Lecture 21
 Heap-sort, merge-sort. Lower limits for sorting. Sorting in linear time?

TDDD86: DALP

Print version of the lecture Data structures, algorithms and programming paradigms 25 november 2016

Jalil Boudjadar, Tommy Färnqvist. IDA, Linköping University

Content

Innehåll
1 Sorting 1
1.1 Heap-sort 1
1.2 Merge-sort 5
2 A lower limit for the comparison based sorting 10
3 Sorting in linear time? 12
3.1 Counting-sort 12
3.2 Bucket-sort 21
3.3 Radix-sort 21
1 Sorting
1.1 Heap-sort
Sorting with priority queues

- Use a priority queue to sort a collection of comparable elements
- Insert an element with a serie of insertion operations
- Remove the elements in sorted order with a series of operations removeMin
- The runtime depends on the implementation of the priority queue:
- Unsorted sequences give a selection sort and $O\left(n^{2}\right)$ time
- Sorted sequences give insertion sorting and $O\left(n^{2}\right)$ time

```
procedure PQSORT(S)
    P\leftarrowempty priority queue
    while }\neg\mathrm{ S.ISEmpTY() do
        e\leftarrowS.REMOVE(S.FIRST())
        P.INSERT(e)
    while }\negP.ISEMPTY() do
        e\leftarrowP.REMOVEMIN()
        S.INSERTLAST(e)
```


The height of a heap

Proposition 1. The height of a heap storing n keys is $O(\log n)$
Bevis. We use a heap as a complete binary tree.

- Let h be the height of a heap storing n keys
- Since there are 2^{i} keys at depth $i=0, \ldots h-1$ and at least one key in depth h we get $n \geq 1+2+4+$ $\ldots+2^{h-1}+1$
- Thus $n \geq 2^{h}$, i.e. $h \leq \log _{2} n$

Insertion in a heap

- The method insert in an ADT priority queue corresponds to the insertion of key k in the heap
- The insertion algorithm consists of three steps
- Find the place to insert z (the new last leaf)
- Store k in z
- Reset the heap property

Upheap

- After inserting a new key k, it is not certain that the heap property is still fulfilled
- The method upheap restores the heap property by swapping k along the upward path from the inserted node
- upheap terminates when the key k reaches the root or a node whose parent has a key that is not greater than k
- Since the height of a heap is $O(\log n)$, upheap runs in $O(\log n)$ time

Removal from a heap

- Method removeMin consists in removing the root key from the heap
- Removal algorithm consists of three steps
- Replace the root key with the key in the last leaf w
- remove w
- Reset the heap property

nytt sista löv

Downheap

- After replacement of the root key with key k from the last leaf, it is not certain that the heap property is still fulfilled
- Method downheap restores the heap property by swapping k along the downward path of the insertion node
- downheap terminates when the key k reaches a leaf or a node whose children have keys that are not less than k
- Since the height of a heap is $O(\log n)$, downheap runs in time $O(\log n)$

Heap-sort

- Consider a priority queue with n elements implemented in terms of a heap
- memory utilization is $O(n)$
- insert and removeMin run in $O(\log n)$ time
- size, isEmpty and min run in $O(1)$ time
- Upon the utilization of heap-based priority queue we can sort a sequence of n elements in $O(n \log n)$ time
- The resulting algorithm is called heap-sort
- Heap-sort is much faster than quadratic sorting algorithms
- Given 2 heaps and a key k
- Create a new heap where the root node stores the key k, and the two given heaps as subtrees
- Run downheap to reset the heap property

Example: construction of a heap bottom-upp

10	7	8	25	5	11	27	16	15	4	12	6	7	23	20

Example: construction of a heap bottom-upp

Analysis

- We visualize the worst case time for a call to downheap with a path that first goes to the right, and then repeatedly go left to the bottom of the heap
- Since each node is traversed by at most two such paths, the total number of paths is $O(n)$
- Thus, the time to construct a heap bottom-upp is $O(n)$
- This construction method is faster than the n repeated deposits and makes the first phase of heap-sort more efficient

1.2 Merge-sort

Divide and conquer

- Merge-sort is a sort algorithm based on divide and conquer
- Like the heap-sort
- the execution time is $O(n \log n)$
- different heap-sort
- does not use priority queues to help
- access the data in a sequential manner (suitable to sort the data on disk)

Merge-sort
Merge-sort on an input sequence S having n elements is performed in 3 steps:

