Lecture 23

Directed and weighted graphs

TDDD86: DALP

Print version of the lecture Data structures, algorithms and programming paradigms 2 december 2016

Content
Innehåll
$\begin{array}{lll}1 \text { Directed graphs } & 1\end{array}$
2 Connectivity 3
3 Transitive coverage 5
4 Topological sorting 9
5 Weighted graphs 16
6 Shortest paths 17

1 Directed graphs

Introduction

- In a directed graph, all edges are directed

Characteristics

- A graph $G=(V, E)$ where each edge has one direction:
- Edge (a, b) travels from a to b but not from b to a.
- If G is simple (no parallel edges or loops), then $m \leq n \cdot(n-1)$, i.e. $m \in O\left(n^{2}\right)$, where n is the number of nodes and m is the number of edges.

Political Blogosphere-graph

Implication graph

Applications

directed graph	node	directed edge
transport	intersection	one-way street
www	website	hyperlink
food chain	species	predator-prey ratio
financial	bank	transaction
mobile phone	personal	dialed calls
\ldots	\ldots	\ldots

Some algorithmic graph problems

- Path. Is there a directed path from s to t ?
- Shortest path. What is the shortest directed path from s to t ?
- Strong connectivity. Is there a directed path between all pairs of nodes?
- Topological sorting. Is it possible to draw the directed graph so that all edges pointing upwards?
- Transitive cover. For each nodes v and w, there is a path from v to w ?
- Page Rank. How important is a website?

Directed DFS

- We can adapt traversal algorithms (DFS and BFS) to directed graphs
- In the directed DFS algorithm, we get four types of edges
- "discovery"-edges
- backward-edges
- forward-edges
- intersecting edges
- A directed DFS starting in node p determines which nodes are reachable from the s

2 Connectivity

Reachability

DFS tree rooted at v : nodes reachable from v via directed paths

Strong connection

Each node is reachable from all other nodes

Algorithm to determine strong connections

- Choose a node v in G
- // Can all nodes be reached from v? Perform DFS from v in G
- If there is w which is not frequented, answer "no"
- Let G^{\prime} be G with the direction of each arc reversed
- // Can v be reached from all nodes? Run DFS from v in G^{\prime}
- If there is w which is not frequented, answer "no"
- Otherwise, answer "yes"
- Execution time: $O(n+m)$

G:

G':

Strongly connected components

- Maximum subgraph such that each node can reach all the other nodes in the subgraph
- Can also be performed in $O(n+m)$ time by using DFS in several stages

3 Transitive coverage

Transitive coverage

- Given a directed graph G, let the transitive coverage of G be a directed graph G^{*} such that
- G^{*} has the same nodes as G
- if G has a directed path u to $v(u \neq v)$, so G^{*} has a directed edge from u to v
- The transitive coverage gives information about the reachability in a directed graph.

\qquad
Calculation of transitive coverage
- We can run DFS with a start from each node v_{1}, \ldots, v_{n}, thus $O(n \cdot(n+m))$
- Alternatively, through the use of dynamic programming: Floyd-Warshall's algorithm

Transitive coverage with Floyd-Warshall

- Number the nodes $1,2, \ldots, n$.
- In phase k, consider only paths that use the nodes with numbers $1,2, \ldots, k$ as internediate nodes:

Floyd-Warshall algorithm

- Floyd-Warshall algorithm numbers nodes in G as v_{1}, \ldots, v_{n} and calculates a serie of directed graphs G_{0}, \ldots, G_{n}
$-G_{0}=G$
- G_{k} has a directed edge $\left(v_{i}, v_{j}\right)$ if G has a directed path from v_{i} to v_{j} with intermediate nodes from the set $\left\{v_{1}, \ldots, v_{k}\right\}$
- We see that $G_{n}=G^{*}$
- In phase k, the calculated graph G_{k} is outgoing from G_{k-1}
- Run time: $O\left(n^{3}\right)$ if areAdjacent becomes $O(1)$

function FloydWARSHALL (G)

