Lecture 23
Directed and weighted graphs

TDDD86: DALP

Print version of the lecture Data structures, algorithms and programming paradigms
2 december 2016

Jalil Boudjadar, Tommy Farnqvist. IDA, Linkdping University

23.1

Content

Innehall

|1 Directed graphs| 1

3

3 Transitive coverage| 5

|4 Topological sorting| 9

[Weighted graphs] 16

6 Shortest paths 17 23.2

1 Directed graphs

Introduction

e In a directed graph, all edges are directed

23.3

Characteristics

e A graph G = (V,E) where each edge has one direction:
- Edge (a,b) travels from a to b but not from b to a.

e If G is simple (no parallel edges or loops), then m < n-(n— 1), i.e. m € O(n?), where n is the number
of nodes and m is the number of edges.

23.4

Political Blogosphere-graph

23.5
Implication graph
if x5 is true,
then x0 is true
@ /
(=)
Y
()e—|—)
A
()
A 4
23.6

Applications

directed graph node directed edge
transport intersection one-way street
WWW website hyperlink
food chain species predator-prey ratio
financial bank transaction
mobile phone personal dialed calls

23.7

Some algorithmic graph problems

Path. Is there a directed path from s to ¢?
Shortest path. What is the shortest directed path from s to #?

Strong connectivity. Is there a directed path between all pairs of nodes?

Topological sorting. Is it possible to draw the directed graph so that all edges pointing upwards?

e Transitive cover. For each nodes v and w, there is a path from v to w?

Page Rank. How important is a website?
23.8

Directed DFS

e We can adapt traversal algorithms (DFS and BFS) to directed graphs
o In the directed DFS algorithm, we get four types of edges

”discovery”-edges

backward-edges

forward-edges

intersecting edges

e A directed DFS starting in node p determines which nodes are reachable from the s

23.9

2 Connectivity

Reachability
DES tree rooted at v: nodes reachable from v via directed paths

23.10

Strong connection
Each node is reachable from all other nodes

23.11

Algorithm to determine strong connections

Choose anode vin G
// Can all nodes be reached from v?Perform DFS from v in G

— If there is w which is not frequented, answer “no”

Let G’ be G with the direction of each arc reversed
// Can v be reached from all nodes?Run DFS from v in G’

— If there is w which is not frequented, answer "no”

— Otherwise, answer "yes”

e Execution time: O(n + m)

23.12

Strongly connected components

e Maximum subgraph such that each node can reach all the other nodes in the subgraph
e Can also be performed in O(n+m) time by using DFS in several stages

23.13

3 Transitive coverage

Transitive coverage

e Given a directed graph G, let the transitive coverage of G be a directed graph G* such that
— G* has the same nodes as G
— if G has a directed path u to v (u # v), so G* has a directed edge from u to v

e The transitive coverage gives information about the reachability in a directed graph.

23.14
Calculation of transitive coverage
e We can run DFS with a start from each node vy, ..., v,, thus O(n- (n+m))
e Alternatively, through the use of dynamic programming: Floyd-Warshall’s algorithm
23.15
Transitive coverage with Floyd-Warshall
e Number the nodes 1,2,...,n.
o In phase k, consider only paths that use the nodes with numbers 1,2,. ..,k as internediate nodes:
Anvander bara noder numrerade 1,...,k
(lagg till bagen om den inte redan dr med)
Stig med noder
numrerade 1,...,k-1
Stig med noder
numrerade 1,...,k-1
23.16
Floyd-Warshall algorithm
e Floyd-Warshall algorithm numbers nodes in G as vy,...,v, and calculates a serie of directed graphs
Gy,...,Gp
- Gp=G
- Gy has a directed edge (v;,v;) if G has a directed path from v; to v; with intermediate nodes
from the set {vy,..., v}
o We see that G,, = G*
e In phase k, the calculated graph Gy, is outgoing from Gy_
e Run time: O(n?) if areAdjacent becomes O(1)
23.17

