Lecture 21

Heap-sort, merge-sort. Lower limits
for sorting. Sorting in linear time?

TDDD86: DALP

Print version of the lecture Data structures, algorithms and programming paradigms
25 november 2016

Jalil Boudjadar, Tommy Féarnqvist. IDA, Linkdping University

Content
Innehall

T Heap-sorf]
1.2 Merge—sorﬂ ...

[2° A lower limit for the comparison based sorting|

|3 Sorting in linear time?|
[3.1 Counting-sort] e

1 Sorting

1.1 Heap-sort
Sorting with priority queues
e Use a priority queue to sort a collection of comparable elements

— Insert an element with a serie of insertion operations

— Remove the elements in sorted order with a series of operations removeMin

e The runtime depends on the implementation of the priority queue:
— Unsorted sequences give a selection sort and O(n?) time

— Sorted sequences give insertion sorting and O(nz) time

procedure PQSORT(S)

P <+ empty priority queue

while —S.ISEMPTY() do
e < S.REMOVE(S.FIRST())
P.INSERT(e)

while =P.ISEMPTY() do
e <+ PREMOVEMIN()
S.INSERTLAST(e)

21.1

21.2

The height of a heap
Proposition 1. The height of a heap storing n keys is O(logn)

Bevis. We use a heap as a complete binary tree.

e et & be the height of a heap storing n keys

e Since there are 2 keys at depth i = 0,.../ — 1 and at least one key in depth i we get n > 14+2+4+
2

e Thusn > 2" e h <logyn

djup nycklar

I
1 2 e

S
L

Insertion in a heap
e The method insert in an ADT priority queue corresponds to the insertion of key & in the heap
e The insertion algorithm consists of three steps
— Find the place to insert z (the new last leaf)
— Store kin z

— Reset the heap property

.

nytt sista 16v

Upheap

e After inserting a new key k, it is not certain that the heap property is still fulfilled

e The method upheap restores the heap property by swapping k along the upward path from the inserted
node

e upheap terminates when the key k reaches the root or a node whose parent has a key that is not greater
than k

e Since the height of a heap is O(logn), upheap runs in O(logn) time

-

21.3

214

21.5

21.6

Removal from a heap

e Method removeMin consists in removing the root key from the heap
e Removal algorithm consists of three steps

— Replace the root key with the key in the last leaf w
— remove w

— Reset the heap property

w

N\

sista lovet

nytt sista IOv 217

Downheap

o After replacement of the root key with key & from the last leaf, it is not certain that the heap property
is still fulfilled

e Method downheap restores the heap property by swapping k along the downward path of the insertion
node

e downheap terminates when the key k reaches a leaf or a node whose children have keys that are not
less than k

e Since the height of a heap is O(logn), downheap runs in time O(logn)

21.8

Heap-sort

e Consider a priority queue with n elements implemented in terms of a heap
— memory utilization is O(n)
— insert and removeMin run in O(logn) time

— size, isEmpty and min run in O(1) time

e Upon the utilization of heap-based priority queue we can sort a sequence of n elements in O(nlogn)
time
e The resulting algorithm is called heap-sort

e Heap-sort is much faster than quadratic sorting algorithms
21.9

Combine 2 heaps

e Given 2 heaps and a key k
e Create a new heap where the root node stores the key k, and the two given heaps as subtrees
e Run downheap to reset the heap property

o o e

o M

21.10

Example: construction of a heap bottom-upp

3 B o »
@ ® ®© ®© & ©®© @ °o

— - ~ — ~~

- - ~< /// ~~

Example: construction of a heap bottom-upp

of

Example: construction of a heap bottom-upp

Analysis

e We visualize the worst case time for a call to downheap with a path that first goes to the right, and
then repeatedly go left to the bottom of the heap

e Since each node is traversed by at most two such paths, the total number of paths is O(n)

e Thus, the time to construct a heap bottom-upp is O(n)

e This construction method is faster than the n repeated deposits and makes the first phase of heap-sort
more efficient

1.2 Merge-sort
Divide and conquer

e Merge-sort is a sort algorithm based on divide and conquer
e Like the heap-sort

21.13

21.14

21.15

— the execution time is O(nlogn)
o different heap-sort
— does not use priority queues to help

— access the data in a sequential manner (suitable to sort the data on disk)
21.16

