
Lecture 22
Graphs and graph search
TDDD86: DALP

Print version of the lecture Data structures, algorithms and programming paradigms
26 November 2016

Jalil Boudjadar, Tommy Färnqvist. IDA, Linköping University

22.1

Content

Innehåll

1 Graphs 1
1.1 Introduction . 1
1.2 ADT graph . 5
1.3 Data structures . 6

2 Search in undirected graphs 7
2.1 DFS . 7
2.2 BFS . 12
2.3 DFS vs BFS . 15 22.2

1 Graphs

1.1 Introduction

Definition

• A graph is a pair (V,E), where

– V is a set of nodes (or vertices)

– E is a set of pairs of nodes called arcs (or edges)

– Nodes and arcs are positions and can store elements

22.3

Arc types

• Directed edge

– ordered pair of nodes (u,v)

– u is the start node, v is the destination node

• Undirected edge

– unordered pair of nodes {u,v}

1

• In a directed graph, all arcs are directed
• In an undirected graph, all arcs are undirected

ORD PVD
flight

AA 1206

ORD PVD
849

miles 22.4

Why we need to study graph algorithms?

• Thousands of practical applications
• Hundreds known graphing algorithms
• Interestingly abstraction with great applicability
• Branch of computer science and discrete mathematics with many challenges

22.5

Protein-protein interaction network

Jeong et al, Nature Review | Genetics 22.6

Internet charted by the Opte project

Opte Project 22.7

2

Scientific stream

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0004803 22.8

10 milions Facebook-friends

“Visualizing Friendship” av Paul Butler

22.9

A week’s email within Enron

3

22.10

Applications

graph node edge
communication phones, computers fiber optic cable

circuit gates, registers, processor clutch
Financial Stock, currency transaction
transport street intersection, airport road, air route
Internet networks connection

social networking persons, actors friendship, relationship
neural network neuron synapse

chemical composition molecular binding
22.11

Terminology

• An edge has endpoints (a has ends U and V)
• Edges ending in a node n are said to be incident (a, d and b are incidents to V)
• Nodes can be adjacent (U and V are adjacent)
• Each node has a degree (X has degree 5)
• Parallel edges (h and i are parallel edges)
• Loops (j is a loop)

XU

V

W

Z

Y

a

c

b

e
d

f
g

h

i

j

Sv. ändpunkter, incidenta, grannar, grad, parallella, öglor 22.12

More terminology

• En cycle is a circular sequence of alternating nodes and edges. Each edge is preceded and followed
by its endpoints.

• En simple cycle is a cycle such that all of its nodes and arcs are distinct.
• C1 = (V,b,X ,g,Y, f ,W,c,U,a,V) is a simple cycle.
• C2 = (U,c,W,e,X ,g,Y, f ,W,d,V,a,U) is not a simple cycle.

4

C1

XU

V

W

Z

Y

a

c

b

e

d

f

g

hC2

22.13

Characteristics

property 1
∑v deg(v) = 2m Proof: Each arc counted twice

property 2
In an undirected graph without loops and parallel arcs, m ≤ n(n− 1)/2 Proof: each node has max degree
(n−1)

Notation

• n the number of nodes
• m the number of arcs
• deg(v) is the degree of node v

 Exempel
 n = 4
 m = 6
 deg(v) = 3

22.14

Some algorithmic graph problems

• path. is there a path between s and t?
• shortest route. what is the shortest path between s and t?

• Cycle. is there a cycle in the graph?
• Eulertour. Is there a cycle that uses each arc exactly one time?
• Hamiltoncykel. Is there a cycle that uses each node exactly one time?

• Connectivity. Is there a connection between all nodes?
• MST. What is the best way to bind all nodes together? (Minimum Spanning Tree)
• Bi-connectivity. Is there a node that makes the graph not linked if it is removed?

• Planarity. Is it possible to draw the graph without any arcs intersect?
• Graph-isomorphism. Are two graphs identical apart from the names of the nodes?

Challenge. Which of the above problems is simple? Difficult? Impossible to solve effectively? 22.15

1.2 ADT graph

Main methods of undirected graphs

• Nodes and arcs

– are positions

– store elements

• access methods

– endVertices(e): an array with the 2 endpoints of e

– opposite(v,e): the opposite node v along e

– areAdjacent(v,w): true iff v and w are adjacent

– replace(v,x): replaces the element in node v with x

– replace(e,x): replaces the element in edge e with x
22.16

5

Main methods of undirected graphs

• Update methods

– insertVertex(o): inserts a node that stores the element o

– insertEdge(v,w,o): insert an edge (v,w) that storers the element o

– removeVertex(v): removes node nod v (and its incident edges)

