Lecture 20

Sorting and selection

TDDD86: DALP

Print version of the lecture Data structures, algorithms and programming paradigms
22 november 2016

Jalil Boudjadar, Tommy Farnqvist. IDA, Linkdping University

Content
Innehall

[T Inoductionl - . . . -« o oo et e

T3 QUICKSOM - - -« o o oo e e e e e e e

1 Sorting

1.1 Introduction

Sorting problem
Input:
e A list L containing data with keys from a linearly ordered set K
Output:
e Alist L' containing the same data sorted in ascending order of keys

Example
8,2,9,4,6,10,1,4] — [1,2,4,4,6,8,9,10]

Aspects of sorting
e in-place vs use extra memory
e internal vs external memory
e stable vs non stable
e comparison-based vs digital

Strategies

Sorting through insertion
Look for the right place to insert each new element to be added in the sorted sequence... linear insertion,
Shell-sort, ...

Sorting by selection
Search in each iteration on the unsorted sequence for the smallest remaining data and add it to the end of
the sorted sequence ... straight selection, Heap-sort, ...

Sorting through location changes
Search back and forth in any pattern and swap the locations of the pair in the wrong internal order as soon
as one is detected. .. Quick-sort, Merge-sort, ...

20.1

20.2

20.3

20.4

20.5

1.2 Insertion sort

(Linear) insertion sort
e Algorithm is in-place!
e Split the array to be sorted A[0, ...,n— 1] in 2 parts
- A0,...,i— 1] which is sorted
- Ali,...,n—1] not ordered yet

Initially i = 1, in which case A[0, ..., 0] (trivially) is ordered

procedure INSERTIONSORT(A[O, ...,n— 1])
fori=1ton—1do

Insert A[i] in the right (=sorted) position in A[0, ...,i — 1] 206

Example: Visualization of Insertion-sort

ol
25

20.7

Worst case analysis of Insertion-sort
1: procedure INSERTIONSORT(A[O, ...,n—1])
2 fori=1ton—1do
3: J 5 x <+ Al
4 while j > 1 and A[j — 1] > x do
5 AljlAlj—1]; j«j—1
6 Alj]+x

e 1:n—1pass
e 13:n—1 pass
e 14: Let I be the number of iterations in the worst case of the inner loop:

I=142+4...+(n—1)=n(n—1)/2=(n*>—n)/2

® 15:] pass
® fg:n—1 pass
o Total: ty +13 414 +15+16 = 3(n — 1) + (n* —n) = n*> + 2n — 3 Thus O(n?) in the worst case. .. but

only if the sequence is almost sorted 208

1.3 Selection sort

(Straight) selection sort

e Algorithm is in-place!
e Split the array to be sorted A[0, ...,n— 1] in 2 parts

- A0,..., i — 1] which is sorted (all elements smaller than or equal to A[i,...,n—1])

— Ali,...,n— 1] not sorted yet
Initially i = 0, i.e. the sorted part is empty (and trivially sorted)

procedure SELECTIONSORT(AO, ...,n—1])
fori=0ton—2do
Find the minimal element A[j] in A[i,...,n—1]

Swap locations of A[i] and A[j] 20.9

Example Visualization of Selection-sort

Worst case analysis of Selection-sort

1: procedure SELECTIONSORT(A[O,...,n—1])
2 fori=0ton—2do

3: S

4: for j>i+1ton—1do

5 if A[j] <A[s] then s« j

6 SWAP(A[i],A[s])

e t:n—1pass

e 13:n—1 pass

e 14: Let I be the number of iterations, of the inner loop, in the worst case:
I=n=2)+(n=3)4...41=n-1)(n—-2)/2=(n*-3n+2)/2

e t5: [pass

® fg:n—1pass

o Total: to 4+ 13+ 14 +15+16 =3(n— 1)+ (n> = 3n+2) =n? —1 € O(n?)

