Lecture 23 Directed and weighted graphs

TDDD86: DALP

Print version of the lecture *Data structures, algorithms and programming paradigms* 2 december 2016

Jalil Boudjadar, Tommy Färnqvist. IDA, Linköping University

23.1

23.2

23.3

Content Innehåll 1 Directed graphs 1 2 Connectivity 3 3 **Transitive coverage** 5 **Topological sorting** 9 4 Weighted graphs 5 16 17 Shortest paths 6

1 Directed graphs

Introduction

• In a directed graph, all edges are directed

Characteristics

- A graph G = (V, E) where each edge has one direction:
 - Edge (a,b) travels from a to b but not from b to a.
- If G is simple (no parallel edges or loops), then $m \le n \cdot (n-1)$, i.e. $m \in O(n^2)$, where n is the number of nodes and m is the number of edges.

Political Blogosphere-graph

Implication graph

Applications

23.6

23.4

directed graph	node	directed edge			
transport	intersection	one-way street			
WWW	website	hyperlink			
food chain	species	predator-prey ratio			
financial	bank	transaction			
mobile phone	personal	dialed calls			

Some algorithmic graph problems

- Path. Is there a directed path from *s* to *t*?
- Shortest path. What is the shortest directed path from *s* to *t*?
- Strong connectivity. Is there a directed path between all pairs of nodes?
- Topological sorting. Is it possible to draw the directed graph so that all edges pointing upwards?
- Transitive cover. For each nodes *v* and *w*, there is a path from *v* to *w*?
- Page Rank. How important is a website?

Directed DFS

- We can adapt traversal algorithms (DFS and BFS) to directed graphs
- In the directed DFS algorithm, we get four types of edges
 - "discovery"-edges
 - backward-edges
 - forward-edges
 - intersecting edges
- A directed DFS starting in node p determines which nodes are reachable from the s

2 Connectivity

Reachability

DFS tree rooted at v: nodes reachable from v via directed paths

23.7

23.8

Strong connection

Each node is reachable from all other nodes

Algorithm to determine strong connections

- Choose a node v in G
- // Can all nodes be reached from v?Perform DFS from v in G
 - If there is w which is not frequented, answer "no"
- Let G' be G with the direction of each arc reversed
- // Can v be reached from all nodes? Run DFS from v in G'
 - If there is *w* which is not frequented, answer "no"
 - Otherwise, answer "yes"
- Execution time: O(n+m)

Strongly connected components

- Maximum subgraph such that each node can reach all the other nodes in the subgraph
- Can also be performed in O(n+m) time by using DFS in several stages

23.13

23.12

3 Transitive coverage

Transitive coverage

- Given a directed graph G, let the transitive coverage of G be a directed graph G^* such that
 - G^* has the same nodes as G
 - if G has a directed path u to v $(u \neq v)$, so G^* has a directed edge from u to v
- The transitive coverage gives information about the reachability in a directed graph.

Calculation of transitive coverage

- We can run DFS with a start from each node v_1, \ldots, v_n , thus $O(n \cdot (n+m))$
- Alternatively, through the use of dynamic programming: Floyd-Warshall's algorithm

Transitive coverage with Floyd-Warshall

- Number the nodes $1, 2, \ldots, n$.
- In phase k, consider only paths that use the nodes with numbers 1, 2, ..., k as internediate nodes:

Floyd-Warshall algorithm

• Floyd-Warshall algorithm numbers nodes in G as v_1, \ldots, v_n and calculates a serie of directed graphs G_0, \ldots, G_n

 $-G_0 = G$

- G_k has a directed edge (v_i, v_j) if G has a directed path from v_i to v_j with intermediate nodes from the set {v₁,...,v_k}
- We see that $G_n = G^*$
- In phase k, the calculated graph G_k is outgoing from G_{k-1}
- Run time: $O(n^3)$ if areAdjacent becomes O(1)

23.17

23.16

23.14

Floyd-Warshall algorithm

 $\begin{array}{l} \mbox{function } {\sf FLOYDWARSHALL}(G) \\ G_0 \leftarrow G \\ \mbox{for } k \leftarrow 1 \mbox{ to } n \mbox{ do } \\ G_k \leftarrow G_{k-1} \\ \mbox{for } i \leftarrow 1 \mbox{ to } n \ (i \neq k) \mbox{ do } \\ \mbox{for } j \leftarrow 1 \mbox{ to } n \ (j \neq i,k) \mbox{ do } \\ \mbox{if } G_{k-1}. {\sf AREADJACENT}(v_i,v_k) \mbox{ then } \\ \mbox{if } G_{k-1}. {\sf AREADJACENT}(v_k,v_j) \mbox{ then } \\ \mbox{if } \neg G_k. {\sf AREADJACENT}(v_i,v_j) \mbox{ then } \\ \mbox{ G}_k. {\sf INSERTDIRECTEDEDGE}(v_i,v_j,k) \end{array}$

return G_n

Example: Floyd-Warshall

Floyd-Warshall, iteration 1

23.20

23.19

Floyd-Warshall, iteration 3

Floyd-Warshall, iteration 4

Floyd-Warshall, iteration 5

Floyd-Warshall, iteration 6

Floyd-Warshall, termination

4 Topological sorting

Directed acyclic graphs and topological order

- A directed acyclic graph (DAG) is a directed graph that has no directed cycles
- A topological order of a graph is a total order v_1, \ldots, v_n of nodes such that each edge (v_i, v_j) fulfills i < j
- Example: In a directed graph that corresponds to an instance of task scheduling, a topological order is a sequence of data that fulfill the requirements of the order between data

