
Lecture 21
Heap-sort, merge-sort. Lower limits
for sorting. Sorting in linear time?
TDDD86: DALP

Print version of the lecture Data structures, algorithms and programming paradigms
25 november 2016

Jalil Boudjadar, Tommy Färnqvist. IDA, Linköping University

21.1

Content

Innehåll

1 Sorting 1
1.1 Heap-sort . 1
1.2 Merge-sort . 5

2 A lower limit for the comparison based sorting 10

3 Sorting in linear time? 12
3.1 Counting-sort . 12
3.2 Bucket-sort . 21
3.3 Radix-sort . 21 21.2

1 Sorting

1.1 Heap-sort

Sorting with priority queues

• Use a priority queue to sort a collection of comparable elements

– Insert an element with a serie of insertion operations

– Remove the elements in sorted order with a series of operations removeMin

• The runtime depends on the implementation of the priority queue:

– Unsorted sequences give a selection sort and O(n2) time

– Sorted sequences give insertion sorting and O(n2) time

procedure PQSORT(S)
P← empty priority queue
while ¬S.ISEMPTY() do

e← S.REMOVE(S.FIRST())
P.INSERT(e)

while ¬P.ISEMPTY() do
e← P.REMOVEMIN()
S.INSERTLAST(e)

1

21.3

The height of a heap

Proposition 1. The height of a heap storing n keys is O(logn)

Bevis. We use a heap as a complete binary tree.

• Let h be the height of a heap storing n keys
• Since there are 2i keys at depth i = 0, . . .h−1 and at least one key in depth h we get n≥ 1+2+4+

. . .+2h−1 +1
• Thus n≥ 2h, i.e. h≤ log2n

1

2

2h­1

1

nycklar
0

1

h­1

h

djup

21.4

Insertion in a heap

• The method insert in an ADT priority queue corresponds to the insertion of key k in the heap
• The insertion algorithm consists of three steps

– Find the place to insert z (the new last leaf)

– Store k in z

– Reset the heap property

2

65

79

nytt sista löv

z

2

65

79 1z
21.5

Upheap

• After inserting a new key k, it is not certain that the heap property is still fulfilled
• The method upheap restores the heap property by swapping k along the upward path from the inserted

node
• upheap terminates when the key k reaches the root or a node whose parent has a key that is not greater

than k
• Since the height of a heap is O(logn), upheap runs in O(logn) time

1

25

79 6z

2

15

79 6z
21.6

2

Removal from a heap

• Method removeMin consists in removing the root key from the heap
• Removal algorithm consists of three steps

– Replace the root key with the key in the last leaf w

– remove w

– Reset the heap property

2

65

79

sista lövet

w

7

65

9
w

nytt sista löv 21.7

Downheap

• After replacement of the root key with key k from the last leaf, it is not certain that the heap property
is still fulfilled

• Method downheap restores the heap property by swapping k along the downward path of the insertion
node

• downheap terminates when the key k reaches a leaf or a node whose children have keys that are not
less than k

• Since the height of a heap is O(logn), downheap runs in time O(logn)

7

65

9
w

5

67

9
w

21.8

Heap-sort

• Consider a priority queue with n elements implemented in terms of a heap

– memory utilization is O(n)

– insert and removeMin run in O(logn) time

– size, isEmpty and min run in O(1) time

• Upon the utilization of heap-based priority queue we can sort a sequence of n elements in O(n logn)
time

• The resulting algorithm is called heap-sort
• Heap-sort is much faster than quadratic sorting algorithms

21.9

3

Combine 2 heaps

• Given 2 heaps and a key k
• Create a new heap where the root node stores the key k, and the two given heaps as subtrees
• Run downheap to reset the heap property

