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1 Directed graphs

Introduction

e In a directed graph, all edges are directed
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Characteristics

e A graph G = (V,E) where each edge has one direction:
- Edge (a,b) travels from a to b but not from b to a.

e If G is simple (no parallel edges or loops), then m < n-(n— 1), i.e. m € O(n?), where n is the number
of nodes and m is the number of edges.
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Political Blogosphere-graph
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Implication graph
if x5 is true,
then x0 is true
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Applications



directed graph node directed edge
transport intersection one-way street
WWW website hyperlink
food chain species predator-prey ratio
financial bank transaction
mobile phone personal dialed calls

23.7

Some algorithmic graph problems

Path. Is there a directed path from s to ¢?
Shortest path. What is the shortest directed path from s to #?

Strong connectivity. Is there a directed path between all pairs of nodes?

Topological sorting. Is it possible to draw the directed graph so that all edges pointing upwards?

e Transitive cover. For each nodes v and w, there is a path from v to w?

Page Rank. How important is a website?
23.8

Directed DFS

e We can adapt traversal algorithms (DFS and BFS) to directed graphs
o In the directed DFS algorithm, we get four types of edges

”discovery”-edges

backward-edges

forward-edges

intersecting edges

e A directed DFS starting in node p determines which nodes are reachable from the s
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2 Connectivity

Reachability
DES tree rooted at v: nodes reachable from v via directed paths
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Strong connection
Each node is reachable from all other nodes
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Algorithm to determine strong connections

Choose anode vin G
// Can all nodes be reached from v?Perform DFS from v in G

— If there is w which is not frequented, answer “no”

Let G’ be G with the direction of each arc reversed
// Can v be reached from all nodes?Run DFS from v in G’

— If there is w which is not frequented, answer "no”

— Otherwise, answer "yes”

e Execution time: O(n + m)
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Strongly connected components

e Maximum subgraph such that each node can reach all the other nodes in the subgraph
e Can also be performed in O(n+m) time by using DFS in several stages
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3 Transitive coverage

Transitive coverage

e Given a directed graph G, let the transitive coverage of G be a directed graph G* such that
— G* has the same nodes as G
— if G has a directed path u to v (u # v), so G* has a directed edge from u to v

e The transitive coverage gives information about the reachability in a directed graph.

23.14
Calculation of transitive coverage
e We can run DFS with a start from each node vy, ..., v,, thus O(n- (n+m))
e Alternatively, through the use of dynamic programming: Floyd-Warshall’s algorithm
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Transitive coverage with Floyd-Warshall
e Number the nodes 1,2,...,n.
o In phase k, consider only paths that use the nodes with numbers 1,2,. ..,k as internediate nodes:
Anvander bara noder numrerade 1,...,k
(lagg till bagen om den inte redan dr med)
Stig med noder
numrerade 1,...,k-1
Stig med noder
numrerade 1,...,k-1
23.16
Floyd-Warshall algorithm
e Floyd-Warshall algorithm numbers nodes in G as vy,...,v, and calculates a serie of directed graphs
Gy,...,Gp
- Gp=G
- Gy has a directed edge (v;,v;) if G has a directed path from v; to v; with intermediate nodes
from the set {vy,..., v}
o We see that G,, = G*
e In phase k, the calculated graph Gy, is outgoing from Gy_
e Run time: O(n?) if areAdjacent becomes O(1)
23.17



Floyd-Warshall algorithm

function FLOYDWARSHALL(G)
Gy G
for k < 1 ton do

Gy <+ Gy
fori< 1ton (i #k)do
for j« 1 ton (j#ik)do
if G;_|.AREADJACENT(v;, v;) then
if Gy_|.AREADJACENT (v, v;) then
if ~Gy.AREADJACENT(v;,v;) then
Gy .INSERTDIRECTEDEDGE(v;, v}, k)

return G,

Example: Floyd-Warshall

Floyd-Warshall, iteration 1
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Floyd-Warshall, iteration 2
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Floyd-Warshall, iteration 3
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Floyd-Warshall, iteration 4
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Floyd-Warshall, termination
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4 Topological sorting

Directed acyclic graphs and topological order

e A directed acyclic graph (DAG) is a directed graph that has no directed cycles

e A topological order of a graph is a total order vy, ..., v, of nodes such that each edge (v;,v;) fulfills
i<j

e Example: In a directed graph that corresponds to an instance of task scheduling, a topological order
is a sequence of data that fulfill the requirements of the order between data