$G_{0} \leftarrow G$
for $k \leftarrow 1$ to n do
$G_{k} \leftarrow G_{k-1}$
for $i \leftarrow 1$ to $n(i \neq k)$ do
for $j \leftarrow 1$ to $n(j \neq i, k)$ do
if G_{k-1}.AREADJACEnt $\left(v_{i}, v_{k}\right)$ then if G_{k-1}.AREADJACENT $\left(v_{k}, v_{j}\right)$ then
if $\neg G_{k}$. AREADJACENT $\left(v_{i}, v_{j}\right)$ then
G_{k} - INSERTDIRECTEDEDGE $\left(v_{i}, v_{j}, k\right)$
return G_{n}

Example: Floyd-Warshall

Floyd-Warshall, iteration 1

Floyd-Warshall, iteration 2

Floyd-Warshall, iteration 3

Floyd-Warshall, iteration 4

Floyd-Warshall, iteration 5

Floyd-Warshall, iteration 6

Floyd-Warshall, termination

4 Topological sorting

Directed acyclic graphs and topological order

- A directed acyclic graph (DAG) is a directed graph that has no directed cycles
- A topological order of a graph is a total order v_{1}, \ldots, v_{n} of nodes such that each edge $\left(v_{i}, v_{j}\right)$ fulfills $i<j$
- Example: In a directed graph that corresponds to an instance of task scheduling, a topological order is a sequence of data that fulfill the requirements of the order between data

Proposition 1. A directed graph can be arranged using topological order if it is a DAG

\qquad

Topological sorting
Number the nodes, so that $(u, v) \in E \Rightarrow u<v$

Algorithms for topological sort
procedure TopologicalSort(G)
$S \leftarrow$ new empty stack
for all $u \in G$.VERTICES() do
let incounter (u) be the in-degree of u
if $\operatorname{Incounter}(u)=0$ then
S.PUSH(u)
$i \leftarrow 1$
while $\neg S$.ISEmpty () do
$u \leftarrow S$. POP()
let u gets number i in the topological order
$i \leftarrow i+1$
for all outgoing edge (u, w) from u do
$\operatorname{INCOUNTER}(w) \leftarrow \operatorname{INCOUNTER}(w)-1$
if $\operatorname{Incounter}(w)=0$ then
S.PUSH(w)

Execution time: $O(n+m)$. \qquad

Alternative algorithms for topological sort
procedure TopologicalSort(G)
$H \leftarrow G$
\triangleright temporary copy of G
$n \leftarrow G$.numVertices
while H is not empty do
let v be node without outgoing edges
mark v with n

$$
\begin{aligned}
& n \leftarrow n-1 \\
& \text { remove } v \text { from } H
\end{aligned}
$$

Execution time: $O(n+m)$.

Algorithms for topological sort via DFS
Simulating the algorithm using a depth first search
procedure TOPOLOGICALDFS (G)
$n \leftarrow G$.NUMVERTICES
set all nodes and edges $U N E X P L O R E D$ as in DFS
for all $v \in G$.VERTICES() do
if $\operatorname{GETLABEL}(v)=U N E X P L O R E D$ then TOPOLOGICALDFS (G, v)
procedure TOPOLOGICALDFS (G, v)
SETLABEL (v, V ISITED $)$
for all $e \in G$.IncidentEDGES (v) do
if $\operatorname{GETLABEL}(e)=U N E X P L O R E D$ then
$w \leftarrow \operatorname{OPPOSITE}(v, e)$
if $\operatorname{GETLABEL}(w)=U N E X P L O R E D$ then
$\operatorname{SETLABEL}(e, D I S C O V E R Y)$
TOPOLOGICALDFS (G, w)
else
e is a cross edge or forward edge
mark v with a topological number n
$n \leftarrow n-1$

Example: Topological sort

5 Weighted graphs

Weighted graphs

- In a weighted graph, each arc is associated with a numerical value called the edge weight.
- Edge weights can represent distances, costs, etc.