Floyd-Warshall algorithm

function FLOYDWARSHALL(G)
Gy G
for k < 1 ton do

Gy <+ Gy
fori< 1ton (i #k)do
for j« 1 ton (j#ik)do
if G;_|.AREADJACENT(v;, v;) then
if Gy_|.AREADJACENT (v, v;) then
if ~Gy.AREADJACENT(v;,v;) then
Gy .INSERTDIRECTEDEDGE(v;, v}, k)

return G,

Example: Floyd-Warshall

Floyd-Warshall, iteration 1

23.18

23.19

23.20

Floyd-Warshall, iteration 2

23.21

Floyd-Warshall, iteration 3

23.22

Floyd-Warshall, iteration 4

23.25

Floyd-Warshall, termination

23.26

4 Topological sorting

Directed acyclic graphs and topological order

e A directed acyclic graph (DAG) is a directed graph that has no directed cycles

e A topological order of a graph is a total order vy, ..., v, of nodes such that each edge (v;,v;) fulfills
i<j

e Example: In a directed graph that corresponds to an instance of task scheduling, a topological order
is a sequence of data that fulfill the requirements of the order between data

Proposition 1. A directed graph can be arranged using topological order if it is a DAG

Topologisk
ordning av G

Topological sorting
Number the nodes, so that (u,v) €EE = u <v

1

En typisk studentdag

Algorithms for topological sort
procedure TOPOLOGICALSORT(G)
S < new empty stack
for all ¥ € G.VERTICES() do
let INCOUNTER (u) be the in-degree of u
if INCOUNTER () = 0 then
S.PUSH(u)
i1
while —S.ISEMPTY() do
u < S.POP()
let u gets number i in the topological order
i+—i+1
for all outgoing edge (u,w) from u do
INCOUNTER (W) <~ INCOUNTER(w) —
if INCOUNTER(w) = O then
S.PUSH(w)

Execution time: O(n+m).

Alternative algorithms for topological sort
procedure TOPOLOGICALSORT(G)
H<+G
n < G.NUMVERTICES
while H is not empty do
let v be node without outgoing edges
mark v with n

1

10

> temporary copy of G

23.27

23.28

23.29

n<—n—1
remove v from H

Execution time: O(n+m).

Algorithms for topological sort via DFS
Simulating the algorithm using a depth first search
procedure TOPOLOGICALDFS(G)

n < G.NUMVERTICES

set all nodes and edges UNEXPLORED as in DFS
for all v € G.VERTICES() do

if GETLABEL(v) = UNEXPLORED then
TOPOLOGICALDFS(G,v)

procedure TOPOLOGICALDFS(G,v)
SETLABEL(v, VISITED)
for all ¢ € G.INCIDENTEDGES(v) do
if GETLABEL(e) = UNEXPLORED then
w <—OPPOSITE(v, ¢)
if GETLABEL(w) = UNEXPLORED then
SETLABEL (e, DISCOVERY)
TOPOLOGICALDFS(G,w)
else
e is a cross edge or forward edge
mark v with a topological number n
n<—n—1

Example: Topological sort

Example: Topological sort

11

23.30

23.31

23.32

23.33

Example: Topological sort

23.34

Example: Topological sort

12

23.35

Example: Topological sort

23.36

Example: Topological sort

13

23.37

Example: Topological sort

23.38

Example: Topological sort

14

23.39

Example: Topological sort

23.40

Example: Topological sort

15

5 Weighted graphs

Weighted graphs

e In a weighted graph, each arc is associated with a numerical value called the edge weight.

e Edge weights can represent distances, costs, etc.

Google maps

At Princeton g™

AR

Medical Center

% Princeton
University-Main Campus

Map [Satelie Hybrid |

©2005 Google - Map data ©2005 NAVTEQ™

The flight routes of the Continental company in USA (august 2010)

16

23.41

23.42

23.43

W\ \|ATLANTIC

)
!