– removeEdge(e): removes edge e

• Iterator methods

– incidentEdges(v): the edges incident to v

– vertices(): all nodes in the graph

– edges(): all edges in the graph
22.17

1.3 Data structures

Edge lists

• A sequence of nodes is a sequence of positions for the node objects
• A sequence of edges is a sequence of positions for the edge objects
• Node objects store elements and references to positions in the sequence of nodes
• Edge objects store elements, object for startnode, object for endnode and reference to position in the

sequence of edges

a

v

u

w

a c

b
z

d

u v w z

b c d

22.18

Adjacency list

• Add extra structure to edge list
• Each node has a sequence of its incident arcs with reference to the arc objects of incident edges
• Arc object extended with references to the associated positions in the incidence sequence of its end-

points

u

v

w

a b

a

u v w

b

22.19

6

Adjacency matrix

• Add extra structure to the edge list
• Node objects are extended with integer keys (index) associated with the nodes
• 2-dimensions adjacency array

– Reference to edge objects for nodes that are adjacent

– null for nodes that are not adjacent

u

v

w

a b

2

1

0

 2 1 0

∅ ∅

 ∅

∅ ∅

a

u v w 0 1 2

b

22.20

Asymptotic performance

22.21

2 Search in undirected graphs

2.1 DFS

Subgraphs

• A subgraph S of a graf G is a graph such that

– Nodes in S are a subset of nodes in G

– Edges in S are a subset of edges in G

• A spanning subgraf of G is a subgraph that contains all nodes of G

7

Delgraf

Spännande delgraf

Sv. delgraf, spännande delgraf 22.22

Connectivity

• A graph is connected if there is a path between each pair of nodes
• A connected component in a graph G is a maximal connected subgraph of G

Sammanhängande graf

Ej sammanhängande graf med två
sammanhängande komponenter 22.23

Connected components

22.24

8

Trees and forests
• A (free) tree is an undirected graph T such that

– T is connected
– T does not contain cycles
– This definition of the tree is different from the rooted tree

• A forest is an undirected graph without cycles
• The connected components in a forest are trees

Träd

Skog

22.25

Spanning trees and forests
• A spanning tree of a connected graph is an spanning subgraph which is a tree
• A spanning tree is not unique if the original graph is a tree
• Spanning trees have applications in the design of communication networks
• A spanning forest of a graph is a spanning subgraph which is a forest

Graf

Spännande träd 22.26

Depth first search
• Depth first search (DFS) is a general technique for traversing a graph. DFS visits the child vertices

before visiting the sibling vertices; that is, it traverses the depth of any particular path before exploring
its breadth

• DFS in a graph G

– visits all nodes and arcs G

– Determines if G is connected
– Calculates the number of connected components in G

– Calculates a spanning forest to G

• DFS on a graph with n nodes and m edges takes O(n+m) time
• DFS can be extended to solve other graph problems

– Find and describe a path between two given nodes in a graph
– Find a cycle in a graph

22.27

9

Algorithms for DFS
procedure DFS(G)

for all u ∈ G.VERTICES() do
SETLABEL(u,UNEXPLORED)

for all e ∈ G.EDGES() do
SETLABEL(e,UNEXPLORED)

for all v ∈ G.VERTICES() do
if GETLABEL(v) =UNEXPLORED then

DFS(G,v)

procedure DFS(G,v)
SETLABEL(v,V ISIT ED)
for all e ∈ G.INCIDENTEDGES(v) do

if GETLABEL(e) =UNEXPLORED then
w←OPPOSITE(v,e)
if GETLABEL(w) =UNEXPLORED then

SETLABEL(e,DISCOV ERY)
DFS(G,w)

else
SETLABEL(e,BACK)

22.28

Example

DB

A

C

E

DB

A

C

E

DB

A

C

E

''discovery''-båge
båge till förfader

A besökt nod

A outforskad nod

outforskad båge

22.29

Example

10

DB

A

C

E

DB

A

C

E

DB

A

C

E

DB

A

C

E

22.30

DFS and labyrinth exploration

• The algorithm for DFS resembles a classic strategy for exploring labyrinths

– We mark every intersection, corners and dead end (node) we visit

– We mark every corridor (edge) we go through

– We keep track of the way back to the entrance (start node) using a recursion stack

22.31

Characteristics

Property 1
DFS(G,v) visits all nodes and edges in the connected portion of G which v is included in

Property 2
”discovery”-edges DFS(G,v) constitutes a spanning tree to the connected component of G which v is inclu-
ded in

DB

A

C

E

22.32

Analysis of DFS

• Mark/retrieve the marking of a node/edge takes O(1) time
• Each node is marked twice

– one time as UNEXPLORED

– one time as VISITED

• Each edge is marked twice

11

– one time as UNEXPLORED

– one time as DISCOVERY or BACK

• Method incidentEdges is called once for each node
• DFS runs in time O(n+m) given that the graph is represented by a adjacency list