Google maps

The flight routes of the Continental company in USA (august 2010)

Apllications

- map applications
- Seam carving
- Robot navigation
- Texture mapping
- Typesetting in TeX
- Traffic in urban environments
- Routing of messages in telecom.
- Routing protocols for networks (OSPF, BGP, RIP)

http://en.wikipedia.org/wiki/Seam_carving

6 Shortest paths
The problem of shortest paths

- Given a weighted graph and 2 nodes u and v we will find a path between u and v with minimal total weight.
- The length of a path is the sum of the weights of the path edges

Example
Shortest road between Providence and Honolulu

Properties of shortest paths

- A subpath of a shortest path is also a shortest path
- There is a tree of shortest paths from a start node to all other nodes

Example

A tree of shortest roads from Providence

Dijkstra algorithm

- The distance from one node v to a node s is the length of the shortest route between s and v
- Dijkstra's algorithm calculates the distances from a given start node p to all nodes V in the graph
- Assumptions:
- the graph is connected
- edges are undirected
- the graph has no loops and parallel edges
- the edge weights are not negative
- We build a "cloud" of nodes starting at s, which ultimately cover all nodes
- We mark each node v with $d(v)$, which represents the distance between v and s in the subgraph consisting of the cloud and the nodes that are neighbors to the cloud
- In each step
- we add the node u outside the cloud having the least distance marking $d(u)$
- we update the labeling of nodes that are neighbors to u

Extension step

- Consider an edge $e=(u, z)$ such that
- u is the node we recently added to the cloud
$-z$ not in the cloud
- The relaxation of edge e updates $d(z)$ as follows:
$-d(z) \leftarrow \min \{d(z), d(u)+$ weight $(e)\}$

Dijkstra pseudo-code
function dijkstra $\left(v_{1}, v_{2}\right)$:
initialize every vertex to have a cost of infinity.
set v_{1} 's cost to 0 .
pqueue := \{v ${ }_{1}$, with priority 0$\}$. // ordered by cost
while pqueue is not empty:
$v:=$ dequeue vertex from pqueue with minimum priority.
mark v as visited.
if v is v_{2}, we can stop.
for each unvisited neighbor n of v :
cost $:=v$'s cost + weight of edge (v, n).
if cost < n 's cost:
set n 's cost to cost, and n 's previous to v.
enqueue n in the pqueue with priority of cost, or update its priority if it was already in the pqueue.
reconstruct path from v_{2} back to v_{1}, following previous pointers.

Example

- dijkstra(A, F);

> unction dijkstra $\left(v_{1}, v_{2}\right):$
> v_{1}^{\prime} s cost $:=0$.
> pqueue $:=\left\{v_{1}\right\} . \quad$ // ordered by cost
while pqueue is not empty: $v:=$ dequeue min cost from pqueue. mark v as visited.

$$
\text { if } v \text { is } v_{2} \text {, we can stop. }
$$

for each unvisited neighbor n of v : cost $:=v$'s cost + weight of edge (v, n). if cost < n 's cost:
set n 's cost to cost and n 's previous to v. enqueue or update n in the pqueue.
reconstruct path from v_{2} back to v_{1}, following previous pointers.

- I våra diagram färglägger vi en nod:
- vit om den är outforskad
pqueue $=\{\mathrm{A}: 0\}$
- gul om den köats för senare behandling
- grön om den besökts (plockats ut ur kön) och behandlats

Example

- dijkstra(A, F);
function $\operatorname{dijkstra}\left(v_{1}, v_{2}\right)$:
v_{1} 's cost := 0 .
pqueue := $\left\{v_{1}\right\}$. // ordered by cost
while pqueue is not empty:
$v:=$ dequeue min cost from pqueue. // A mark v as visited.

$$
\text { if } v \text { is } v_{2} \text {, we can stop. }
$$

for each unvisited neighbor n of $v: / / B, D$ cost $:=v$'s cost + weight of edge (v, n). if cost < n 's cost:
set n 's cost to cost and n 's previous to v. enqueue or update n in the pqueue. // B's cost $=0+2$, D's cost $=0+1$
reconstruct path from v_{2} back to v_{1}, following previous pointers.