&
¥ AN
TR

74V IR
"ff‘f'é"
;‘

NN

Train Routes =wamraax
—— Codesharo/Onepass Service
...... OnePass Eighie Sevice

e
lf’g"\‘{\\‘“\“

-

al Destination

= Selected A Partner Destination
(For a complate st of atne partoers,
500 page 78)

23.44

Apllications

map applications

Seam carving

Robot navigation

Texture mapping

Typesetting in TeX

Traffic in urban environments

Routing of messages in telecom.

Routing protocols for networks (OSPF, BGP, RIP)

23.45

6 Shortest paths

The problem of shortest paths

e Given a weighted graph and 2 nodes « and v we will find a path between « and v with minimal total
weight.

— The length of a path is the sum of the weights of the path edges

Example
Shortest road between Providence and Honolulu

17

Properties of shortest paths

e A subpath of a shortest path is also a shortest path
e There is a tree of shortest paths from a start node to all other nodes

Example
A tree of shortest roads from Providence

Dijkstra algorithm

The distance from one node v to a node s is the length of the shortest route between s and v
Dijkstra’s algorithm calculates the distances from a given start node p to all nodes V' in the graph
Assumptions:

the graph is connected

edges are undirected

the graph has no loops and parallel edges

the edge weights are not negative

We build a “cloud” of nodes starting at s, which ultimately cover all nodes

We mark each node v with d(v), which represents the distance between v and s in the subgraph
consisting of the cloud and the nodes that are neighbors to the cloud

In each step

— we add the node u outside the cloud having the least distance marking d(u)

— we update the labeling of nodes that are neighbors to u

Extension step

e Consider an edge ¢ = (u,z) such that
— u is the node we recently added to the cloud

— znot in the cloud

e The relaxation of edge e updates d(z) as follows:
- d(z) ¢ min{d(z),d(u)+ weight(e)}

18

23.46

23.47

23.48

10 d(z)=75

Dijkstra pseudo-code
function dijkstra(v,, v,):
initialize every vertex to have a cost of infinity.
setv,'s costto 0.
pqueue := {v,, with priority 0}. // ordered by cost

while pqueue is not empty:
v := dequeue vertex from pgueue with minimum priority.
mark v as visited.
if vis v,, we can stop.
for each unvisited neighbor n of v:
cost := v's cost + weight of edge (v, n).
if cost < n's cost:
set n's cost to cost, and n's previous to v.
enqueue n in the pqueue with priority of cost,
or update its priority if it was already in the pqueue.

reconstruct path from v, back to v,, following previous pointers.

Example

e dijkstra(A, F);

v,'s avstand :=0.

function dijkstra(v,, v,):
v,'s cost := 0.
pqueue :={v,}. // ordered by cost

while pqueue is not empty:
v := dequeue min cost from pgqueue.
mark v as visited.

if vis v,, we can stop.
for each unvisited neighbor n of v:
cost :=V's cost + weight of edge (v, n).
if cost < n's cost:
set n's cost to cost and n's previous to v.
enqueue or update n in the pgueue.

reconstruct path from v, back tov,,
following previous pointers. oo

« | vara diagram farglagger vi en nod:
— vitom den &r outforskad

om den koats for senare behandling
— gron om den besokts (plockats ut ur kén) och behandlats