1.4 Divide-and-conquer

The principle of divide-and-conquer for algorithms construction

e divide: split up the problem into smaller, independent sub-problems
e conquer: solve sub-problems recursively (or directly if trivial)
e combine the solutions of sub-problems to solve the original problem

Sv. sondra-och-hdrska

Example: divide-and-conquer

(4]10/6]8[12)7]9]1]5]8]13 2]5]1620] 3]

(4]10/6|8)12/7]9]1] 15]8[13/2|5 1620/ 3]
468 N2g79f1] [5]8132] [5[16203]
410 [6]8] 27| |9[1] [5]8] [32| [5]16 203
410 [6[8] [7[12 [1]9] [5]8] [2[13 [5[16 [3]20
4l6[sfo [1]7]ofiz [2|5[813 [3[5[1620

'1|4]6]7]|8]9/1012 12|3]5]5|813/1620

11|2[3]4]5]|5|6]7]8]|8|910121316)20

3

20.10

20.11

20.12

20.13

Example: divide-’aﬁ;)‘]“g‘l’z 12[7]9]1]5[8182[5]16220]3]

14]6]7[1]5]2]5]3] 10/8[12/9[8[13]1620
o[1ls]s] [ofs[ss] ngishceo
12 [4]3] [5]5] (6]7] [8]8] [10/9] [1213 [1620
1]2] [3]4] [5]5] [e[7] [8]8] [o[i] g1g [16Ro
12]s]4] [s[sle[7] [8[s[ofid [12i3h62g

1.5 Quick-sort

Quick-sort
Quick-sort is a randomized sorting algorithm based on the paradigm of divide-and-conquer
e divide: select randomly an element x (called pivot) and partition S to
— L elements smaller than x
— E elements equal to x
— G elements greater than x

e conquer: sort L and G
e combine L, E and G

IIIIDII

0 1 01

Partitioning
e We partition the input data sequence as follows:

— We remove, i turn and order, each element y from S and

— Weinsert y in L, E or G depending on the result of the comparison with pivot element x

e Each insertion and removal performed in the beginning or end of a sequence, and thus takes O(1)

time
e Thus, the partition step takes in quick-sort O(n) time
function PARTITION(S, p)
L,E,G <+ empty sequences
X < S.REMOVE(p)
while —S.ISEMPTY() do
y < S.REMOVE(S.FIRST())
if y < x then
L.INSERTLAST(y)
else if y = x then
E.INSERTLAST(y)
else

G.INSERTLAST(y)
return L.E,G

20.14

20.15

20.16

Quick-sort tree

e The execution of quicksort can be visualized as a binary tree
— Each node represents a recursive call to quicksort and stores

* unsorted sequence before the execution and its pivot

+ Sorted sequence after the execution
— The root is the originating call

— The leaves are calls on partial sequences of size 0 or 1

Example: Execution of quick-sort

e Select a pivot

Example: Execution of quick-sort

e Partitioning, recursive call, selection of pivot

<

20.17

20.18

20.19

Example: Execution of quick-sort

e Partitioning, recursive call, base case

- 20.20

e Recursive call, ..., base case, combination

Example: Execution of quick-sort

20.21

Example: Execution of quick-sort

e Recursive call, choice of pivot

20.22

Example: Execution of quick-sort

e Partitioning, ..., recursive call, base case

151

44

Example: Execution of quick-sort

e combine, combine

-

151

959

4 >4

Execution time in the worst case

959

e The worst case for quick-sort occurs when the pivot element is a unique minimum or maximum

element

e one of L or G has size n — 1 and the other has size 0
e The execution time is proportional to the sum

n+(n—1)+...+2+1

e Thus, the worst case time for quick-sort is O(n?)

Execution time in the worst case

20.23

20.24

20.25

djup tid
0

n-1 1

20.26

Expected execution time

e Consider a recursive call to quicksort on a sequence of size s
- Good call: the sizes of L and G are both < 3s/4
— Bad call: one of L and G has size > 3s/4

Bra anrop Daligt anrop

e A call is good with probability 1/2

— Half of all possible pivot elements lead to a good call:

\ J \\ ~ 7 \\ J

A4
Déliga Bra pivotel. Daliga

20.27

Expected execution time

e Probabilistic fact: the expected number of coin flips needed to get tails of k times is 2k
e For a node at depth i, we expect

— i/2 ancestors are good call

— the size of the input sequence for the current call is at most (3/4)"/2n
e Thus, we have

— For a node at depth 2log, /3 , then expected size of input data is 1

— The expected height for quick-sort tree is O(logn)

e The amount of work performed in the nodes at the same depth is O(n)

e Thus, the expected execution time for quick-sort is O(nlogn)
20.28

Expected execution time

forvantad hojd tid per niva

T [s(r)] ************* O(n)

O(log n)

forvantad total tid: O(n log n) __ 2029
Quick-sort with constant extra memory

e Quick-sort can be implemented to run in-place
e In the partitioning step, we use replacement operations to arrange the elements of the input sequence
so that:

— the elements smaller than the pivot element have rank less than &
— the elements equal to the pivot element have rank between & and k

— the elements greater than the pivot element have rank greater than

L E G
h k
20.30
Algorithm for quick-sort with constant extra memory
procedure INPLACEQUICKSORT(S,/,r)
if / > r then return
i < random integer between / and r
X < S.ELEMATRANK(i)
(h,k) < INPLACEPARTITION (x)
INPLACEQUICKSORT(S,[,h—1)
INPLACEQUICKSORT(S,k+1,r) 2031
Partitioning with constant extra memory
o Perform partitioning using 2 indexes to split S into L and E UG (A similar method can be used to
split EU G into E and G)
h k
(zsiorissarasaias) (uot=o
e Repeat the process until 4 and k£ meet/intersect:
— Swipe h to the right until an element > pivot element is found
— Swipe k to the left until an element < pivot element is found
— swap the elements at locations % and k
—h Kk
v
20.32

2 Selection

2.1 Introduction

The selection problem

e Given an integer i and n elements x|, x7,...,x, taken from a total order, find the ith smallest element
in the sequence.

e We can sort the sequence in O(nlogn) time, then index the ith element in constant time.

i=3 (7496224679 |

e Can we solve the selection problem faster?

2.2 Quick-select
Quick-select
Quick-Select is a randomized selction problem based on the paradigm prune-and-search:
e Prune: Select x randomly and partition S to
— L elements lower than x
— E elements equal to x
— G elements greater than x

e Search: depending on i, either the solution exists in £ or we need to continue recursively in one of L
or G.

DDDH 0
Joo B D

T B o

i<|L|] i>|L|+|E|

i=i-|L|-|E|
|L| <i<|L|+|E]|
(klart)
Partitioning

e We partition the input sequence as in the algorithm for quick-sort:
— We remove, i turn and order, each element y from S and
— We insert y in L, E or G depending on the result of comparison with the pivot element x

e Insertion and deletion are performed at the beginning or end of a sequence, thus each takes O(1) time
e Thus, the partitioning step in quick-select takes O(n) time

function PARTITION(S, p)
L,E,G < empty sequences
X < S.REMOVE(p)
while —S.ISEMPTY() do
y < S.REMOVE(S.FIRST())
if y < x then
L.INSERTLAST(y)
else if y = x then
E.INSERTLAST(y)
else

G.INSERTLAST(y)
return L. E,G

10

20.33

20.34

20.35

Visualization of Quick-select
e The execution of quick-select can be visualized with the help of a recursion path

— Each node represents a recursive call to quick-select and stores i and the remaining sequence S

[125,82(749%26518))

(i=2,8=(7 4 |9 658 |

(i=2, S=(7 |4 65 |

i=1,8=(7 6 5)]

Expected execution time
o Consider a recursive call to quick-select on a sequence of size s
— Good call: the sizes of L and G are both < 3s/4
— Bad call: one of L and G has size > 3s5/4

(729435761) (72943761]
(2431) 7976 (1) (794376
Bra anrop Daligt anrop

e A call is good with probability 0.5

— Half of all possible pivot elements lead to good calls:

1(2(3[415]|6|7[8]9]10]11{12[13|14]|15[16

\ J \ J

Daliga pivotelement Bra pivotelement Daliga pivotelement

Expected execution time

e Probabilistic fact: The expected number of coin flips needed to get tail once is two
e Probabilistic fact: The expected value is a linear function:

- EX+Y)=EX)+E®Y)
— E(cX) = cE(X) for each constant ¢

e Let T'(n) be the expected execution time for quick-select
e By the second fact, we get T'(n) < b-n-g(n)+ T (3n/4) where

— b is a constant

— g(n) is the expected number of calls before a good call occurs

Expected execution time
e Thus
- T(m)<b-n-g(n)+T(3n/4)
e Through the first fact, we get
- T(n)<2-b-n+T(3n/4)
T (n) is a geometric serie:
- T(n)<2-b-n+2-b-n-(3/4)+2-b-n-(3/4)>+2-b-n-(3/4)> +...

Thus, T'(n) € O(n)
e We can solve the selection problem in expected time O(n) (the worst case time is O(n?))

11

20.36

20.37

20.38

20.39

	Sorting
	Introduction
	Insertion sort
	Selection sort
	Divide-and-conquer
	Quick-sort

	Selection
	Introduction
	Quick-select