Proposition 1. A directed graph can be arranged using topological order if it is a DAG



Topologisk
ordning av G

Topological sorting
Number the nodes, so that (u,v) €EE = u <v

1

En typisk studentdag

Algorithms for topological sort
procedure TOPOLOGICALSORT(G)
S < new empty stack
for all ¥ € G.VERTICES() do
let INCOUNTER (u) be the in-degree of u
if INCOUNTER () = 0 then
S.PUSH(u)
i1
while —S.ISEMPTY() do
u < S.POP()
let u gets number i in the topological order
i+—i+1
for all outgoing edge (u,w) from u do
INCOUNTER (W) <~ INCOUNTER(w) —
if INCOUNTER(w) = O then
S.PUSH(w)

Execution time: O(n+m).

Alternative algorithms for topological sort
procedure TOPOLOGICALSORT(G)
H<+G
n < G.NUMVERTICES
while H is not empty do
let v be node without outgoing edges
mark v with n

1

10

> temporary copy of G
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n<—n—1
remove v from H

Execution time: O(n+m).

Algorithms for topological sort via DFS
Simulating the algorithm using a depth first search
procedure TOPOLOGICALDFS(G)

n < G.NUMVERTICES

set all nodes and edges UNEXPLORED as in DFS
for all v € G.VERTICES() do

if GETLABEL(v) = UNEXPLORED then
TOPOLOGICALDFS(G,v)

procedure TOPOLOGICALDFS(G,v)
SETLABEL(v, VISITED)
for all ¢ € G.INCIDENTEDGES(v) do
if GETLABEL(e) = UNEXPLORED then
w <—OPPOSITE(v, ¢)
if GETLABEL(w) = UNEXPLORED then
SETLABEL (e, DISCOVERY)
TOPOLOGICALDFS(G,w)
else
e is a cross edge or forward edge
mark v with a topological number n
n<—n—1

Example: Topological sort

Example: Topological sort
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Example: Topological sort
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Example: Topological sort
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Example: Topological sort
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Example: Topological sort
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Example: Topological sort
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Example: Topological sort
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Example: Topological sort

23.40

Example: Topological sort
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5 Weighted graphs

Weighted graphs

e In a weighted graph, each arc is associated with a numerical value called the edge weight.

e Edge weights can represent distances, costs, etc.

Google maps

At Princeton g™
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Medical Center

% Princeton
University-Main Campus

Map [ Satelie Hybrid |

©2005 Google - Map data ©2005 NAVTEQ™

The flight routes of the Continental company in USA (august 2010)
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Apllications

map applications

Seam carving

Robot navigation

Texture mapping

Typesetting in TeX

Traffic in urban environments

Routing of messages in telecom.

Routing protocols for networks (OSPF, BGP, RIP)

23.45

6 Shortest paths

The problem of shortest paths

e Given a weighted graph and 2 nodes « and v we will find a path between « and v with minimal total
weight.

— The length of a path is the sum of the weights of the path edges

Example
Shortest road between Providence and Honolulu

17



Properties of shortest paths

e A subpath of a shortest path is also a shortest path
e There is a tree of shortest paths from a start node to all other nodes

Example
A tree of shortest roads from Providence

Dijkstra algorithm

The distance from one node v to a node s is the length of the shortest route between s and v
Dijkstra’s algorithm calculates the distances from a given start node p to all nodes V' in the graph
Assumptions:

the graph is connected

edges are undirected

the graph has no loops and parallel edges

the edge weights are not negative

We build a “cloud” of nodes starting at s, which ultimately cover all nodes

We mark each node v with d(v), which represents the distance between v and s in the subgraph
consisting of the cloud and the nodes that are neighbors to the cloud

In each step

— we add the node u outside the cloud having the least distance marking d(u)

— we update the labeling of nodes that are neighbors to u

Extension step

e Consider an edge ¢ = (u,z) such that
— u is the node we recently added to the cloud

— znot in the cloud

e The relaxation of edge e updates d(z) as follows:
- d(z) ¢ min{d(z),d(u)+ weight(e)}

18
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10 d(z)=75

Dijkstra pseudo-code
function dijkstra(v,, v,):
initialize every vertex to have a cost of infinity.
setv,'s costto 0.
pqueue := {v,, with priority 0}. // ordered by cost

while pqueue is not empty:
v := dequeue vertex from pgueue with minimum priority.
mark v as visited.
if vis v,, we can stop.
for each unvisited neighbor n of v:
cost := v's cost + weight of edge (v, n).
if cost < n's cost:
set n's cost to cost, and n's previous to v.
enqueue n in the pqueue with priority of cost,
or update its priority if it was already in the pqueue.

reconstruct path from v, back to v,, following previous pointers.