Example

19

23.49
23.50
alla andra avstand := oo.
oo
pqueue = {A:0}
23.51

e dijkstra(A, F);

function dijkstra(v,, v,):
v,'s cost := 0.
pqueue :={v,}. // ordered by cost

while pqueue is not empty:
v := dequeue min cost from pqueue. // A
mark v as visited.
if vis v,, we can stop.
for each unvisited neighbor n of v: // B, D
cost :=v's cost + weight of edge (v, n).
if cost < n's cost:
set n's cost to cost and n's previous to v.
enqueue or update n in the pqueue.
// B's cost =0+2, D's cost = 0+1
reconstruct path from v, back to v,,
following previous pointers. o -

pqueue = {D:1, B:2}

23.52

Example

e dijkstra(A, F);

function dijkstra(v,, v,):
v,'s cost := 0.
pqueue :={v,}. //ordered by cost

while pqueue is not empty:
v := dequeue min cost from pqueue. // D
mark v as visited.
if vis v,, we can stop.
for each unvisited neighbornof v: //C,E, F, G
cost :=V's cost + weight of edge (v, n).
if cost < n's cost:
set n's cost to cost and n's previous to v.
enqueue or update n in the pqueue.
// C=1+2, E=1+2, F=1+8, G=1+4

reconstruct path from v, back to v,,
following previous pointers.

pqueue = {B:2, C:3, E:3, G:5, F:9}

23.53

Example

20

e dijkstra(A, F);

function dijkstra(v,, v,): 0 2
v,'s cost := 0.
pqueue :={v;}. //orderedbycost A Fe————=—2

while pqueue is not empty:
v := dequeue min cost from pqueue. //B
mark v as visited.
if vis v,, we can stop. 5
for each unvisited neighbornofv: //E 7 N A== =====>p AKE——=—=——=—
cost :=V's cost + weight of edge (v, n). // 2+10
if cost < n's cost:
set n's cost to cost and n's previous to v.
enqueue or update n in the pqueue.
// no change

reconstruct path from v, back to v,,
following previous pointers. 9 5

pqueue = {C:3, E:3, G:5, F:9}

23.54

Example

e dijkstra(A, F);

function dijkstra(v,, v,):
v,'s cost := 0.
pqueue :={v,}. //ordered by cost

while pqueue is not empty:
v := dequeue min cost from pqueue. // C
mark v as visited.
if vis v,, we can stop. e
for each unvisited neighbor nof v: // F
cost :=V's cost + weight of edge (v, n). // 3+5
if cost < n's cost: //8<9
set n's cost to cost and n's previous to v.
enqueue or update n in the pqueue.
//F=8
reconstruct path from v, back to v,,
following previous pointers.

pqueue = {E:3, G:5, F:8}

23.55

Example

21

e dijkstra(A, F);

function dijkstra(v,, v,):
v,'s cost := 0.
pqueue :={v,}. // ordered by cost

while pqueue is not empty:
v := dequeue min cost from pqueue. // E
mark v as visited.
if vis v,, we can stop. 3
for each unvisited neighbor n of v: // G
cost :=V's cost + weight of edge (v, n). //3+6
if cost<n'scost: //9>5
set n's cost to cost and n's previous to v.
enqueue or update n in the pqueue.
// no change

reconstruct path from v, back tov,,
following previous pointers.

pqueue = {G:5, F:8}

23.56

Example

e dijkstra(A, F);

function dijkstra(v,, v,):
v,'s cost := 0.
pqueue :={v,}. //ordered by cost

while pqueue is not empty:
v := dequeue min cost from pqueue. // G
mark v as visited.
if vis v,, we can stop. 3
for each unvisited neighbor n of v: //F
cost :=V's cost + weight of edge (v, n). //5+1
if cost<n'scost: //6<8
set n's cost to cost and n's previous to v.
engueue or update n in the pqueue.
//F=6
reconstruct path from v, back to v,,
following previous pointers.

pqueue = {F:6}

23.57

Example

22

e dijkstra(A, F);

function dijkstra(v,, v,):
v,'s cost := 0.
pqueue :={v,}. // ordered by cost

while pqueue is not empty:
v := dequeue min cost from pqueue. //F
mark v as visited.
if vis v,, we can stop.
for each unvisited neighbor n of v:
cost :=V's cost + weight of edge (v, n).
if cost < n's cost:
set n's cost to cost and n's previous to v.
enqueue or update n in the pqueue.