∞
∞
pqueue $=\{D: 1, B: 2\}$

Example

- dijkstra(A, F);

function dijkstra $\left(v_{1}, v_{2}\right)$:
v_{1} 's cost :=0.
pqueue :=\{vi $\}$. // ordered by cost
while pqueue is not empty: $v:=$ dequeue min cost from pqueue. // D mark v as visited. if v is v_{2}, we can stop.
for each unvisited neighbor n of $v: / / C, E, F, G$ cost $:=v$'s cost + weight of edge (v, n). if cost < n 's cost:
set n 's cost to cost and n 's previous to v. enqueue or update n in the pqueue. // $\mathrm{C}=1+2, \mathrm{E}=1+2, \mathrm{~F}=1+8, \mathrm{G}=1+4$
reconstruct path from v_{2} back to v_{1}, following previous pointers.

pqueue $=\{B: 2, C: 3, E: 3, G: 5, F: 9\}$

Example

- dijkstra(A, F);
function $\operatorname{dijkstra}\left(v_{1}, v_{2}\right)$:
v_{1} 's cost :=0.
pqueue :=\{v, $\}$. // ordered by cost
while pqueue is not empty:
$v:=$ dequeue min cost from pqueue. // B mark v as visited.
if v is v_{2}, we can stop.
for each unvisited neighbor n of $v: / / E$ cost $:=v$'s cost + weight of edge $(v, n) . / / 2+10$ if cost < n's cost:
set n 's cost to cost and n 's previous to v. enqueue or update n in the pqueue. // no change
reconstruct path from v_{2} back to v_{1}, following previous pointers.

pqueue $=\{C: 3, E: 3, G: 5, F: 9\}$

Example

- dijkstra(A, F);

function dijkstra $\left(v_{1}, v_{2}\right)$:
v_{1} 's cost : $=0$.
pqueue :=\{ $\left.v_{1}\right\}$. // ordered by cost
while pqueue is not empty:
$v:=$ dequeue min cost from pqueue. // C
mark v as visited.
if v is v_{2}, we can stop.
for each unvisited neighbor n of $v: / / F$ cost $:=v$'s cost + weight of edge $(v, n) . / / 3+5$ if cost < n 's cost: // $8<9$
set n 's cost to cost and n 's previous to v. enqueue or update n in the pqueue. $/ / F=8$
reconstruct path from v_{2} back to v_{1}, following previous pointers.

pqueue $=\{E: 3, G: 5, F: 8\}$

Example

- dijkstra(A, F);
function dijkstra $\left(v_{1}, v_{2}\right)$:
v_{1} 's cost :=0.
pqueue $:=\left\{v_{1}\right\}$. // ordered by cost
while pqueue is not empty:
$v:=$ dequeue min cost from pqueue. //E mark v as visited.
if v is v_{2}, we can stop.
for each unvisited neighbor n of $v: / / G$ cost $:=v$'s cost + weight of edge $(v, n) . / / 3+6$ if cost < n 's cost: // $9>5$
set n 's cost to cost and n 's previous to v. enqueue or update n in the pqueue. // no change
reconstruct path from v_{2} back to v_{1}, following previous pointers.

pqueue $=\{G: 5, F: 8\}$

Example

- dijkstra(A, F);
function $\operatorname{dijkstra}\left(v_{1}, v_{2}\right)$
v_{1} 's cost := 0 .
pqueue := $\left.v_{1}\right\}$. // ordered by cost
while pqueue is not empty:
$v:=$ dequeue min cost from pqueue. // G mark v as visited.
if v is v_{2}, we can stop.
for each unvisited neighbor n of $v: / / F$
cost $:=v$'s cost + weight of edge (v, n). // 5+1
if cost < n's cost: // $6<8$
set n 's cost to cost and n 's previous to v. enqueue or update n in the pqueue. $/ / F=6$
reconstruct path from v_{2} back to v_{1},
following previous pointers.

