
Lecture 23
Directed and weighted graphs
TDDD86: DALP

Print version of the lecture Data structures, algorithms and programming paradigms
2 december 2016

Jalil Boudjadar, Tommy Färnqvist. IDA, Linköping University

23.1

Content

Innehåll

1 Directed graphs 1

2 Connectivity 3

3 Transitive coverage 5

4 Topological sorting 9

5 Weighted graphs 16

6 Shortest paths 17 23.2

1 Directed graphs

Introduction

• In a directed graph, all edges are directed

A

C

E

B

D

23.3

Characteristics

• A graph G = (V,E) where each edge has one direction:

– Edge (a,b) travels from a to b but not from b to a.

• If G is simple (no parallel edges or loops), then m≤ n · (n−1), i.e. m ∈O(n2), where n is the number
of nodes and m is the number of edges.

1

A

C

E

B

D

23.4

Political Blogosphere-graph

The Political Blogosphere and the 2004 US Election: Divided They Blog, Adamic och Glance, 2005 23.5

Implication graph

23.6

Applications

2

directed graph node directed edge
transport intersection one-way street

www website hyperlink
food chain species predator-prey ratio
financial bank transaction

mobile phone personal dialed calls
...

23.7

Some algorithmic graph problems

• Path. Is there a directed path from s to t?
• Shortest path. What is the shortest directed path from s to t?

• Strong connectivity. Is there a directed path between all pairs of nodes?

• Topological sorting. Is it possible to draw the directed graph so that all edges pointing upwards?

• Transitive cover. For each nodes v and w, there is a path from v to w?

• Page Rank. How important is a website?
23.8

Directed DFS

• We can adapt traversal algorithms (DFS and BFS) to directed graphs
• In the directed DFS algorithm, we get four types of edges

– ”discovery”-edges

– backward-edges

– forward-edges

– intersecting edges

• A directed DFS starting in node p determines which nodes are reachable from the s

A

C

E

B

D

23.9

2 Connectivity

Reachability
DFS tree rooted at v: nodes reachable from v via directed paths

A

C

E

B

D

F
A

C

E D

A

C

E

B

D

F

23.10

3

Strong connection
Each node is reachable from all other nodes

a

d

c

b

e

f

g

23.11

Algorithm to determine strong connections

• Choose a node v in G
• // Can all nodes be reached from v?Perform DFS from v in G

– If there is w which is not frequented, answer ”no”

• Let G′ be G with the direction of each arc reversed
• // Can v be reached from all nodes?Run DFS from v in G′

– If there is w which is not frequented, answer ”no”

– Otherwise, answer ”yes”

• Execution time: O(n+m)

G:

G’:

a

d

c

b

e

f

g

a

d

c

b

e

f

g

23.12

Strongly connected components

• Maximum subgraph such that each node can reach all the other nodes in the subgraph
• Can also be performed in O(n+m) time by using DFS in several stages

{ a , c , g }

{ f , d , e , b }

a

d

c

b

e

f

g

23.13

4

3 Transitive coverage

Transitive coverage

• Given a directed graph G, let the transitive coverage of G be a directed graph G∗ such that

– G∗ has the same nodes as G

– if G has a directed path u to v (u 6= v), so G∗ has a directed edge from u to v

• The transitive coverage gives information about the reachability in a directed graph.

B

A

D

C

E

B

A

D

C

E

G

G* 23.14

Calculation of transitive coverage

• We can run DFS with a start from each node v1, . . . ,vn, thus O(n · (n+m))
• Alternatively, through the use of dynamic programming: Floyd-Warshall’s algorithm

23.15

Transitive coverage with Floyd-Warshall

• Number the nodes 1,2, . . . ,n.
• In phase k, consider only paths that use the nodes with numbers 1,2, . . . ,k as internediate nodes:

k

j

i

Stig med noder
numrerade 1,…,k-1

Stig med noder
numrerade 1,…,k-1

Använder bara noder numrerade 1,…,k
(lägg till bågen om den inte redan är med)

23.16

Floyd-Warshall algorithm

• Floyd-Warshall algorithm numbers nodes in G as v1, . . . ,vn and calculates a serie of directed graphs
G0, . . . ,Gn

– G0 = G

– Gk has a directed edge (vi,v j) if G has a directed path from vi to v j with intermediate nodes
from the set {v1, . . . ,vk}

• We see that Gn = G∗

• In phase k, the calculated graph Gk is outgoing from Gk−1
• Run time: O(n3) if areAdjacent becomes O(1)

23.17

5

Floyd-Warshall algorithm
function FLOYDWARSHALL(G)

