Lecture 20

Sorting and selection

TDDD86: DALP

Print version of the lecture *Data structures, algorithms and programming paradigms* 22 november 2016

Jalil Boudjadar, Tommy Färnqvist. IDA, Linköping University

20.1

Content

Innehåll

	Sorting			
	1.1	Introduction	1	
		Insertion sort		
		Selection sort		
	1.4	Divide-and-conquer	3	
	1.5	Quick-sort	4	
2	Selection			
	2.1	Introduction	0	
	2.2	Onick-select 1	C	

20.2

1 Sorting

1.1 Introduction

Sorting problem

Input:

• A list *L* containing data with *keys* from a linearly ordered set *K*

• A list L' containing the same data sorted in ascending order of keys

Frample

 $[8,2,9,4,6,10,1,4] \rightarrow [1,2,4,4,6,8,9,10]$

20.3

Aspects of sorting

- in-place vs use extra memory
- internal vs external memory
- stable vs non stable
- comparison-based vs digital

20.4

Strategies

Sorting through insertion

Look for the right place to insert each new element to be added in the sorted sequence... *linear insertion*, Shell-sort, ...

Sorting by selection

Search in each iteration on the unsorted sequence for the smallest remaining data and add it to the end of the sorted sequence ... straight selection, Heap-sort, ...

Sorting through location changes

Search back and forth in any pattern and swap the locations of the pair in the wrong internal order as soon as one is detected... *Quick-sort*, *Merge-sort*,...

1.2 Insertion sort

(Linear) insertion sort

- Algorithm is in-place!
- Split the array to be sorted A[0, ..., n-1] in 2 parts
 - -A[0,...,i-1] which is sorted
 - $-A[i,\ldots,n-1]$ not ordered yet

Initially i = 1, in which case A[0, ..., 0] (trivially) is ordered

procedure InsertionSort(A[0,...,n-1])

for
$$i = 1$$
 to $n - 1$ do

Insert A[i] in the right (=sorted) position in A[0,...,i-1]

Example: Visualization of Insertion-sort

Worst case analysis of Insertion-sort

- 1: **procedure** INSERTIONSORT(A[0,...,n-1])
 2: **for** i=1 **to** n-1 **do**3: $j \leftarrow i; x \leftarrow A[i]$ 4: **while** $j \geq 1$ **and** A[j-1] > x **do**5: $A[j] \leftarrow A[j-1]; j \leftarrow j-1$ 6: $A[j] \leftarrow x$
 - t_2 : n-1 pass
 - t_3 : n-1 pass
 - t_4 : Let *I* be the number of iterations in the worst case of the inner loop:

$$I = 1 + 2 + ... + (n-1) = n(n-1)/2 = (n^2 - n)/2$$

- *t*₅: *I* pass
- t_6 : n-1 pass
- Total: $t_2 + t_3 + t_4 + t_5 + t_6 = 3(n-1) + (n^2 n) = n^2 + 2n 3$ Thus $O(n^2)$ in the worst case... but only if the sequence is almost sorted

1.3 Selection sort

(Straight) selection sort

- Algorithm is in-place!
- Split the array to be sorted A[0, ..., n-1] in 2 parts
 - A[0,...,i-1] which is sorted (all elements smaller than or equal to A[i,...,n-1])
 - $-A[i,\ldots,n-1]$ not sorted yet

Initially i = 0, i.e. the sorted part is empty (and trivially sorted)

procedure SELECTIONSORT(A[0,...,n-1])

for
$$i = 0$$
 to $n - 2$ do

Find the minimal element A[j] in A[i,...,n-1]Swap locations of A[i] and A[j]

2

20.6

20.7

20.8

Example: Visualization of Selection-sort

Worst case analysis of Selection-sort

```
\begin{array}{lll} \text{1: procedure } \mathsf{SELECTIONSORT}(A[0,\dots,n-1]) \\ \mathsf{2:} & & \textbf{for } i = 0 \textbf{ to } n-2 \textbf{ do} \\ \mathsf{3:} & & s \leftarrow i \\ \mathsf{4:} & & \textbf{for } j \geq i+1 \textbf{ to } n-1 \textbf{ do} \\ \mathsf{5:} & & & \textbf{if } A[j] < A[s] \textbf{ then } s \leftarrow j \\ \mathsf{6:} & & \mathsf{SWAP}(A[i],A[s]) \end{array}
```