7

3

58

2

64

3

58

2

64

2

3

58

4

67
21.10

Example: construction of a heap bottom-upp

1516 124 76 2023

25

1516

5

124

11

76

27

2023

10 7 8 25 5 11 27 16 15 4 12 6 7 23 20

21.11

Example: construction of a heap bottom-upp

25

1516

5

124

11

96

27

2023

15

2516

4

125

6

911

20

2723
21.12

4

Example: construction of a heap bottom-upp

7

15

2516

4

125

8

6

911

20

2723

4

15

2516

5

127

6

8

911

20

2723
21.13

Example: construction of a heap bottom-upp

4

15

2516

5

127

10

6

8

911

20

2723

5

15

2516

7

1210

4

6

8

911

20

2723
21.14

Analysis

• We visualize the worst case time for a call to downheap with a path that first goes to the right, and
then repeatedly go left to the bottom of the heap

• Since each node is traversed by at most two such paths, the total number of paths is O(n)
• Thus, the time to construct a heap bottom-upp is O(n)
• This construction method is faster than the n repeated deposits and makes the first phase of heap-sort

more efficient

21.15

1.2 Merge-sort

Divide and conquer

• Merge-sort is a sort algorithm based on divide and conquer
• Like the heap-sort

5

– the execution time is O(n logn)

• different heap-sort

– does not use priority queues to help

– access the data in a sequential manner (suitable to sort the data on disk)
21.16

Merge-sort
Merge-sort on an input sequence S having n elements is performed in 3 steps:

• Divide: split S into 2 sequences S1 and S2 each with n/2 elements
• Conquer: sort S1 and S2 recursively
• Combine: merge S1 and S2 in a unique sorted sequence

procedure MERGESORT(S)
if S.SIZE()> 1 then

(S1,S2)←PARTITION(S.SIZE()/2)
MERGESORT(S1)
MERGESORT(S2)
S←MERGE(S1,S2) 21.17

Merge two sorted sequences

• Merge 2 sequences A and B to form a seuqnce S containing the union of elements in A and B
• Merging 2 sorted sequences, each with n/2 elements, implemented with double linked lists takes

O(n) time

function MERGE(A,B)
S← empty sequence
while ¬A.ISEMPTY()∧¬B.ISEMPTY() do

if A.FIRST.ELEMENT()< B.FIRST.ELEMENT() then
S.INSERTLAST(A.REMOVE(A.FIRST()))

else
S.INSERTLAST(B.REMOVE(B.FIRST()))

while ¬A.ISEMPTY() do
S.INSERTLAST(A.REMOVE(A.FIRST()))

while ¬B.ISEMPTY() do
S.INSERTLAST(B.REMOVE(B.FIRST()))

return S 21.18

Merge-sort tree

• The execution of merge-sort can be visualized as a binary tree

– Each node represents a recursive call to merge-sort and stores

∗ unsorted sequence before the execution and its partition
∗ Sorted sequence after the execution

– The root is the origin of the call

– The leaves are calls on partial sequences of size 0 or 1

7 2  9 4 → 2 4 7 9

7  2 → 2 7 9  4 → 4 9

7 → 7 2 → 2 9 → 9 4 → 4

21.19

6

Example: Execution of merge-sort

• Partitioning

7 2 9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 2 → 2 9 4 → 4 9 3 8 → 3 6 1 → 1 6