Example

e dijkstra(A, F);

v,'s avstand :=0.

function dijkstra(v,, v,):
v,'s cost := 0.
pqueue :={v,}. // ordered by cost

while pqueue is not empty:
v := dequeue min cost from pgqueue.
mark v as visited.

if vis v,, we can stop.
for each unvisited neighbor n of v:
cost :=V's cost + weight of edge (v, n).
if cost < n's cost:
set n's cost to cost and n's previous to v.
enqueue or update n in the pgueue.

reconstruct path from v, back tov,,
following previous pointers. oo

« | vara diagram farglagger vi en nod:
— vitom den &r outforskad

om den koats for senare behandling
— gron om den besokts (plockats ut ur kén) och behandlats

Example

19
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alla andra avstand := oo.
oo
pqueue = {A:0}
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e dijkstra(A, F);

function dijkstra(v,, v,):
v,'s cost := 0.
pqueue :={v,}. // ordered by cost

while pqueue is not empty:
v := dequeue min cost from pqueue. // A
mark v as visited.
if vis v,, we can stop.
for each unvisited neighbor n of v: // B, D
cost :=v's cost + weight of edge (v, n).
if cost < n's cost:
set n's cost to cost and n's previous to v.
enqueue or update n in the pqueue.
// B's cost =0+2, D's cost = 0+1
reconstruct path from v, back to v,,
following previous pointers. o -

pqueue = {D:1, B:2}
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Example

e dijkstra(A, F);

function dijkstra(v,, v,):
v,'s cost := 0.
pqueue :={v,}. //ordered by cost

while pqueue is not empty:
v := dequeue min cost from pqueue. // D
mark v as visited.
if vis v,, we can stop.
for each unvisited neighbornof v: //C,E, F, G
cost :=V's cost + weight of edge (v, n).
if cost < n's cost:
set n's cost to cost and n's previous to v.
enqueue or update n in the pqueue.
// C=1+2, E=1+2, F=1+8, G=1+4

reconstruct path from v, back to v,,
following previous pointers.

pqueue = {B:2, C:3, E:3, G:5, F:9}

23.53

Example
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e dijkstra(A, F);

function dijkstra(v,, v,): 0 2
v,'s cost := 0.
pqueue :={v;}. //orderedbycost A Fe————=—2

while pqueue is not empty:
v := dequeue min cost from pqueue. //B
mark v as visited.
if vis v,, we can stop. 5
for each unvisited neighbornofv: //E 7 N A== =====>p  AKE——=—=——=—
cost :=V's cost + weight of edge (v, n). // 2+10
if cost < n's cost:
set n's cost to cost and n's previous to v.
enqueue or update n in the pqueue.
// no change

reconstruct path from v, back to v,,
following previous pointers. 9 5

pqueue = {C:3, E:3, G:5, F:9}
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Example

e dijkstra(A, F);

function dijkstra(v,, v,):
v,'s cost := 0.
pqueue :={v,}. //ordered by cost

while pqueue is not empty:
v := dequeue min cost from pqueue. // C
mark v as visited.
if vis v,, we can stop. e
for each unvisited neighbor nof v: // F
cost :=V's cost + weight of edge (v, n). // 3+5
if cost < n's cost: //8<9
set n's cost to cost and n's previous to v.
enqueue or update n in the pqueue.
//F=8
reconstruct path from v, back to v,,
following previous pointers.

pqueue = {E:3, G:5, F:8}

23.55

Example
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e dijkstra(A, F);

function dijkstra(v,, v,):
v,'s cost := 0.
pqueue :={v,}. // ordered by cost

while pqueue is not empty:
v := dequeue min cost from pqueue. // E
mark v as visited.
if vis v,, we can stop. 3
for each unvisited neighbor n of v: // G
cost :=V's cost + weight of edge (v, n). //3+6
if cost<n'scost: //9>5
set n's cost to cost and n's previous to v.
enqueue or update n in the pqueue.
// no change

reconstruct path from v, back tov,,
following previous pointers.

pqueue = {G:5, F:8}
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Example

e dijkstra(A, F);

function dijkstra(v,, v,):
v,'s cost := 0.
pqueue :={v,}. //ordered by cost

while pqueue is not empty:
v := dequeue min cost from pqueue. // G
mark v as visited.
if vis v,, we can stop. 3
for each unvisited neighbor n of v: //F
cost :=V's cost + weight of edge (v, n). //5+1
if cost<n'scost: //6<8
set n's cost to cost and n's previous to v.
engueue or update n in the pqueue.
//F=6
reconstruct path from v, back to v,,
following previous pointers.