- t_2 : n-1 pass
- t_3 : n-1 pass
- t_4 : Let *I* be the number of iterations, of the inner loop, in the worst case:

$$I = (n-2) + (n-3) + ... + 1 = (n-1)(n-2)/2 = (n^2 - 3n + 2)/2$$

- *t*₅: *I* pass
- t_6 : n-1 pass
- Total: $t_2 + t_3 + t_4 + t_5 + t_6 = 3(n-1) + (n^2 3n + 2) = n^2 1 \in O(n^2)$

1.4 Divide-and-conquer

The principle of divide-and-conquer for algorithms construction

- divide: split up the problem into smaller, independent sub-problems
- conquer: solve sub-problems recursively (or directly if trivial)
- combine the solutions of sub-problems to solve the original problem

Sv. söndra-och-härska

Example: divide-and-conquer

20.10

20.11

Example: divide-and-conquer

1.5 Quick-sort

Quick-sort is a randomized sorting algorithm based on the paradigm of divide-and-conquer

- divide: select randomly an element x (called pivot) and partition S to
 - -L elements smaller than x
 - -E elements equal to x
 - G elements greater than x
- conquer: sort L and G
- combine L, E and G

Partitioning

- We partition the input data sequence as follows:
 - We remove, i turn and order, each element y from S and
 - We insert y in L, E or G depending on the result of the comparison with pivot element x
- Each insertion and removal performed in the beginning or end of a sequence, and thus takes O(1)time
- Thus, the partition step takes in quick-sort O(n) time

```
function PARTITION(S, p)
```

```
L, E, G \leftarrow empty sequences
x \leftarrow S.\text{REMOVE}(p)
while \neg S.ISEMPTY() do
    y \leftarrow S.REMOVE(S.FIRST())
    if y < x then
        L.INSERTLAST(y)
    else if y = x then
        E.INSERTLAST(y)
    else
        G.INSERTLAST(y)
return L, E, G
```

20.14

20.15

Quick-sort tree

- The execution of quicksort can be visualized as a binary tree
 - Each node represents a recursive call to quicksort and stores
 - * unsorted sequence before the execution and its pivot
 - * Sorted sequence after the execution
 - The root is the originating call
 - The leaves are calls on partial sequences of size 0 or 1

Example: Execution of quick-sort

• Select a pivot

Example: Execution of quick-sort

• Partitioning, recursive call, selection of pivot

20.17

20.19

Example: Execution of quick-sort

• Partitioning, recursive call, base case

Example: Execution of quick-sort

• Recursive call, ..., base case, combination

Example: Execution of quick-sort

• Recursive call, choice of pivot

20.22

20.21

Example: Execution of quick-sort

• Partitioning, ..., recursive call, base case

Example: Execution of quick-sort

• combine, combine

Execution time in the worst case

- The worst case for quick-sort occurs when the pivot element is a unique minimum or maximum element
- one of L or G has size n-1 and the other has size 0
- The execution time is proportional to the sum

$$n+(n-1)+...+2+1$$

• Thus, the worst case time for quick-sort is $O(n^2)$

Execution time in the worst case

20.23

20.25

Expected execution time

- Consider a recursive call to quicksort on a sequence of size s
 - Good call: the sizes of L and G are both < 3s/4
 - Bad call: one of L and G has size $\geq 3s/4$

- A call is good with probability 1/2
 - Half of all possible pivot elements lead to a good call:

Expected execution time

- Probabilistic fact: the expected number of coin flips needed to get tails of k times is 2k
- \bullet For a node at depth i, we expect
 - -i/2 ancestors are good call
 - the size of the input sequence for the current call is at most $(3/4)^{i/2}n$
- Thus, we have
 - For a node at depth $2\log_{4/3} n$, then expected size of input data is 1
 - The expected height for quick-sort tree is $O(\log n)$
- ullet The amount of work performed in the nodes at the same depth is O(n)
- Thus, the expected execution time for quick-sort is $O(n \log n)$

Expected execution time

20.26

20.27

förväntad total tid: $O(n \log n)$

Quick-sort with constant extra memory

- Quick-sort can be implemented to run in-place
- In the partitioning step, we use replacement operations to arrange the elements of the input sequence so that:
 - the elements smaller than the pivot element have rank less than h
 - the elements equal to the pivot element have rank between h and k
 - the elements greater than the pivot element have rank greater than k