Example

- dijkstra(A, F);
function $\operatorname{dijkstra}\left(v_{1}, v_{2}\right)$:
v_{1} 's cost := 0 .
pqueue :=\{v $\}$. // ordered by cost
while pqueue is not empty: $v:=$ dequeue min cost from pqueue. // F mark v as visited.
if v is v_{2}, we can stop.
for each unvisited neighbor n of v :
cost $:=v$'s cost + weight of edge (v, n).
if cost < n 's cost:
set n 's cost to cost and n 's previous to v. enqueue or update n in the pqueue.
reconstruct path from v_{2} back to v_{1}, following previous pointers.

pqueue $=\{ \}$

Example

- dijkstra(A, F);

function $\operatorname{dijkstra}\left(v_{1}, v_{2}\right)$:
v_{1} 's cost := 0 .
pqueue $:=\left\{v_{1}\right\}$. // ordered by cost
while pqueue is not empty: $v:=$ dequeue min cost from pqueue. mark v as visited. if v is v_{2}, we can stop. for each unvisited neighbor n of v : cost $:=v$'s cost + weight of edge (v, n). if cost < n's cost:
set n 's cost to cost and n 's previous to v. enqueue or update n in the pqueue.
following previous pointers.
$/ /$ path $=\{A, D, G, F\}$

- The execution time can also be expressed as $O(m \log n)$ because we assumed that the graph is connected

Observations

- Dijkstra's algorithm works by incrementally calculating the shortest route to intermediate nodes which may be useful.
- Most of these paths are in the wrong direction.

			5?	4	5?	6?		
	6?	5?	4	3	4	5	6?	
$6 ?$	5	4	3	2	3	4	5?	
5?	4	3	2	1	2	3	4	5?
4	3	2	1	ts	1	2	3	4
$5 ?$	4	3	2	1	2	3	4	5?
	5?	4	3	2	3	4	5	6?
	6?	5	4	3	4	5?	6?	
		$6 ?$	5?	4	$5 ?$			

- The algorithm does not have a general idea of the objective to be achieved; it explores outward in all directions.
- Can we explore in smarter order?

Heuristics

- heuristics: Speculation, estimation or guess that determines how the search for a solution to a problem goes.
- Example: Estimate the distance between two points in a Google Maps graph to the length of a straight line between the points.
- valid heuristics: One that does not overestimate distance.
- Ok if heuristics sometimes underestimate the distance (for example Google Maps)

A*-algorithm

- A^{\star} ("A-star): A modified version of Dijkstra's algorithm uses a heuristic function to guide the exploration of the search space.

- Suppose we are looking for routes from start node a to c
- Each intermediate node b has two costs:
- The name (exact) cost from the start node a to b
- The heuristic (estimated) cost from B to the end node c.
- Idea: Run Dijkstra's algorithm, but use the following priority in the priority queue:
- $\operatorname{priority}(b)=\operatorname{cost}(a, b)+$ Heuristic (b, c)
- choose to explore ways with lower estimated cost

Example: Labyrinth heuristics

- A possible heuristics to search for paths in a labyrinth::
$-\mathrm{H}\left(p_{1}, p_{2}\right)=\operatorname{abs}\left(p_{1} \cdot x-p_{2} \cdot x\right)+\operatorname{abs}\left(p_{1} \cdot y-p_{2} \cdot y\right) \quad / / \mathrm{dx}+\mathrm{dy}$
- Idea: Explore the neighbors with low-value (cost + Heuristic)

6	5	4	3	4
5	4	3	2	3
4	3	2	1	2
a	2	1	c	1
4	3	2	1	2
5	4	3	2	3

Pseudocode of A^{\star}-algorithm
function $\operatorname{astar}\left(v_{1}, v_{2}\right)$:
initialize every vertex to have a cost of infinity.
set v_{1} 's cost to 0 .
pqueue : $=\left\{v_{1}\right.$, at priority $\left.\mathrm{H}\left(\mathrm{v}_{1}, v_{2}\right)\right\}$.
while pqueue is not empty:
$v:=$ dequeue vertex from pqueue with minimum priority.
mark v as visited.
if v is v_{2}, we can stop.
for each unvisited neighbor n of v :
cost $:=v$'s cost + weight of edge (v, n).
if cost < n 's cost:
set n 's cost to cost, and n 's previous to v.
enqueue n in the pqueue with priority of (cost $+\mathrm{H}\left(n, v_{2}\right)$),
or update its priority to be $\left(\operatorname{cost}+\mathrm{H}\left(n, v_{2}\right)\right)$ if it was already in the pqueue.
reconstruct path from v_{2} back to v_{1}, following previous pointers.
Notice that the nodes priorities are influenced by heuristics, but not their costs.