– Remember ∑v deg(v) = 2m
22.33

Find paths

• We can specialize the DFS-algorithm to find a path between 2 given nodes v and z
• We call DFS(G,v) with v as the start node
• We use a stack S to keep track of the way from the start node to the current node
• As soon as we encounter the target node z, we will return the contents of the stack as the target path

procedure PATHDFS(G,v,z)
SETLABEL(v,V ISIT ED)
S.PUSH(v)
if v = z then

print the element in S
return

for all e ∈ G.INCIDENTEDGES(v) do
if GETLABEL(e) =UNEXPLORED then

w←OPPOSITE(v,e)
if GETLABEL(w) =UNEXPLORED then

SETLABEL(e,DISCOV ERY)
S.PUSH(e)
PATHDFS(G,w,z)
S.POP() // e

else
SETLABEL(e,BACK)

S.POP() // v
22.34

Find cycles

• We can specialize the DFS-algorithm to find a cycle
• We use a stack S to keep track of the way from the start node to the actual node
• As soon as we encounter an edge (v,w) that leads to an ancestor we return the cycle contained in the

stack from the top to the node w

procedure CYCLEDFS(G,v,z)
SETLABEL(v,V ISIT ED)
S.PUSH(v)
for all e ∈ G.INCIDENTEDGES(v) do

if GETLABEL(e) =UNEXPLORED then
w←OPPOSITE(v,e)
S.PUSH(e)
if GETLABEL(w) =UNEXPLORED then

SETLABEL(e,DISCOV ERY)
CYCLEDFS(G,w)
S.POP() // e

else // find cycle
repeat

o← S.POP()
print o

until o = w
return

S.POP() // v
22.35

2.2 BFS

Breadth First Search

• Breadth First Search (BFS) is a general technique to traverse a graph. BFS visits the neighbor vertices
before visiting the child vertices.

• BFS on a graph G

12

– visits all nodes and edges in G

– determines if G is connected

– calculates the number of connected components in G

– calculates a spanning forest of G

• BFS on a graph with n nodes and m edges takes O(n+m) time
• BFS can be extended to solve other graph problems

– Find and describe the shortest path between two given nodes in a graph

– Find a simple cycle in a graph, if there is one

22.36

Algorithm for BFS
procedure BFS(G)

mark all nodes/edges with UNEXPLORED as in DFS
for all v ∈ G.VERTICES() do

if GETLABEL(v) =UNEXPLORED then BFS(G,v)

procedure BFS(G,s)
L0← ny tom sekvens; L0.INSERTLAST(s); SETLABEL(s,V ISIT ED); i← 0
while ¬Li.ISEMPTY() do

Li+1← ny tom sekvens
for all v ∈ Li.ELEMENTS() do

for all e ∈ G.INCIDENTEDGES(v) do
if GETLABEL(e) =UNEXPLORED then

w←OPPOSITE(v,e)
if GETLABEL(w) =UNEXPLORED then

SETLABEL(e,DISCOV ERY)
SETLABEL(w,V ISIT ED)
Li+1.INSERTLAST(w)

else
SETLABEL(e,CROSS)

i← i+1 22.37

Example

''discovery''-båge

korsande båge

A besökt nod

A outforskad nod

outforskad båge

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F
22.38

Example

13

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

22.39

Characteristics
Let Gs denote the connected portion of G as s is included in

Property 1
BFS(G,s) visits all nodes and edges in Gs

Property 2
”discovery”-edges BFS(G,s) mark up represents a spanning tree Ts of Gs

Property 3
For each node v in Li

• A path in Ts from s to v has i edges
• Each path from s to v in Gs has at least i edges

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

22.40

Analysis of BFS
• Mark/retrieve the marking of a node/edge takes O(1) time
• Each node will be marked twice

– one time as UNEXPLORED
– one time as VISITED

• Each edge will be marked twice

– one time as UNEXPLORED
– one time as DISCOVERY or CROSS

• Each node is inserted once in a sequence Li
• Method incidentEdges is called one time for each node
• BFS runs in time O(n+m) given that the graph is represented with an adjacency list

– Rememeber ∑v deg(v) = 2m
22.41

14

2.3 DFS vs BFS

Applications

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

Tillämpningar DFS BFS

Spännande träd, samman-
hängande komponenter,

stigar, cykler

√ √

Kortaste stigar √
2-sammanhängande

komponenter
√

22.42

Edges leading to already visited nodes
edge to the ancestor

• w is an ancestor of v in the tree of ”discovery”-edges

CB

A

E

D

F

DFS shortest paths

• w is at the same level as v or in the next level in the tree of ”discovery”-edges

CB

A

E

D

L0

L1

F
L2

BFS 22.43

15

	Graphs
	Introduction
	ADT graph
	Data structures

	Search in undirected graphs
	DFS
	BFS
	DFS vs BFS