- Divide: split S into 2 sequences S_{1} and S_{2} each with $n / 2$ elements
- Conquer: sort S_{1} and S_{2} recursively
- Combine: merge S_{1} and S_{2} in a unique sorted sequence

```
procedure MERGESORT(S)
    if S.SIZE()> 1 then
            (S
            MergeSort( }\mp@subsup{S}{1}{}
            MERGESort ( }\mp@subsup{S}{2}{}
            S\leftarrowMERGE}(\mp@subsup{S}{1}{},\mp@subsup{S}{2}{}
```


Merge two sorted sequences

- Merge 2 sequences A and B to form a seuqnce S containing the union of elements in A and B
- Merging 2 sorted sequences, each with $n / 2$ elements, implemented with double linked lists takes $O(n)$ time

```
function MERGE}(A,B
    S\leftarrowempty sequence
    while }\negA\mathrm{ .ISEMPTY() }\wedge\negB\mathrm{ .ISEMPTY() do
        if A.FIRST.ELEMENT() < B.FIRST.ELEMENT() then
            S.inSERTLAST(A.REMOVE(A.FIRST()))
        else
            S.INSERTLAST(B.REMOVE(B.FIRST()))
    while }\neg\mathrm{ A.ISEmpty() do
        S.InSERTLAST(A.REMOVE(A.FIRST()))
    while }\negB\mathrm{ .ISEMPTY() do
        S.InSERTLAST(B.REMOVE(B.FIRST()))
    return S
```


Merge-sort tree

- The execution of merge-sort can be visualized as a binary tree
- Each node represents a recursive call to merge-sort and stores
* unsorted sequence before the execution and its partition
* Sorted sequence after the execution
- The root is the origin of the call
- The leaves are calls on partial sequences of size 0 or 1

Example: Execution of merge-sort

- Partitioning

Example: Execution of merge-sort

- Recursive call, partitioning

Example: Execution of merge-sort

- Recursive call, partitioning

Example: Execution of merge-sort

- Recursive call, base case

Example: Execution of merge-sort

- Merging

Example: Execution of merge-sort

- Recursive call, ..., base case

Example: Execution of merge-sort

- merging

Example: Execution of merge-sort

- Recursive call, ..., merging, merging

- merging

2 A lower limit for the comparison based sorting

comparison based sorting

- Many sorting algorithms are comparison-based
- They sort through comparisons between pairs of objects
- Example: insertion-sort, selection-sort, heap-sort, merge-sort, quick-sort, ...
- Let us therefore try to derive a lower limit for the execution time in the worst case for each algorithm using the comparison to sort n elements $x_{1}, x_{2}, \ldots, x_{n}$

Calculating comparisons

- Let's just count comparisons
- Every possible execution of an algorithm is represented by a root-to-leaf path in a decision tree

Example: Decision tree

Sort $\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$

Each internal node is marked $i: j$ for $i, j \in\{1,2, \ldots, n\}$

- The left subtree shows subsequent comparisons if $x_{i} \leq x_{j}$
- The right subtree shows subsequent comparisons if $x_{i} \geq x_{j}$

Example: Decision tree

Each internal node is marked $i: j$ for $i, j \in\{1,2, \ldots, n\}$

- The left subtree shows subsequent comparisons if $x_{i} \leq x_{j}$
- The right subtree shows subsequent comparisons if $x_{i} \geq x_{j}$

Example: Decision tree

Each internal node is marked $i: j$ for $i, j \in\{1,2, \ldots, n\}$

- The left subtree shows subsequent comparisons if $x_{i} \leq x_{j}$
- The right subtree shows subsequent comparisons if $x_{i} \geq x_{j}$

Example: Decision tree
Sort $\left\langle x_{1}, x_{2}, x_{3}\right\rangle$
$=\langle 9,4,6\rangle$:

Each internal node is marked $i: j$ for $i, j \in\{1,2, \ldots, n\}$

- The left subtree shows subsequent comparisons if $x_{i} \leq x_{j}$
- The right subtree shows subsequent comparisons if $x_{i} \geq x_{j}$

Example: Decision tree

Each leaf contains a permutation $\langle\pi(i), \pi(2), \ldots, \pi(n)\rangle$ to indicate that the order $x_{\pi(1)} \leq x_{\pi(2)} \leq \ldots \leq$ $x_{\pi(n)}$ has been established

Decision tree model

A decision tree can model the execution of the comparison-based sorting algorithms:

- A tree for each size of the input data
- Consider the algorithm execution to be shared whenever two elements are compared
- The tree contains all comparisons along all the possible consequences of instructions
- The running time of the algorithm = the length of the path traversed
- The running time in the worst case $=$ the height of the tree

The height of a decision tree

- The height of the decision tree is a lower limit on the execution time in the worst case
- Every possible permutation of the input should lead to a separate output leaf
- Since there is $n!=1 \cdot 2 \cdot \ldots \cdot n$ leaves, the height of a tree is at least $\log (n!)$