Merge-sort
Merge-sort on an input sequence S having n elements is performed in 3 steps:

e Divide: split S into 2 sequences S; and S, each with n/2 elements
e Conquer: sort S; and S, recursively
e Combine: merge S| and S; in a unique sorted sequence

procedure MERGESORT(S)
if S.S1ZE() > 1 then
(S1,82) <—PARTITION(S.SIZE()/2)
MERGESORT(S])
MERGESORT(S>)

S <+~MERGE(S],53) 2117

Merge two sorted sequences

e Merge 2 sequences A and B to form a seuqnce S containing the union of elements in A and B
e Merging 2 sorted sequences, each with n/2 elements, implemented with double linked lists takes
O(n) time

function MERGE(A, B)
S <+ empty sequence
while —A.ISEMPTY () A ~B.ISEMPTY() do
if A.FIRST.ELEMENT() < B.FIRST.ELEMENT() then
S.INSERTLAST(A.REMOVE(A.FIRST()))
else
S.INSERTLAST(B.REMOVE(B.FIRST()))

while —A.ISEMPTY() do
S.INSERTLAST(A.REMOVE(A.FIRST()))

while —B.ISEMPTY() do
S.INSERTLAST(B.REMOVE(B.FIRST()))

return S 21.18

Merge-sort tree

e The execution of merge-sort can be visualized as a binary tree
— Each node represents a recursive call to merge-sort and stores

* unsorted sequence before the execution and its partition
* Sorted sequence after the execution

— The root is the origin of the call

— The leaves are calls on partial sequences of size 0 or 1

(7-7) [2-2] |o~9] [4-4

21.19

Example: Execution of merge-sort

e Partitioning

21.20
Example: Execution of merge-sort
e Recursive call, partitioning
21.21
Example: Execution of merge-sort
e Recursive call, partitioning
21.22

Example: Execution of merge-sort

e Recursive call, base case

¥

21.23

Example: Execution of merge-sort

e Recursive call, base case

:E\-Ez B

Example: Execution of merge-sort

e Merging

21.25

Example: Execution of merge-sort

e Recursive call, ..., base case

7

21.26
Example: Execution of merge-sort
e merging
21.27
Example: Execution of merge-sort
e Recursive call, ..., merging, merging
21.28

Example: Execution of merge-sort

e merging

(757][252] [9-9][454] [3-3](e>8] |656](151]

21.29
2 A lower limit for the comparison based sorting
comparison based sorting
e Many sorting algorithms are comparison-based
— They sort through comparisons between pairs of objects
— Example: insertion-sort, selection-sort, heap-sort, merge-sort, quick-sort, ...
o Let us therefore try to derive a lower limit for the execution time in the worst case for each algorithm
using the comparison to sort n elements x,x3,...,X,
nej
21.30
Calculating comparisons
e Let’s just count comparisons
e Every possible execution of an algorithm is represented by a root-to-leaf path in a decision tree
[]
L]
L]
21.31

10

Example: Decision tree

Sort X, x,, ..., X[

Each internal node is marked i : j for i, j € {1,2,...,n}
e The left subtree shows subsequent comparisons if x; < x;
o The right subtree shows subsequent comparisons if x; > x;

Example: Decision tree

Sort [X,, x,, X,
=[9,4,6 [

Each internal node is marked i : j fori,j € {1,2,...,n}
e The left subtree shows subsequent comparisons if x; < x;
e The right subtree shows subsequent comparisons if x; > x;

Example: Decision tree

Sort [X,, x,, X,
=[9,4,6 0

Each internal node is marked i : j for i, j € {1,2,...,n}
o The left subtree shows subsequent comparisons if x; < x;
e The right subtree shows subsequent comparisons if x; > x;

Example: Decision tree

Sort X, x,, x;[]
=[9,4,6 0

11

21.32

21.33

21.34

Each internal node is marked i : j fori,j € {1,2,...,n}

e The left subtree shows subsequent comparisons if x; < x;
e The right subtree shows subsequent comparisons if x; > x;

Example: Decision tree

Sort [X,, x,, x,[]
=[9, 4,6 []

IN
IN

Each leaf contains a permutation (7(i), 7(2),...,7(n)) to indicate that the order xz(1) < xz(2)
Xz(n) has been established

Decision tree model
A decision tree can model the execution of the comparison-based sorting algorithms:

A tree for each size of the input data

Consider the algorithm execution to be shared whenever two elements are compared
The tree contains all comparisons along all the possible consequences of instructions
The running time of the algorithm = the length of the path traversed

The running time in the worst case = the height of the tree

The height of a decision tree

e The height of the decision tree is a lower limit on the execution time in the worst case
e Every possible permutation of the input should lead to a separate output leaf
e Since there isn! = 1-2-...-n leaves, the height of a tree is at least log(n!)