7 → 2 → 9 → 4 → 3 → 8 → 6 → 1 →

7 2 9 4 ⏐ 3 8 6 1 → 1 2 3 4 6 7 8 9

21.20

Example: Execution of merge-sort

• Recursive call, partitioning

 7 2 ⏐ 9 4 → 2 4 7 3 8 6 1 6666 8

7 2 → 2 9 4 → 4 9 3 8 → 3 6 1 → 1 6

7 → 2 → 9 → 4 → 3 → 8 → 6 → 1 →

7 2 9 4 ⏐ 3 8 6 1 → 1 2 3 4 6 7 8 9

21.21

Example: Execution of merge-sort

• Recursive call, partitioning

 7 2 ⏐ 9 4 → 2 4 7 3 8 6 1 6→ 66 1 3 8

7 ⏐ 2 → 2 7 9 4 9→ 4 3 8 → 3 8 6 1 → 1 6

7 → 2 → 9 → 4 → 3 → 8 → 6 → 1 →

7 2 9 4 ⏐ 3 8 6 1 → 1 2 3 4 6 7 8 9

21.22

7

Example: Execution of merge-sort

• Recursive call, base case

 7 2 ⏐ 9 4 → 2 4 7 3 8 6 1

7 ⏐ 2 → 2 9 4 → 4 9 3 8 → 3 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 ⏐ 3 8 6 1 6→ 1 2 3 4 6 7 8

21.23

Example: Execution of merge-sort

• Recursive call, base case

 7 2 ⏐ 9 4 → 2 4 7 3 8 6 1 → 1 3

7 ⏐ 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2→2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 ⏐ 3 8 6 1 → 1 2 3 4 6 7 8

21.24

Example: Execution of merge-sort

• Merging

 7 2 ⏐ 9 4 → 2 4 7 3 8 6 1 → 1 3 8

7 ⏐ 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2→2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 ⏐ 3 8 6 1 → 1 2 3 4 6 7 8

21.25

8

Example: Execution of merge-sort

• Recursive call, . . . , base case

 7 2 ⏐ 9 4 → 2 4 7 3 8 6 1 → 1 3 8

7 ⏐ 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2→2 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 ⏐ 3 8 6 1 → 1 2 3 4 6 7 8

9 → 9 4 → 4
21.26

Example: Execution of merge-sort

• merging

 7 2  9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7  2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4  3 8 6 1 → 1 2 3 4 6 7 8 9

21.27

Example: Execution of merge-sort

• Recursive call, . . . , merging, merging

 7 2 ⏐ 9 4 → 2 4 7 9 3 8 6 1 → 1 3 6 8

7 ⏐ 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2→2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 ⏐ 3 8 6 1 → 1 2 3 4 6 7 8 9

21.28

9

Example: Execution of merge-sort

• merging

 7 2 ⏐ 9 4 → 2 4 7 9 3 8 6 1 → 1 3 6 8

7 ⏐ 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2→2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 ⏐ 3 8 6 1 → 1 2 3 4 6 7 8 9

21.29

2 A lower limit for the comparison based sorting

comparison based sorting

• Many sorting algorithms are comparison-based

– They sort through comparisons between pairs of objects

– Example: insertion-sort, selection-sort, heap-sort, merge-sort, quick-sort, . . .

• Let us therefore try to derive a lower limit for the execution time in the worst case for each algorithm
using the comparison to sort n elements x1,x2, . . . ,xn

r xÄ i < xj?

ja

nej

21.30

Calculating comparisons

• Let’s just count comparisons
• Every possible execution of an algorithm is represented by a root-to-leaf path in a decision tree

xi < xj ?

xa < xb ?

xm < xo ? xp < xq ?xe < xf ? xk < xl ?

xc < xd ?

21.31

10

Example: Decision tree

1:2

2:3

123 1:3

132 312

1:3

213 2:3

231 321

Sort 〈x1, x2, …, xn〉

Each internal node is marked i : j for i, j ∈ {1,2, . . . ,n}
• The left subtree shows subsequent comparisons if xi ≤ x j
• The right subtree shows subsequent comparisons if xi ≥ x j 21.32

Example: Decision tree

1:2

2:3

123 1:3

132 312

1:3

213 2:3

231 321

9 ≥ 4Sort 〈x1, x2, x3〉
= 〈 9, 4, 6 〉:

Each internal node is marked i : j for i, j ∈ {1,2, . . . ,n}
• The left subtree shows subsequent comparisons if xi ≤ x j
• The right subtree shows subsequent comparisons if xi ≥ x j 21.33