3 Sorting in linear time?

3.1 Counting-sort

Counting sort

Require: $A[1, \ldots, n]$, where $A[j] \in\{1,2, \ldots, k\}$
function $\operatorname{Counting} \operatorname{Sort}(A)$
Array to count : $C[1, \ldots, k]$
Array to store the result: $\operatorname{Res}[1, \ldots, n]$
for $i \leftarrow 1$ to k do

$$
C[i] \leftarrow 0
$$

for $j \leftarrow 1$ to n do $C[A[j]] \leftarrow C[A[j]]+1 \quad \triangleright C[i]=\mid\{$ nyckel $=i\} \mid$
for $i \leftarrow 2$ to k do
$C[i] \leftarrow C[i]+C[i-1] \quad \triangleright C[i]=\mid\{$ nyckel $\leq i\} \mid$
for $j \leftarrow n$ downto i do
$\operatorname{Res}[C[A[j]]] \leftarrow A[j]$
$C[A[j]] \leftarrow C[A[j]]-1$
return Res

Counting-sort

Example

Loop 1

Res:

for $i \leftarrow 1$ to k do $C[i] \leftarrow 0$

Example

Loop 2

$C:$| 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 |

Res:

for $j \leftarrow 1$ to n do
$C[A[j]] \leftarrow C[A[j]]+1 \triangleright C[i]=\mid\{$ nyckel $=i\} \mid$
Example
Loop 2

C: | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
| 1 | 0 | 0 | 1 |

Res:

$$
\begin{aligned}
& \text { for } j \leftarrow 1 \text { to } n \text { do } \\
& \quad C[A[j]] \leftarrow C[A[j]]+1 \triangleright C[i]=\mid\{\text { nyckel }=i\} \mid
\end{aligned}
$$

Example

Loop 2

Res:

for $j \leftarrow 1$ to n do
$C[A[j]] \leftarrow C[A[j]]+1 \triangleright C[i]=\mid\{$ nyckel $=i\} \mid$
Example
Loop 2

C: | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | 2 |

Res:

$$
\begin{aligned}
& \text { for } j \leftarrow 1 \text { to } n \text { do } \\
& \quad C[A[j]] \leftarrow C[A[j]]+1 \triangleright C[i]=\mid\{\text { nyckel }=i\} \mid
\end{aligned}
$$

Example

Loop 2

Res:

for $j \leftarrow 1$ to $n \mathbf{d o}$
$C[A[j]] \leftarrow C[A[j]]+1 \triangleright C[i]=\mid\{$ nyckel $=i\} \mid$
Example
Loop 3

$C:$| 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
| 1 | 0 | 2 | 2 |

Res:

for $i \leftarrow 2$ to k do
$C[i] \leftarrow C[i]+C[i-1] \quad C[i]=\mid\{$ nyckel $\leq i\} \mid$

Example

Loop 3

Res:

for $i \leftarrow 2$ to k do

$$
C[i] \leftarrow C[i]+C[i-1] \quad \subset[i]=\mid\{\text { nyckel } \leq i\} \mid
$$

Example

Loop 3

C :

Res:

for $i \leftarrow 2$ to k do

$$
C[i] \leftarrow C[i]+C[i-1] \quad \triangleright C[i]=\mid\{\text { nyckel } \leq i\} \mid
$$

Example

Loop 4

for $j \leftarrow n$ downto 1 do
$\operatorname{Res}[C[A[j]]] \leftarrow \mathrm{A}[j]$
$C[A[j]] \leftarrow C[A[j]]-1$
Example

Loop 4

for $j \leftarrow n$ downto 1 do
$\operatorname{Res}[C[A[j]]] \leftarrow \mathrm{A}[j]$
$C[A[j]] \leftarrow C[A[j]]-1$
Example

Loop 4

for $j \leftarrow n$ downto 1do
$\operatorname{Res}[C[A[j]]] \leftarrow \mathrm{A}[j]$
$C[A[j]] \leftarrow C[A[j]]-1$
Example
Loop 4

for $j \leftarrow n$ downto 1 do
$\operatorname{Res}[C[A[j]]] \leftarrow \mathrm{A}[j]$
$C[A[j]] \leftarrow C[A[j]]-1$
Example

Loop 4

for $j \leftarrow n$ downto 1 do
$\operatorname{Res}[C[A[j]]] \leftarrow \mathrm{A}[j]$
$C[A[j]] \leftarrow C[A[j]]-1$

Analysis

Execution time
If $k \in O(n)$ the counting sort takes $\Theta(n)$ time

- But sorting takes $\Omega(n \log n)$ time!
- What is wrong?

