Lecture 19

Priority Queues, Heap, Trie, Union/Find, Geometric applications of BST

TDDD86: DALP
Print version of the lecture Data structures, algorithms and programming paradigms 15 november 2016

Jalil Boudjadar, Tommy Färnqvist. IDA, Linköping University

Content

Innehåll

1 Priority Queues 1
1.1 Heaps 2
1.2 Application 3
2 Trie 5
3 Union/Find 6
4 Geometric search 8
4.1 Range search 8
4.2 Tree structures 11

1 Priority Queues

Priority queues

A common occurring situation:

- Waiting list (job management on multi-user computers, simulation of events)
- If a resource becomes available, select an element from the waiting list
- The choice is based on a partial/linear order:
- the job with the highest priority will be served first,
- each event will occur at a specific time; the events will be processed in chronological order.

ADT priority queues

- Linearly ordered set of keys K
- We store the pairs (k, v) (as in the ADT Dictionary), several pairs with the same key are allowed
- a common operation is to retrieve couples with minimal key
- Operations on a priority queue P :
- makeEmptyPQ()
- isEmpty()
- size()
- $\min ()$: find a pair (k, v) that has the minimal k in P; returns (k, v)
- $\operatorname{insert}(k, v)$: inserts (k, v) in P
- removeMin(): removes and returns the pair (k, v) having the minimal key k; error if P is empty

Implementation of priority queues

- We can for example use (sorted) linked lists, BST or Skip-lists
- Another idea: use a complete binary tree where the root of each (sub) tree T contains the smallest element in T.

This is a partially ordered tree, also called "heap"!

1.1 Heaps

Updating a heap structure

- A heap is a complete binary tree
- With the last leaf we mean the last node in a traversal in level order
- removeMin $(P Q)$ // remove the root
- Replace the root with the last leaf
- Reset the partial order by swapping rows below "down-heap bubbling"
- insert $(P Q, k, v)$
- Insert a new node (k, v) after the last leaf
- Reset the partial order by "up-heap bubbling"
\qquad

Updating a heap structure

Given the initial heap

Characteristics

- $\operatorname{size}()$, isEmpty(), $\min (): O(1)$
- insert(), removeMin(): $O(\log n)$

Remember the array representation of BST A complete binary tree. . .

- compact array representation
- "Bubble-up" and "bubble-down" have rapid implementations

Example: "bubble-up" after insert(4,15)

0	5	10
1	7	Il
2	4	15
3	10	13
4	12	14
5	5	I2
6		
7		

0	4	15
1	7	Il
2	5	10
3	10	I3
4	12	14
5	5	I2
6		
7		

Heap variants

Different partial orders

- the smallest -minimum- key is in the root (minHeap)
- the biggest key in the root (maxHeap)

Different array representations

- Numbering forward in the level orders (starting from 0 or 1)
- numbering backwards in level order (starting with 0 or 1)

1.2 Application

Greedy algorithms

Algorithms that solve a piece of the problem at a time. Each step done gives the best return and costs the least.

- The greedy method is a general paradigm for the design of algorithms based on the following:
- configurations: different choices, collections or values to find
- goal function: configurations are assigned a score that we will maximize or minimize
- It works well for problems with greedy-choice property:
- a globally optimal solution can always be found by a series of local improvements from an initial configuration

For many problems, greedy algorithms do not provide optimal solutions but maybe decent approximate solutions.