3 Sorting in linear time?

3.1 Counting-sort

Counting sort
Require: A[l,...,n], where A[j] € {1,2,...,k}
function COUNTINGSORT(A)
Array to count : C[1,...,k]
Array to store the result: Res[1,...,n]
for i < 1 to k do
Cli]«+0
for j + 1tondo
ClAlj]] < ClAlll+1 > Cli] = [{nyckel = i}|
for i < 2 to k do
Cli| + Cli]+Cli—1] > C[i] = |[{nyckel < i}|
for j <— n downto i do
Res[C[A[j]]] < A[J]
ClAl]] < clAlll -1
return Res

12

21.35

21.36

21.37

21.38

21.39

Example

Counting-sort

Res: |

21.40

Example

Res: |

fori — 1tokdo
Cli] « 0

21.41

Example

13

Res: I

for; — [tondo
CTA[/1] < ClA[/]]1 + 1 = C[i] = |{nyckel = i}|

21.42

Example
Loop 2
1 2 4 5 1 2 3 4
A: 141113143 C:| 17001

Res: I

for; — [tondo
ClA[/1] < CA[j11+ 1 = Cli] = [{inyckel = i}

21.43

Example

14

Res: I

for; — [tondo
CTA[/1] < ClA[/]]1 + 1 = C[i] = |{nyckel = i}|

21.44

Example
Loop 2
1 2 4 5 1 2 3 4
A 141113143 C:|1]0]1]|2

Res: I

for; — [tondo
ClA[/1] < CA[j11+ 1 = Cli] = [{inyckel = i}

21.45

Example

15

Res: I

for; — [tondo
CTA[/1] < ClA[/]]1 + 1 = C[i] = |{nyckel = i}|

21.46

Example

Loop 3
1 2 4 5 1 2 3 4
A |4 1]3]4]3 C:|1]0]2]2

Res: I C-11|11]2]2

fori — 2to kdo
Cli] « C[i] + C[i-1] = C[i] = |{nyckel < i}

21.47

Example

16

fori — 2to kdo
Cli] « C[i] + C[i-1] = C[i] = |{nyckel < i}

21.48

Example
Loop 3
1 2 4 5 1 2 3 4
A: 141|314 |3 C:11]10]2 /|2

fori — 2to kdo
Cli] « C[i] + C[i-1] = C[i] = |{nyckel < i}

21.49

Example

17

Res: 3 | C-|1 1|25

for ; — n downto Ido
Res[C[A[j]]] < AlJ]
ClA[j]] < ClA[]]1 -1

__ 2150

Example

Loop 4
12 4 5 2 3
A |41 |3]4]3 C:l1]1|2]5

Res: 3 4I C-|1]1]2]4

for ; — n downto ldo
Res[C[A[j]]] < A[/]
ClA[j]] < ClA[]]1 -1

_ 251

Example

18

12 4 5 P2 3 4
A:l4l1]3]4]3 cli]1]2]4
Res: 313 4 C-|1]1]1]4

for ; — n downto Ido
Res[C[A[j]]] < AlJ]
ClA[j]] < ClA[]]1 -1

_ 22

Example

Loop 4

12 4 5 P2 3 4
A |41 13]4]3 C:l1|1]1]4
Res:| 1|3 |3 4 C:|0[1|1]|4

for ; — n downto ldo
Res[C[A[j]]] < A[/]
ClA[j]] < ClA[]]1 -1

__ 215

Example

19

for ; — n downto Ido
Res[C[A[j]]] < AlJ]
ClA[j]] < ClA[]]1 -1

Analysis

for/i — 1to kdo
O(k) { Cli] « 0

for; - 1tondo

ClA[/]] «~ Cl4l1+1

for/ — 2to kdo

C[i] « C[i] + C[i-1]

forj/ — ndownto 1 do
Res[CIA[/]]] < AlJ]
ClAL/]] « ClAl]] -1

A e

©O(n + k)

Execution time
If k € O(n) the counting sort takes ®(n) time

e But sorting takes Q(nlogn) time!
e What is wrong?