Answer

- comparison-based sort takes $\Omega(n \log n)$ time
- Counting-sort is not comparison-based
- In fact, not a single comparison performed between some elements!

Stable sorting
Counting-sort is a stable sorting method: it preserves the input order of equal elements

To think about:

What are the other stable sorting methods?

3.2 Bucket-sort

Bucket-sort

- Let S be a sequence of n elements (key, value) with keys from $[0, N-1]$
- Bucket-sort uses the keys as indexes in a help array B of sequences
- Phase 1: Empty the sequence S by moving each item (k, v) last in its bucket $B[k]$
- Phase 2: For $i=0, \ldots, N-1$ move items in bucket $B[i]$ to the end of the sequence S
- Analysis:
- Phase 1 runs for $O(n)$ time
- Phase 2 runs for $O(n+N)$ time

Bucket-sort runs for $O(n+N)$ time

procedure BUCKETSORT (S, N)

$B \leftarrow$ array with N empty sequences
while $\neg S$.ISEmpty () do
$f \leftarrow S$.FIRST()
$(k, o) \leftarrow S$.REMOVE (f)
$B[k]$.INSERTLAST $((k, o))$
for $i \leftarrow 0$ to $N-1$ do
while $\neg B[i]$.ISEmpty () do $f \leftarrow B[i]$.FIRST ()
$(k, o) \leftarrow B[i] \cdot \operatorname{REMOVE}(f)$
S.INSERTLAST $((k, o))$

Example: Keys from [0,9]

3.3 Radix-sort

Radix-sort

- Origin: Herman Holleriths card sorting machine for census 1890 in USA
- Holleriths original idea: sort the most significant digit first
- Good idea: sort of least significant digits first with an external stable sorting routine

Example: Execution of radix-sort

329	720	720	329
457	355	329	355
657	436	436	436
839	457	839	457
436	657	355	657
720	329	457	720
355	839	657	839
	2	2	

Correctness of radix-sort
Use of induction on the digits position

- Suppose that the numbers are sorted on their $t-1$ lowest digits
- Sort based on digit t

| 720 | 329 |
| :--- | :--- | :--- |
| 329 | 355 |
| 436 | 436 |
| 839 | 457 |
| 355 | 657 |
| 457 | 720 |
| 657 | 839 |

Correctness of radix-sort
Use of induction on the digits position

- Suppose that the numbers are sorted on their $t-1$ lowest digits
- Sort based on digit t
- Two numbers that differ in the number t is correctly sorted

Correctness of radix-sort
Use of induction on the digits position

- Suppose that the numbers are sorted on their $t-1$ lowest digits
- Sort based on digit t
- Two numbers that differ in the number t are correctly sorted
- Two numbers that are equal in number t get the same order as in the input data \Rightarrow right order

Analysis of radix-sort

- Suppose the counting-sort is used as an external sorting routine
- Sort n machine word on b bits each
- We can see that every word has b / r characters in base 2^{r}

Example:

$r=8 \Rightarrow b / r=4$ pass of counting-sort on digits in base 2^{8}
or $r=16 \Rightarrow b / r=2$ pass of counting-sort on digits in base 2^{16}

How many pass we should do?

Analysis of radix-sort

Remember: counting-sort runs for $\Theta(n+k)$ time to sort n numbers from $[0, k-1]$. If every b-bit word is broken up into r-bit pieces, each takes pass of the counting-sort takes $\Theta\left(n+2^{r}\right)$. since there are b / r pass we get

$$
T(n, b)=\Theta\left(\frac{b}{r}\left(n+2^{r}\right)\right)
$$

Choose r to minimize $T(n, b)$

- Raising r with few passes, but when $r \gg \log n$ time increases exponentially.

Choosing r

$$
T(n, b)=\Theta\left(\frac{b}{r}\left(n+2^{r}\right)\right)
$$

Minimizing $T(n, b)$ by differentiate and set it to 0 . Or, note that we do not want to have $2^{r} \gg n$, it does not harm asymptotically to choose R as large as possible given the conditions. The choice $r=\log n$ means $T(n, b)=\Theta(b n / \log n)$.

- For a number in the interval 0 to $n^{d}-1$ we get $b=d \log n \Rightarrow$ radix-sort runs in $\Theta(d n)$ time.

Conclusions

In practice, radix-sort is fast for large inputs, as well as easy to code and maintain.
Example: 32-bits number

- At most 3 passes when sorting ≥ 2000 numbers.
- Merge-sort and quick-sort use at least $\lceil\log 2000\rceil=11$ pass.

Drawback: It is not possible to sort in-place the counting sort.