Proposition 1. A directed graph can be arranged using topological order if it is a DAG

Topological sorting

Number the nodes, so that $(u, v) \in E \Rightarrow u < v$

Algorithms for topological sort

procedure TOPOLOGICALSORT(G) $S \leftarrow$ new empty stack for all $u \in G.VERTICES()$ do let INCOUNTER(u) be the in-degree of uif INCOUNTER(u) = 0 then S.PUSH(u) $i \leftarrow 1$ while $\neg S.ISEMPTY()$ do $u \leftarrow S.POP()$ let u gets number i in the topological order $i \leftarrow i+1$ for all outgoing edge (u,w) from u do INCOUNTER(w) \leftarrow INCOUNTER(w) -1if INCOUNTER(w) = 0 then S.PUSH(w)

Execution time: O(n+m).

Alternative algorithms for topological sort

procedure TOPOLOGICALSORT(G) $H \leftarrow G$ $n \leftarrow G.NUMVERTICES$ **while** H is not empty **do** let v be node without outgoing edges mark v with n

 \triangleright temporary copy of G

23.28

 $n \leftarrow n - 1$ remove *v* from *H*

Execution time: O(n+m).

Algorithms for topological sort via DFS

```
Simulating the algorithm using a depth first search

procedure TOPOLOGICALDFS(G)

n \leftarrow G.NUMVERTICES

set all nodes and edges UNEXPLORED as in DFS

for all v \in G.VERTICES() do

if GETLABEL(v) = UNEXPLORED then

TOPOLOGICALDFS(G, v)
```

```
procedure TOPOLOGICALDFS(G, v)
SETLABEL(v, VISITED)
for all e \in G.INCIDENTEDGES(v) do
```

```
if GETLABEL(e) = UNEXPLORED then

w \leftarrow \text{OPPOSITE}(v, e)

if GETLABEL(w) = UNEXPLORED then

SETLABEL(e, DISCOVERY)

TOPOLOGICALDFS(G, w)

else

e is a cross edge or forward edge

mark v with a topological number n
```

 $n \leftarrow n-1$

23.31

Example: Topological sort

Example: Topological sort

Example: Topological sort

23.33

Example: Topological sort

23.35

Example: Topological sort

23.37

Example: Topological sort

23.39

5 Weighted graphs

Weighted graphs

- In a weighted graph, each arc is associated with a numerical value called the edge *weight*.
- Edge weights can represent distances, costs, etc.

Google maps

The flight routes of the Continental company in USA (august 2010)

23.41

23.42

Apllications

- map applications
- Seam carving
- Robot navigation
- Texture mapping
- Typesetting in TeX
- Traffic in urban environments
- Routing of messages in telecom.
- Routing protocols for networks (OSPF, BGP, RIP)

http://en.wikipedia.org/wiki/Seam_carving

6 Shortest paths

The problem of shortest paths

- Given a weighted graph and 2 nodes *u* and *v* we will find a path between *u* and *v* with minimal total weight.
 - The length of a path is the sum of the weights of the path edges
 - *Example* Shortest road between Providence and Honolulu

23.45

Properties of shortest paths

- A subpath of a shortest path is also a shortest path
- There is a tree of shortest paths from a start node to all other nodes

Example

A tree of shortest roads from Providence

Dijkstra algorithm

- The distance from one node *v* to a node *s* is the length of the shortest route between *s* and *v*
- Dijkstra's algorithm calculates the distances from a given start node p to all nodes V in the graph
- Assumptions:
 - the graph is connected
 - edges are undirected
 - the graph has no loops and parallel edges
 - the edge weights are not negative
- We build a "cloud" of nodes starting at *s*, which ultimately cover all nodes
- We mark each node v with d(v), which represents the distance between v and s in the subgraph consisting of the cloud and the nodes that are neighbors to the cloud
- In each step
 - we add the node u outside the cloud having the least distance marking d(u)
 - we update the labeling of nodes that are neighbors to u

Extension step

- Consider an edge e = (u, z) such that
 - u is the node we recently added to the cloud
 - -z not in the cloud
- The relaxation of edge e updates d(z) as follows:

$$- d(z) \leftarrow \min\{d(z), d(u) + weight(e)\}$$

23.46

Dijkstra pseudo-code function dijkstra(v_1 , v_2): initialize every vertex to have a cost of infinity. set v_1 's cost to 0. pqueue := { v_1 , with priority 0}. // ordered by cost while pqueue is not empty: v := dequeue vertex from pqueue with minimum priority. mark v as visited. if v is v_2 , we can stop. for each unvisited neighbor n of v: cost := v's cost + weight of edge (v, n).