reconstruct path from v, back to v,,
following previous pointers. 6 5

pqueue = {}

23.58

Example

e dijkstra(A, F);

function dijkstra(v,, v,):
v,'s cost := 0.
pqueue :={v,}. //ordered by cost

while pqueue is not empty:
v := dequeue min cost from pqueue.
mark v as visited.
if vis v,, we can stop. 5
for each unvisited neighbor n of v:
cost :=V's cost + weight of edge (v, n).
if cost < n's cost:
set n's cost to cost and n's previous to v.
enqueue or update n in the pqueue.

reconstruct path from v, back tov,,
following previous pointers. 6 5

// path={A, D, G, F}

23.59

Analysis of Dijkstra algorithm

e Graph operations
— We call incidentEdges one time for each node

e Marking operations
— We retrieve/set the distance and locator for node z O(deg(z)) times
— Setting/retrieving a marking takes O(1) time

e Operations on priority queues

— Each node is inserted once and removed once from the priority queue, where each insertion and
removal takes O(logn) time

— A node key in the priority queue changes at most deg(w) times, where each key change takes
O(logn) time

e Dijkstra algorithm has execution time O((n+ m)logn) given that the graph is represented with an
adjacency list

— Remember Y, deg(v) =2m

23

e The execution time can also be expressed as O(mlogn) because we assumed that the graph is con-
nected

Observations

e Dijkstra’s algorithm works by incrementally calculating the shortest route to intermediate nodes
which may be useful.

— Most of these paths are in the wrong direction.

e The algorithm does not have a general idea of the objective to be achieved; it explores outward in all
directions.

— Can we explore in smarter order?

Heuristics

e heuristics: Speculation, estimation or guess that determines how the search for a solution to a problem
goes.

— Example: Estimate the distance between two points in a Google Maps graph to the length of a
straight line between the points.

e valid heuristics: One that does not overestimate distance.

— Ok if heuristics sometimes underestimate the distance (for example Google Maps)

A*-algorithm

e A*(“A-star): A modified version of Dijkstra’s algorithm uses a heuristic function to guide the explo-
ration of the search space.

b __________________
‘ ként avstdnd a-b O- uppskattat avstand

(via heuristik)

e Suppose we are looking for routes from start node a to ¢
— Each intermediate node b has two costs:
— The name (exact) cost from the start node a to b

— The heuristic (estimated) cost from B to the end node c.

e Idea: Run Dijkstra’s algorithm, but use the following priority in the priority queue:
— priority(b) = cost(a, b) + Heuristic(b, ¢)

— choose to explore ways with lower estimated cost

24

23.60

23.61

23.62

23.63

Example: Labyrinth heuristics

e A possible heuristics to search for paths in a labyrinth::

= H(pi, p) =abs(pi.x - pr.x) + abs(p1.y - p2.y) //dx +dy
— Idea: Explore the neighbors with low-value (cost + Heuristic)

5 4 2 3
4 3 1 2
a 2 c 1
4 3 1 2

Pseudocode of A*-algorithm
function astar(v,, v,):
initialize every vertex to have a cost of infinity.
setv,'s cost to 0.
pqueue = {v,, at priority H(v,, v,)}.

while pqueue is not empty:
v := dequeue vertex from pqueue with minimum priority.
mark v as visited.
if vis v,, we can stop.
for each unvisited neighbor n of v:
cost :=v's cost + weight of edge (v, n).
if cost < n's cost:
set n's cost to cost, and n's previous to v.
enqueue n in the pqueue with priority of (cost + H(n, v,)),

or update its priority to be (cost + H(n, v,)) if it was already in the pqueue.

reconstruct path from v, back to v,, following previous pointers.

Notice that the nodes priorities are influenced by heuristics, but not their costs.

25

23.64

23.65

	Directed graphs
	Connectivity
	Transitive coverage
	Topological sorting
	Weighted graphs
	Shortest paths