G0← G
for k← 1 to n do

Gk← Gk−1
for i← 1 to n (i 6= k) do

for j← 1 to n (j 6= i,k) do
if Gk−1.AREADJACENT(vi,vk) then

if Gk−1.AREADJACENT(vk,v j) then
if ¬Gk.AREADJACENT(vi,v j) then

Gk.INSERTDIRECTEDEDGE(vi,v j,k)

return Gn 23.18

Example: Floyd-Warshall

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v
2

v
1

v
3

v
4

v
5

v
6

v7

23.19

Floyd-Warshall, iteration 1

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v
2

v
1

v
3

v
4

v
5

v
6

v7

23.20

6

Floyd-Warshall, iteration 2

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v
2

v
1

v
3

v
4

v
5

v
6

v7

23.21

Floyd-Warshall, iteration 3

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v
2

v
1

v
3

v
4

v
5

v
6

v7

23.22

Floyd-Warshall, iteration 4

7

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v
2

v
1

v
3

v
4

v
5

v
6

v7

23.23

Floyd-Warshall, iteration 5

JFK

MIA

ORD

LAX
DFW

SFO

v
2

v
1

v
3

v
4

v
5

v
6

v7

BOS

23.24

Floyd-Warshall, iteration 6

8

JFK

MIA

ORD

LAX
DFW

SFO

v
2

v
1

v
3

v
4

v
5

v
6

v7

BOS

23.25

Floyd-Warshall, termination

JFK

MIA

ORD

LAX
DFW

SFO

v
2

v
1

v
3

v
4

v
5

v
6

v7

BOS

23.26

4 Topological sorting

Directed acyclic graphs and topological order

• A directed acyclic graph (DAG) is a directed graph that has no directed cycles
• A topological order of a graph is a total order v1, . . . ,vn of nodes such that each edge (vi,v j) fulfills

i < j
• Example: In a directed graph that corresponds to an instance of task scheduling, a topological order

is a sequence of data that fulfill the requirements of the order between data

Proposition 1. A directed graph can be arranged using topological order if it is a DAG

9

B

A

D

C

E

DAG G

B

A

D

C

E

Topologisk
ordning av G

v1

v2

v3

v4 v5

23.27

Topological sorting
Number the nodes, so that (u,v) ∈ E⇒ u < v

skriva datorprogram

spela

vakna

äta

sova

plugga DALG

mer DALG

träna

sova

drömma om grafer

1

2 3

4 5

6

7

8

9

10
11

baka kakor
till läraren

En typisk studentdag

23.28

Algorithms for topological sort
procedure TOPOLOGICALSORT(G)

S← new empty stack
for all u ∈ G.VERTICES() do

let INCOUNTER(u) be the in-degree of u
if INCOUNTER(u) = 0 then

S.PUSH(u)
i← 1
while ¬S.ISEMPTY() do

u← S.POP()
let u gets number i in the topological order
i← i+1
for all outgoing edge (u,w) from u do

INCOUNTER(w)← INCOUNTER(w)−1
if INCOUNTER(w) = 0 then

S.PUSH(w)

Execution time: O(n+m). 23.29

Alternative algorithms for topological sort
procedure TOPOLOGICALSORT(G)

H← G . temporary copy of G
n← G.NUMVERTICES

while H is not empty do
let v be node without outgoing edges
mark v with n

10

n← n−1
remove v from H

Execution time: O(n+m). 23.30

Algorithms for topological sort via DFS
Simulating the algorithm using a depth first search

procedure TOPOLOGICALDFS(G)
n← G.NUMVERTICES

set all nodes and edges UNEXPLORED as in DFS
for all v ∈ G.VERTICES() do

if GETLABEL(v) =UNEXPLORED then
TOPOLOGICALDFS(G,v)

procedure TOPOLOGICALDFS(G,v)
SETLABEL(v,V ISIT ED)
for all e ∈ G.INCIDENTEDGES(v) do

if GETLABEL(e) =UNEXPLORED then
w←OPPOSITE(v,e)
if GETLABEL(w) =UNEXPLORED then

SETLABEL(e,DISCOV ERY)
TOPOLOGICALDFS(G,w)

else
e is a cross edge or forward edge

mark v with a topological number n
n← n−1 23.31

Example: Topological sort

23.32

Example: Topological sort

11

9

23.33

Example: Topological sort

8

9

23.34

Example: Topological sort

12

7
8

9

23.35

Example: Topological sort

7
8

6

9

23.36

Example: Topological sort

13

7
8

56

9

23.37

Example: Topological sort

7

4

8

56

9

23.38

Example: Topological sort

14

7

4

8

56

3

9

23.39

Example: Topological sort

2

7

4

8

56

3

9

23.40

Example: Topological sort

15

2

7

4

8

56

1

3

9

23.41

5 Weighted graphs

Weighted graphs

• In a weighted graph, each arc is associated with a numerical value called the edge weight.
• Edge weights can represent distances, costs, etc.