Text compression

- Given a string X, encode X in a shorter string Y
- Save memory/bandwidth
- A good way to do it: Huffman coding
- Calculate the frequency $f(c)$ for each character c
- Use short codes for characters with high frequency
- No code word is the prefix of another code word
- Use optimal coding tree to determine the code words

Example of coding tree

- A code maps each character in an alphabet to a binary code word
- A prefix code is a binary code such that no code word is a prefix of another code word
- A coding tree represents a prefix code
- Each external node stores a character
- The code word for a character is given by the path from the root to the external node storing that character (0 for a left child and one for a right child)

00	010	011	10	11
a	b	c	d	e

Optimization of the coding tree

- Given a text string X, we want to find a prefix code for a character in X which gives a short coding of X
- Common characters receive short code words
- Unusual characters should get long code words

Example: $X=$ abrakadabra

- T_{1} encodes X in 29 bits
- T_{2} encodes X in 24 bits

a	b	k	d	r
5	2	1	1	2

Huffman's algorithm

- Given a string X, Huffman algorithm constructs a prefix code that minimizes the size of the encoding of X
- The algorithm runs in $O(n+d \log d)$ time, where n is the size of X and d is the number of distinguished characters in X
- A heap-based priority queue is used as an additional data structure
function $\operatorname{HuFFmANEnCODING}(X,|X|=n)$
$C \leftarrow$ DISTINCTCHARACTERS (X)
COMPUTEFREQUENCIES (C, X)
$Q \leftarrow$ new empty heap
for all $c \in C$ do
$T \leftarrow$ a new tree node that stores c
$Q \cdot \operatorname{InSERT}(\operatorname{GETFREQUENCY}(C), 1)$
while $Q . \operatorname{SIZE}()>1$ do
$f_{1} \leftarrow Q \cdot \operatorname{MIN}()$

$$
\begin{aligned}
& T_{1} \leftarrow Q \cdot \operatorname{REMOVEMIN}() \\
& f_{2} \leftarrow Q \cdot \min () \\
& T_{2} \leftarrow Q \cdot \operatorname{REMOVEMIN}() \\
& T \leftarrow \operatorname{JoIN}\left(T_{1}, T_{2}\right) \\
& Q \cdot \operatorname{INSERT}\left(f_{1}+f_{2}, T\right) \\
& \text { return } Q \cdot \operatorname{REMOVEMIN}()
\end{aligned}
$$

Example

String: a fast runner need never be afraid of the dark

Character		\mathbf{a}	\mathbf{b}	\mathbf{d}	\mathbf{e}	\mathbf{f}	\mathbf{h}	\mathbf{i}	\mathbf{k}	\mathbf{n}	\mathbf{o}	\mathbf{r}	\mathbf{s}	\mathbf{t}	\mathbf{u}	\mathbf{v}
Frequency	9	5	1	3	7	3	1	1	1	4	1	5	1	2	1	1

2 Trie

Trie (prefix-tree)

- trie: An ordered tree used to store a variety of data, usually strings, optimized to perform prefix search
- Example: Starting a few words in the set with the prefix mart?
- Dictionary-class in lab5 uses such a data structure
- Idea: instead of a binary tree, use a " 26 -descendentree
* Each node has 26 children: one for each letter A to Z
* add the word in a trie by following the appropriate child pointer

Trie-node

```
struct TrieNode {
    bool word;
    TrieNode* children[26];
    TrieNode() {
        this->word = false;
        for (int i = 0; i < 26; i++) {
            this->children[i] = nullptr;
        }
    }
};
```


\qquad

Trie with data

- After inserting "am", "ate", "me", "mud", "my", "one", "out":

3 Union/Find

Partition Rings with Union/Find-operations

Partition rings represent a sorted list of virtual nodes, where virtual nodes are just hashes based on the actual node. Usually the sorted list just contains the hashes themselves, and a companion map is used to translate from the virtual node hash back to its actual node.

- makeSet (x) : Create a set that contains only element x and returns the position that stores x.
- union (A, B) : Returns the set $A \cup B$, destroy the old A and B.
- find (p) : Returns the set that contains the element in position p

Example: Dynamic connectivity

Question: is there a path between p and q ?