> if cost < n's cost: set n's cost to cost, and n's previous to v. enqueue n in the pqueue with priority of cost, or update its priority if it was already in the pqueue.

reconstruct path from v_2 back to v_1 , following previous pointers.

Example

Example

23.49

23.50

• dijkstra(A, F);

pqueue = {**D:1**, **B:2**}

Example

• dijkstra(A, F);

Example

23.53

pqueue = {C:3, E:3, G:5, F:9}

Example

dijkstra(A, F);

pqueue = {E:3, G:5, **F:8**}

Example

23.55

• dijkstra(A, F);

pqueue = {G:5, F:8}

Example

dijkstra(A, F);

Example

23.57

pqueue = {}

3

Example

following previous pointers. // path = {A, D, G, F}

Analysis of Dijkstra algorithm

- Graph operations
 - We call incidentEdges one time for each node
- Marking operations
 - We retrieve/set the distance and locator for node z O(deg(z)) times
 - Setting/retrieving a marking takes O(1) time
- Operations on priority queues
 - Each node is inserted once and removed once from the priority queue, where each insertion and removal takes $O(\log n)$ time
 - A node key in the priority queue changes at most deg(w) times, where each key change takes $O(\log n)$ time
- Dijkstra algorithm has execution time $O((n+m)\log n)$ given that the graph is represented with an adjacency list
 - Remember $\sum_{v} deg(v) = 2m$

23.59

• The execution time can also be expressed as $O(m \log n)$ because we assumed that the graph is connected

Observations

- Dijkstra's algorithm works by incrementally calculating the shortest route to intermediate nodes which may be useful.
 - Most of these paths are in the wrong direction.

			<u>5?</u>	4	5?	6?					
	6?	5?	4	3	4	5	6?				
6?	5	4	3	2	3	4	5?				
5 ?	4	3	2	1	2	3	4	5?			
4	3	2	1		1	2	3	4			
<mark>5?</mark>	4	3	2	1	2	3	4	5?			
	5?	4	3	2	3	4	5	6?			
	6?	5	4	3	4	5?	6?				
		6?	5?	4	5?						

- The algorithm does not have a general idea of the objective to be achieved; it explores outward in all directions.
 - Can we explore in smarter order?

Heuristics

- heuristics: Speculation, estimation or guess that determines how the search for a solution to a problem goes.
 - Example: Estimate the distance between two points in a Google Maps graph to the length of a straight line between the points.
- valid heuristics: One that does not overestimate distance.
 - Ok if heuristics sometimes underestimate the distance (for example Google Maps)

A*-algorithm

• A*("A-star): A modified version of Dijkstra's algorithm uses a heuristic function to guide the exploration of the search space.

- Suppose we are looking for routes from start node a to c
 - Each intermediate node *b* has two costs:
 - The name (exact) cost from the start node *a* to *b*
 - The heuristic (estimated) cost from *B* to the end node *c*.
- Idea: Run Dijkstra's algorithm, but use the following priority in the priority queue:
 - priority(b) = cost(a, b) + Heuristic(b, c)
 - choose to explore ways with lower estimated cost

23.60

23.61

Example: Labyrinth heuristics

- A possible heuristics to search for paths in a labyrinth::
 - $H(p_1, p_2) = abs(p_1.x p_2.x) + abs(p_1.y p_2.y)$ // dx + dy
 - Idea: Explore the neighbors with low-value (cost + Heuristic)

6	5	4	3	4
5	4	З	2	3
4	3	2	1	2
а	2	1	С	1
4	3	2	1	2
5	4	3	2	3

Pseudocode of A*-algorithm

function **astar**(v_1 , v_2): initialize every vertex to have a cost of infinity. set v_1 's cost to 0. *pqueue* := { v_1 , at priority $H(v_1, v_2)$ }.

```
while pqueue is not empty:
```

v := dequeue vertex from *pqueue* with minimum priority.
 mark v as visited.

if v is v_2 , we can stop.

for each unvisited neighbor *n* of *v*:

cost := v's cost + weight of edge (v, n).

if *cost < n*'s cost:

set *n*'s cost to *cost*, and *n*'s previous to *v*.

enqueue *n* in the *pqueue* with priority of $(cost + H(n, v_2))$,

or update its priority to be $(cost + H(n, v_2))$ if it was already in the *pqueue*.

reconstruct path from v_2 back to v_1 , following previous pointers.

Notice that the nodes *priorities* are influenced by heuristics, but not their costs.