23.42

Google maps

23.43

The flight routes of the Continental company in USA (august 2010)

16

23.44

Apllications

• map applications
• Seam carving
• Robot navigation
• Texture mapping
• Typesetting in TeX
• Traffic in urban environments
• Routing of messages in telecom.
• Routing protocols for networks (OSPF, BGP, RIP)

23.45

6 Shortest paths

The problem of shortest paths

• Given a weighted graph and 2 nodes u and v we will find a path between u and v with minimal total
weight.

– The length of a path is the sum of the weights of the path edges

Example
Shortest road between Providence and Honolulu

17

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

23.46

Properties of shortest paths

• A subpath of a shortest path is also a shortest path
• There is a tree of shortest paths from a start node to all other nodes

Example
A tree of shortest roads from Providence

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

23.47

Dijkstra algorithm

• The distance from one node v to a node s is the length of the shortest route between s and v
• Dijkstra’s algorithm calculates the distances from a given start node p to all nodes V in the graph
• Assumptions:

– the graph is connected

– edges are undirected

– the graph has no loops and parallel edges

– the edge weights are not negative

• We build a “cloud” of nodes starting at s, which ultimately cover all nodes
• We mark each node v with d(v), which represents the distance between v and s in the subgraph

consisting of the cloud and the nodes that are neighbors to the cloud
• In each step

– we add the node u outside the cloud having the least distance marking d(u)

– we update the labeling of nodes that are neighbors to u
23.48

Extension step

• Consider an edge e = (u,z) such that

– u is the node we recently added to the cloud

– z not in the cloud

• The relaxation of edge e updates d(z) as follows:

– d(z)←min{d(z),d(u)+weight(e)}

18

d(z) 75
d(u) 50

zs
u

d(z) 60
d(u) 50

zs
u

e

e

23.49

Dijkstra pseudo-code

23.50

Example

23.51

Example

19

23.52

Example

23.53

Example

20

23.54

Example

23.55

Example

21

23.56

Example

23.57

Example

22

23.58

Example

23.59

Analysis of Dijkstra algorithm

• Graph operations

– We call incidentEdges one time for each node

• Marking operations

– We retrieve/set the distance and locator for node z O(deg(z)) times

– Setting/retrieving a marking takes O(1) time

• Operations on priority queues

– Each node is inserted once and removed once from the priority queue, where each insertion and
removal takes O(logn) time

– A node key in the priority queue changes at most deg(w) times, where each key change takes
O(logn) time

• Dijkstra algorithm has execution time O((n+m) logn) given that the graph is represented with an
adjacency list

– Remember ∑v deg(v) = 2m

23

• The execution time can also be expressed as O(m logn) because we assumed that the graph is con-
nected

23.60

Observations

• Dijkstra’s algorithm works by incrementally calculating the shortest route to intermediate nodes
which may be useful.

– Most of these paths are in the wrong direction.

• The algorithm does not have a general idea of the objective to be achieved; it explores outward in all
directions.

– Can we explore in smarter order?
23.61

Heuristics

• heuristics: Speculation, estimation or guess that determines how the search for a solution to a problem
goes.

– Example: Estimate the distance between two points in a Google Maps graph to the length of a
straight line between the points.

• valid heuristics: One that does not overestimate distance.

– Ok if heuristics sometimes underestimate the distance (for example Google Maps)
23.62

A?-algorithm

• A?(“A-star): A modified version of Dijkstra’s algorithm uses a heuristic function to guide the explo-
ration of the search space.

• Suppose we are looking for routes from start node a to c

– Each intermediate node b has two costs:

– The name (exact) cost from the start node a to b

– The heuristic (estimated) cost from B to the end node c.

• Idea: Run Dijkstra’s algorithm, but use the following priority in the priority queue:

– priority(b) = cost(a, b) + Heuristic(b, c)

– choose to explore ways with lower estimated cost
23.63

24

Example: Labyrinth heuristics

• A possible heuristics to search for paths in a labyrinth::

– H(p1, p2) = abs(p1.x - p2.x) + abs(p1.y - p2.y) // dx + dy

– Idea: Explore the neighbors with low-value (cost + Heuristic)

23.64

Pseudocode of A?-algorithm

Notice that the nodes priorities are influenced by heuristics, but not their costs. 23.65

25

	Directed graphs
	Connectivity
	Transitive coverage
	Topological sorting
	Weighted graphs
	Shortest paths