Example: Decision tree

1:2

2:3

123 1:3

132 312

1:3

213 2:3

231 321

9 ≥ 6

Sort 〈x1, x2, x3〉
= 〈 9, 4, 6 〉:

Each internal node is marked i : j for i, j ∈ {1,2, . . . ,n}
• The left subtree shows subsequent comparisons if xi ≤ x j
• The right subtree shows subsequent comparisons if xi ≥ x j 21.34

Example: Decision tree

1:2

2:3

123 1:3

132 312

1:3

213 2:3

231 321

4 ≤ 6

Sort 〈x1, x2, x3〉
= 〈 9, 4, 6 〉:

11

Each internal node is marked i : j for i, j ∈ {1,2, . . . ,n}

• The left subtree shows subsequent comparisons if xi ≤ x j
• The right subtree shows subsequent comparisons if xi ≥ x j

21.35

Example: Decision tree

1:2

2:3

123 1:3

132 312

1:3

213 2:3

231 321

4 ≤ 6 ≤ 9

Sort 〈x1, x2, x3〉
= 〈 9, 4, 6 〉:

Each leaf contains a permutation 〈π(i),π(2), . . . ,π(n)〉 to indicate that the order xπ(1) ≤ xπ(2) ≤ . . . ≤
xπ(n) has been established 21.36

Decision tree model
A decision tree can model the execution of the comparison-based sorting algorithms:

• A tree for each size of the input data
• Consider the algorithm execution to be shared whenever two elements are compared
• The tree contains all comparisons along all the possible consequences of instructions
• The running time of the algorithm = the length of the path traversed
• The running time in the worst case = the height of the tree

21.37

The height of a decision tree

• The height of the decision tree is a lower limit on the execution time in the worst case
• Every possible permutation of the input should lead to a separate output leaf
• Since there is n! = 1 ·2 · . . . ·n leaves, the height of a tree is at least log(n!)

21.38

3 Sorting in linear time?

3.1 Counting-sort

Counting sort
Require: A[1, . . . ,n], where A[j] ∈ {1,2, . . . ,k}

function COUNTINGSORT(A)
Array to count : C[1, . . . ,k]
Array to store the result: Res[1, . . . ,n]
for i← 1 to k do

C[i]← 0
for j← 1 to n do

C[A[j]]←C[A[j]]+1 . C[i] = |{nyckel = i}|
for i← 2 to k do

C[i]←C[i]+C[i−1] . C[i] = |{nyckel ≤ i}|
for j← n downto i do

Res[C[A[j]]]← A[j]
C[A[j]]←C[A[j]]−1

return Res 21.39

12

Example

Counting-sort

A: 4 1 3 4 3

Res:

1 2 3 4 5

C:

1 2 3 4

21.40

Example

Loop 1

A: 4 1 3 4 3

Res:

1 2 3 4 5

C: 0 0 0 0

1 2 3 4

for i ← 1 to k do
 C[i] ← 0

21.41

Example

13

Loop 2

A: 4 1 3 4 3

Res:

1 2 3 4 5

C: 0 0 0 1

1 2 3 4

for j ← 1 to n do
 C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{nyckel = i}|

21.42

Example

Loop 2

A: 4 1 3 4 3

Res:

1 2 3 4 5

C: 1 0 0 1

1 2 3 4

for j ← 1 to n do
 C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{nyckel = i}|

21.43

Example

14

Loop 2

A: 4 1 3 4 3

Res:

1 2 3 4 5

C: 1 0 1 1

1 2 3 4

for j ← 1 to n do
 C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{nyckel = i}|

21.44

Example

Loop 2

A: 4 1 3 4 3

Res:

1 2 3 4 5

C: 1 0 1 2

1 2 3 4

for j ← 1 to n do
 C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{nyckel = i}|

21.45

Example

15

Loop 2

A: 4 1 3 4 3

Res:

1 2 3 4 5

C: 1 0 2 2

1 2 3 4

for j ← 1 to n do
 C[A[j]] ← C[A[j]] + 1 ⊳ C[i] = |{nyckel = i}|

21.46

Example

Loop 3

A: 4 1 3 4 3

Res:

1 2 3 4 5

C: 1 0 2 2

1 2 3 4

C': 1 1 2 2

for i ← 2 to k do
 C[i] ← C[i] + C[i–1] ⊳ C[i] = |{nyckel ≤ i}|

21.47

Example

16

Loop 3

A: 4 1 3 4 3

Res:

1 2 3 4 5

C: 1 0 2 2

1 2 3 4

C': 1 1 3 2

for i ← 2 to k do
 C[i] ← C[i] + C[i–1] ⊳ C[i] = |{nyckel ≤ i}|

21.48

Example

Loop 3

A: 4 1 3 4 3

Res:

1 2 3 4 5

C: 1 0 2 2

1 2 3 4

C': 1 1 3 5

for i ← 2 to k do
 C[i] ← C[i] + C[i–1] ⊳ C[i] = |{nyckel ≤ i}|

21.49

Example

17

Loop 4

A: 4 1 3 4 3

Res: 3

1 2 3 4 5

C: 1 1 3 5

1 2 3 4

C': 1 1 2 5

for j ← n downto 1do
Res[C[A[j]]] ← A[j]
C[A[j]] ← C[A[j]] – 1

21.50

Example

Loop 4

A: 4 1 3 4 3

Res: 3 4

1 2 3 4 5

C: 1 1 2 5

1 2 3 4

C': 1 1 2 4

for j ← n downto 1do
Res[C[A[j]]] ← A[j]
C[A[j]] ← C[A[j]] – 1

21.51

Example

18

Loop 4

A: 4 1 3 4 3

Res: 3 3 4

1 2 3 4 5

C: 1 1 2 4

1 2 3 4

C': 1 1 1 4

for j ← n downto 1do
Res[C[A[j]]] ← A[j]
C[A[j]] ← C[A[j]] – 1

21.52

Example

Loop 4

A: 4 1 3 4 3

Res: 1 3 3 4

1 2 3 4 5

C: 1 1 1 4

1 2 3 4

C': 0 1 1 4

for j ← n downto 1do
Res[C[A[j]]] ← A[j]
C[A[j]] ← C[A[j]] – 1

21.53

Example

19

Loop 4

A: 4 1 3 4 3

Res: 1 3 3 4 4

1 2 3 4 5

C: 0 1 1 4

1 2 3 4

C': 0 1 1 3

for j ← n downto 1do
Res[C[A[j]]] ← A[j]
C[A[j]] ← C[A[j]] – 1

21.54

Analysis

for i ← 1 to k do
 C[i] ← 0

Θ(n)

Θ(k)

Θ(n)

Θ(k)

for j ← 1 to n do
 C[A[j]] ← C[A[j]] + 1

for i ← 2 to k do
 C[i] ← C[i] + C[i–1]

for j ← n downto 1 do
Res[C[A[j]]] ← A[j]
C[A[j]] ← C[A[j]] – 1

Θ(n + k)
21.55

Execution time
If k ∈ O(n) the counting sort takes Θ(n) time

• But sorting takes Ω(n logn) time!
• What is wrong?

Answer

• comparison-based sort takes Ω(n logn) time
• Counting-sort is not comparison-based
• In fact, not a single comparison performed between some elements!

21.56

Stable sorting
Counting-sort is a stable sorting method: it preserves the input order of equal elements

20

A: 4 1 3 4 3

Res: 1 3 3 4 4

To think about:
What are the other stable sorting methods?