pqueue = {F:6}

23.57

Example

22



e dijkstra(A, F);

function dijkstra(v,, v,):
v,'s cost := 0.
pqueue :={v,}. // ordered by cost

while pqueue is not empty:
v := dequeue min cost from pqueue. //F
mark v as visited.
if vis v,, we can stop.
for each unvisited neighbor n of v:
cost :=V's cost + weight of edge (v, n).
if cost < n's cost:
set n's cost to cost and n's previous to v.
enqueue or update n in the pqueue.

reconstruct path from v, back to v,,
following previous pointers. 6 5

pqueue = {}

23.58

Example

e dijkstra(A, F);

function dijkstra(v,, v,):
v,'s cost := 0.
pqueue :={v,}. //ordered by cost

while pqueue is not empty:
v := dequeue min cost from pqueue.
mark v as visited.
if vis v,, we can stop. 5
for each unvisited neighbor n of v:
cost :=V's cost + weight of edge (v, n).
if cost < n's cost:
set n's cost to cost and n's previous to v.
enqueue or update n in the pqueue.

reconstruct path from v, back tov,,
following previous pointers. 6 5

// path={A, D, G, F}
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Analysis of Dijkstra algorithm

e Graph operations
— We call incidentEdges one time for each node

e Marking operations
— We retrieve/set the distance and locator for node z O(deg(z)) times
— Setting/retrieving a marking takes O(1) time

e Operations on priority queues

— Each node is inserted once and removed once from the priority queue, where each insertion and
removal takes O(logn) time

— A node key in the priority queue changes at most deg(w) times, where each key change takes
O(logn) time

e Dijkstra algorithm has execution time O((n+ m)logn) given that the graph is represented with an
adjacency list

— Remember Y, deg(v) =2m
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e The execution time can also be expressed as O(mlogn) because we assumed that the graph is con-
nected

Observations

e Dijkstra’s algorithm works by incrementally calculating the shortest route to intermediate nodes
which may be useful.

— Most of these paths are in the wrong direction.

e The algorithm does not have a general idea of the objective to be achieved; it explores outward in all
directions.

— Can we explore in smarter order?

Heuristics

e heuristics: Speculation, estimation or guess that determines how the search for a solution to a problem
goes.

— Example: Estimate the distance between two points in a Google Maps graph to the length of a
straight line between the points.

e valid heuristics: One that does not overestimate distance.

— Ok if heuristics sometimes underestimate the distance (for example Google Maps)

A*-algorithm

e A*(“A-star): A modified version of Dijkstra’s algorithm uses a heuristic function to guide the explo-
ration of the search space.

b __________________
‘ ként avstdnd a-b O- uppskattat avstand

(via heuristik)

e Suppose we are looking for routes from start node a to ¢
— Each intermediate node b has two costs:
— The name (exact) cost from the start node a to b

— The heuristic (estimated) cost from B to the end node c.

e Idea: Run Dijkstra’s algorithm, but use the following priority in the priority queue:
— priority(b) = cost(a, b) + Heuristic(b, ¢)

— choose to explore ways with lower estimated cost

24
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Example: Labyrinth heuristics

e A possible heuristics to search for paths in a labyrinth::

= H(pi, p) =abs(pi.x - pr.x) + abs(p1.y - p2.y)  //dx +dy
— Idea: Explore the neighbors with low-value (cost + Heuristic)

5 4 2 3
4 3 1 2
a 2 c 1
4 3 1 2

Pseudocode of A*-algorithm
function astar(v,, v,):
initialize every vertex to have a cost of infinity.
setv,'s cost to 0.
pqueue = {v,, at priority H(v,, v,)}.

while pqueue is not empty:
v := dequeue vertex from pqueue with minimum priority.
mark v as visited.
if vis v,, we can stop.
for each unvisited neighbor n of v:
cost :=v's cost + weight of edge (v, n).
if cost < n's cost:
set n's cost to cost, and n's previous to v.
enqueue n in the pqueue with priority of (cost + H(n, v,)),

or update its priority to be (cost + H(n, v,)) if it was already in the pqueue.

reconstruct path from v, back to v,, following previous pointers.

Notice that the nodes priorities are influenced by heuristics, but not their costs.
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