Answer

e comparison-based sort takes Q(nlogn) time
e Counting-sort is not comparison-based
e In fact, not a single comparison performed between some elements!

Stable sorting
Counting-sort is a stable sorting method: it preserves the input order of equal elements

20

21.54

21.55

21.56

Res:

To think about:
What are the other stable sorting methods?

3.2 Bucket-sort
Bucket-sort

e Let S be a sequence of n elements (key, value) with keys from [0,N — 1]
e Bucket-sort uses the keys as indexes in a help array B of sequences

— Phase 1: Empty the sequence S by moving each item (k, v) last in its bucket B[k]

— Phase 2: Fori =0,...,N — 1 move items in bucket B[] to the end of the sequence S

e Analysis:
— Phase 1 runs for O(n) time
— Phase 2 runs for O(n+ N) time
Bucket-sort runs for O(n+ N) time

procedure BUCKETSORT(S,N)
B« array with N empty sequences
while —S.ISEMPTY() do
f < S.FIRST()
(k,0) < S.REMOVE()
B[k].INSERTLAST((k,0))
fori+ OtoN—1do
while —B[i].ISEMPTY() do
f < Bli].FIRST()
(k,0) < B[i].REMOVE(f)
S.INSERTLAST((k,0))

Example: Keys from [0,9]

3.3 Radix-sort
Radix-sort

e Origin: Herman Holleriths card sorting machine for census 1890 in USA
e Holleriths original idea: sort the most significant digit first
e Good idea: sort of least significant digits first with an external stable sorting routine

21

21.57

21.58

21.59

21.60

Example: Execution of radix-sort

329
457
657
839
436
720
355

720
355
436
457
657
329
839

720
329
436
839
355
457
657

329
355
436
457
657
720
839

N

Correctness of radix-sort

Use of induction on the digits position

e Suppose that the numbers are sorted on their — 1 lowest digits

e Sort based on digit ¢

720
329
436
839
355
457
657

329
355
436
457
657
720
839

N

Correctness of radix-sort

Use of induction on the digits position

e Suppose that the numbers are sorted on their — 1 lowest digits

e Sort based on digit ¢

— Two numbers that differ in the number 7 is correctly sorted

22

21.61

21.62

720 329
329 355
436 436
839 457
355 657
457 720
657 839

N

Correctness of radix-sort
Use of induction on the digits position

e Suppose that the numbers are sorted on their — 1 lowest digits
e Sort based on digit ¢

— Two numbers that differ in the number ¢ are correctly sorted

— Two numbers that are equal in number ¢ get the same order as in the input data = right order

720 329
329 355
436436
839 457
355 657
457 720
657 839

N

Analysis of radix-sort

e Suppose the counting-sort is used as an external sorting routine
e Sort n machine word on b bits each
e We can see that every word has b/r characters in base 2"

Example:
8 8 8 8

32-bit words | | | | |
r =8 = b/r =4 pass of counting-sort on digits in base 28
or r =16 = b/r =2 pass of counting-sort on digits in base 216

How many pass we should do?

23

21.63

21.64

21.65

Analysis of radix-sort

Remember: counting-sort runs for ®(n + k) time to sort n numbers from [0,k — 1]. If every b-bit word
is broken up into r-bit pieces, each takes pass of the counting-sort takes @(n+ 2"). since there are b/r pass
we get

b
Choose r to minimize T (n,b)

e Raising r with few passes, but when r > logn time increases exponentially.

Choosing r
b r
T(nb)=0|-(n+2")
r
Minimizing T (n,b) by differentiate and set it to 0. Or, note that we do not want to have 2" >> n, it does

not harm asymptotically to choose R as large as possible given the conditions. The choice r = logn means
T (n,b) = ©®(bn/logn).

e For a number in the interval 0 to n? — 1 we get b = dlogn = radix-sort runs in @(dn) time.

Conclusions
In practice, radix-sort is fast for large inputs, as well as easy to code and maintain.

Example: 32-bits number

e At most 3 passes when sorting > 2000 numbers.
e Merge-sort and quick-sort use at least [log2000] = 11 pass.

Drawback: 1t is not possible to sort in-place the counting sort.

24

21.66

21.67

21.68

	Sorting
	Heap-sort
	Merge-sort

	A lower limit for the comparison based sorting
	Sorting in linear time?
	Counting-sort
	Bucket-sort
	Radix-sort