21.57

3.2 Bucket-sort

Bucket-sort

• Let S be a sequence of n elements (key, value) with keys from [0,N−1]
• Bucket-sort uses the keys as indexes in a help array B of sequences

– Phase 1: Empty the sequence S by moving each item (k,v) last in its bucket B[k]

– Phase 2: For i = 0, . . . ,N−1 move items in bucket B[i] to the end of the sequence S

• Analysis:

– Phase 1 runs for O(n) time

– Phase 2 runs for O(n+N) time

Bucket-sort runs for O(n+N) time

procedure BUCKETSORT(S,N)
B← array with N empty sequences
while ¬S.ISEMPTY() do

f ← S.FIRST()
(k,o)← S.REMOVE(f)
B[k].INSERTLAST((k,o))

for i← 0 to N−1 do
while ¬B[i].ISEMPTY() do

f ← B[i].FIRST()
(k,o)← B[i].REMOVE(f)
S.INSERTLAST((k,o))

21.58

Example: Keys from [0,9]

21.59

3.3 Radix-sort

Radix-sort

• Origin: Herman Holleriths card sorting machine for census 1890 in USA
• Holleriths original idea: sort the most significant digit first
• Good idea: sort of least significant digits first with an external stable sorting routine

21.60

21

Example: Execution of radix-sort

3 2 9
4 5 7
6 5 7
8 3 9
4 3 6
7 2 0
3 5 5

7 2 0
3 5 5
4 3 6
4 5 7
6 5 7
3 2 9
8 3 9

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

21.61

Correctness of radix-sort
Use of induction on the digits position

• Suppose that the numbers are sorted on their t−1 lowest digits
• Sort based on digit t

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

21.62

Correctness of radix-sort
Use of induction on the digits position

• Suppose that the numbers are sorted on their t−1 lowest digits
• Sort based on digit t

– Two numbers that differ in the number t is correctly sorted

22

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

21.63

Correctness of radix-sort
Use of induction on the digits position

• Suppose that the numbers are sorted on their t−1 lowest digits
• Sort based on digit t

– Two numbers that differ in the number t are correctly sorted

– Two numbers that are equal in number t get the same order as in the input data⇒ right order

7 2 0
3 2 9
4 3 6
8 3 9
3 5 5
4 5 7
6 5 7

3 2 9
3 5 5
4 3 6
4 5 7
6 5 7
7 2 0
8 3 9

21.64

Analysis of radix-sort

• Suppose the counting-sort is used as an external sorting routine
• Sort n machine word on b bits each
• We can see that every word has b/r characters in base 2r

Example:

32-bit words
8 8 8 8

r = 8⇒ b/r = 4 pass of counting-sort on digits in base 28

or r = 16⇒ b/r = 2 pass of counting-sort on digits in base 216

How many pass we should do? 21.65

23

Analysis of radix-sort
Remember: counting-sort runs for Θ(n+ k) time to sort n numbers from [0,k−1]. If every b-bit word

is broken up into r-bit pieces, each takes pass of the counting-sort takes Θ(n+2r). since there are b/r pass
we get

T (n,b) = Θ

(
b
r
(n+2r)

)
Choose r to minimize T (n,b)

• Raising r with few passes, but when r� logn time increases exponentially.
21.66

Choosing r

T (n,b) = Θ

(
b
r
(n+2r)

)
Minimizing T (n,b) by differentiate and set it to 0. Or, note that we do not want to have 2r� n, it does

not harm asymptotically to choose R as large as possible given the conditions. The choice r = logn means
T (n,b) = Θ(bn/ logn).

• For a number in the interval 0 to nd −1 we get b = d logn⇒ radix-sort runs in Θ(dn) time.
21.67

Conclusions
In practice, radix-sort is fast for large inputs, as well as easy to code and maintain.

Example: 32-bits number

• At most 3 passes when sorting ≥ 2000 numbers.
• Merge-sort and quick-sort use at least dlog2000e= 11 pass.

Drawback: It is not possible to sort in-place the counting sort. 21.68

24

	Sorting
	Heap-sort
	Merge-sort

	A lower limit for the comparison based sorting
	Sorting in linear time?
	Counting-sort
	Bucket-sort
	Radix-sort