Algorithm for quick-sort with constant extra memory

procedure INPLACEQUICKSORT(S, l, r)

if $l \ge r$ then return

 $i \leftarrow \text{random integer between } l \text{ and } r$

 $x \leftarrow S.\texttt{ELEMATRANK}(i)$

 $(h,k) \leftarrow INPLACEPARTITION(x)$

INPLACEQUICKSORT(S, l, h-1)

INPLACEQUICKSORT(S, k+1, r)

Partitioning with constant extra memory

• Perform partitioning using 2 indexes to split S into L and $E \cup G$ (A similar method can be used to split $E \cup G$ into E and G)

h k 3 2 5 1 0 7 3 9 5 2 7 9 8 9 7 <u>6</u> 9 (pivot = 6)

- Repeat the process until h and k meet/intersect:
 - Swipe h to the right until an element \geq pivot element is found
 - Swipe k to the left until an element < pivot element is found
 - swap the elements at locations h and k

20.29

20.30

2 Selection

2.1 Introduction

The selection problem

- Given an integer i and n elements x_1, x_2, \dots, x_n taken from a total order, find the ith smallest element in the sequence.
- We can sort the sequence in $O(n \log n)$ time, then index the *i*th element in constant time.

• Can we solve the selection problem faster?

20.33

2.2 Quick-select

Quick-select

Quick-Select is a randomized selction problem based on the paradigm *prune-and-search*:

- Prune: Select x randomly and partition S to
 - L elements lower than x
 - -E elements equal to x
 - G elements greater than x
- Search: depending on i, either the solution exists in E or we need to continue recursively in one of L
 or G.

20.34

Partitioning

- We partition the input sequence as in the algorithm for quick-sort:
 - We remove, i turn and order, each element y from S and
 - We insert y in L, E or G depending on the result of comparison with the pivot element x
- ullet Insertion and deletion are performed at the beginning or end of a sequence, thus each takes O(1) time
- Thus, the partitioning step in quick-select takes O(n) time

function PARTITION(S, p)

```
Interior Partition(s, p)

L, E, G \leftarrow \text{empty sequences}
x \leftarrow S.\text{REMOVE}(p)

while \neg S.\text{ISEMPTY}() do

y \leftarrow S.\text{REMOVE}(S.\text{FIRST}())

if y < x then

L.\text{INSERTLAST}(y)

else if y = x then

E.\text{INSERTLAST}(y)

else

G.\text{INSERTLAST}(y)

return L, E, G
```

Visualization of Quick-select

- The execution of quick-select can be visualized with the help of a recursion path
 - Each node represents a recursive call to quick-select and stores i and the remaining sequence S

20.36

Expected execution time

- Consider a recursive call to quick-select on a sequence of size s
 - Good call: the sizes of L and G are both < 3s/4
 - Bad call: one of L and G has size $\geq 3s/4$

Bra anrop

Dåligt anrop

- A call is good with probability 0.5
 - Half of all possible pivot elements lead to good calls:

Dåliga pivotelement Bra pivotelement Dåliga pivotelement

20.37

Expected execution time

- Probabilistic fact: The expected number of coin flips needed to get tail once is two
- Probabilistic fact: The expected value is a linear function:

$$- E(X+Y) = E(X) + E(Y)$$

-
$$E(cX) = cE(X)$$
 for each constant c

- Let T(n) be the expected execution time for quick-select
- By the second fact, we get $T(n) \le b \cdot n \cdot g(n) + T(3n/4)$ where
 - b is a constant
 - -g(n) is the expected number of calls before a good call occurs

20.38

Expected execution time

• Thus

$$- T(n) < b \cdot n \cdot g(n) + T(3n/4)$$

• Through the first fact, we get

$$-T(n) \le 2 \cdot b \cdot n + T(3n/4)$$

• T(n) is a geometric serie:

$$-T(n) \le 2 \cdot b \cdot n + 2 \cdot b \cdot n \cdot (3/4) + 2 \cdot b \cdot n \cdot (3/4)^2 + 2 \cdot b \cdot n \cdot (3/4)^3 + \dots$$

- Thus, $T(n) \in O(n)$
- We can solve the selection problem in expected time O(n) (the worst case time is $O(n^2)$)