and v
• Dijkstra’s algorithm calculates the distances from a given start node p to all nodes V in the graph
• Assumptions:

– the graph is connected

– edges are undirected

– the graph has no loops and parallel edges

– the edge weights are not negative

• We build a “cloud” of nodes starting at s, which ultimately cover all nodes
• We mark each node v with d(v), which represents the distance between v and s in the subgraph

consisting of the cloud and the nodes that are neighbors to the cloud
• In each step

– we add the node u outside the cloud having the least distance marking d(u)

– we update the labeling of nodes that are neighbors to u
23.48

Extension step

• Consider an edge e = (u,z) such that

– u is the node we recently added to the cloud

– z not in the cloud

• The relaxation of edge e updates d(z) as follows:

– d(z)←min{d(z),d(u)+weight(e)}
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Dijkstra pseudo-code

23.50

Example

23.51

Example
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Analysis of Dijkstra algorithm

• Graph operations

– We call incidentEdges one time for each node

• Marking operations

– We retrieve/set the distance and locator for node z O(deg(z)) times

– Setting/retrieving a marking takes O(1) time

• Operations on priority queues

– Each node is inserted once and removed once from the priority queue, where each insertion and
removal takes O(logn) time

– A node key in the priority queue changes at most deg(w) times, where each key change takes
O(logn) time

• Dijkstra algorithm has execution time O((n+m) logn) given that the graph is represented with an
adjacency list

– Remember ∑v deg(v) = 2m

23



• The execution time can also be expressed as O(m logn) because we assumed that the graph is con-
nected

23.60

Observations

• Dijkstra’s algorithm works by incrementally calculating the shortest route to intermediate nodes
which may be useful.

– Most of these paths are in the wrong direction.

• The algorithm does not have a general idea of the objective to be achieved; it explores outward in all
directions.

– Can we explore in smarter order?
23.61

Heuristics

• heuristics: Speculation, estimation or guess that determines how the search for a solution to a problem
goes.

– Example: Estimate the distance between two points in a Google Maps graph to the length of a
straight line between the points.

• valid heuristics: One that does not overestimate distance.

– Ok if heuristics sometimes underestimate the distance (for example Google Maps)
23.62

A?-algorithm

• A?(“A-star): A modified version of Dijkstra’s algorithm uses a heuristic function to guide the explo-
ration of the search space.

• Suppose we are looking for routes from start node a to c

– Each intermediate node b has two costs:

– The name (exact) cost from the start node a to b

– The heuristic (estimated) cost from B to the end node c.

• Idea: Run Dijkstra’s algorithm, but use the following priority in the priority queue:

– priority(b) = cost(a, b) + Heuristic(b, c)

– choose to explore ways with lower estimated cost
23.63
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Example: Labyrinth heuristics

• A possible heuristics to search for paths in a labyrinth::

– H(p1, p2) = abs(p1.x - p2.x) + abs(p1.y - p2.y) // dx + dy

– Idea: Explore the neighbors with low-value (cost + Heuristic)

23.64

Pseudocode of A?-algorithm

Notice that the nodes priorities are influenced by heuristics, but not their costs. 23.65
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