- Pixels in a digital photo
- Computers on a network
- Friends on a social network
- Transistors in a computer chip
- Elements of a mathematical set
- Variable names in a computer program
- Metallic parts of a composite system

List-based implementation

- Each set is stored as a sequence represented by a linked list
- Each node stores an object containing an element and a reference to the set name

Analysis of list-based representation

- When the union is carried out, always move elements from the smaller set to the larger set
- Each time an element is moved, it comes to a set (the new one) which is at least twice as large as the old set.
- Thus, an element can be moved up to $O(\log n)$ times
- Total time to perform n union- and find-operations is $O(n \log n)$

Tree-based implementation

- Each element is stored in a node that contains a pointer to a set name
- A node v whose the pointer points to node v is also a set name
- Each set is a tree rooted in a node with self-referenced set name pointer
- E.g. the sets " 1 ", " 2 " and " 5 ":

Operations

- To perform the union, just let the root of a tree point to the root of the second.
- To perform find, follow the set name pointers from the start node to a self-referenced node!

A heuristic

- Union via size:
- When the union is carried out, the root of the smaller tree points to the root of the larger one
- $O(n \log n)$ time to perform n union- and find-operations:
- Every time we follow a pointer, we come to a subtree that is at least twice as large as the previous subtree
- Thus, we end up by following at most $O(\log n)$ pointers for any find.

Again, a heuristic

- Path compression:
- After find"is done, compress all the pointers on the path just traversed so that they all point to the root

- $O\left(n \log ^{*} n\right)$ time to perform n union- and find-operations.

4 Geometric search

4.1 Range search

Range search in a dimension

- Extension of ordered symbol tables
- Insert key-value pair
- Search key k
- Range search: find all keys between k_{1} and k_{2}
- Range size: the number of keys between k_{1} and k_{2}
- Application:
- Database questions
- Geometric interpretation:
- The keys are points on a line
- Find/count points on a given range

Range search in a dimension with BST

- Find all keys between k_{1} and k_{2}
- Find recursively all the keys in the left subtree (some may be in the range)
- Check the key in the current node
- Find recursively all the keys in the right subtree (some may be in the range)

Range search in a BST

Driving time is proportional to $R+\log N$

Range search in 2 dimensions

- Extension of ordered symbol table to 2d keys
- Insert a 2d-key
- Search the 2d-key
- Range search: find all keys in a 2 d -range
- Range size: the number of keys in a 2d-range
- Applications:
- Network, circuit design, databases
- Geometric interpretation:
- The keys are points in the plane (2d)
- Find/count points in a given rectangle

Range search in two dimensions with grid

- Divide up the plane in $M \times M$-grid of squares
- Create list of points in each square
- Use 2d-array to directly index the relevant squares
- Interval search: check only the squares that overlap the issue

Clustering

- Grid implementation:
- Fast, easy solution for well-distributed point sets
- Problem: Clustering a well-known problematic phenomenon of geometric data
- The lists are too long, even though the average length is short
- Need data structure that adapts to data

Clustering

- Grid implementation:
- Fast, easy solution for well-distributed point sets
- Problem: Clustering a well-known problematic phenomenon of geometric data
- For example, map data

4.2 Tree structures

Tree structures

Use a tree to recursively split the (2d-surface) plane

- Grid: Divide the plane uniformly in squares
- Quadtree: Divide the plane recursively into four quadrants
- 2d-tree: Divide the plane recursively into 2 half-plane
- BSP-tree: Divide the plane recursively into 2 regions

Applications

- Ray-tracing
- Range search in 2 dimensions
- flight simulators
- collision detection
- Astronomical databases
- Search for the nearest neighbors
- Adaptive grid generation
- Accelerate rendering of Doom
- Remove hidden surfaces and shading

Quadtree

- Idea: Divide the plane recursively into four quadrants
- Implementation: 4-way tree (actually a trie)

class QuadTree {
class QuadTree {
private:
private:
Quad quad;
Quad quad;
QuadTree NW, NE, SW, SE;
QuadTree NW, NE, SW, SE;
};
};
- Advantage: Good performance for clustering data
- Disadvantage: Arbitrary deep!

Quadtree: Range search in 2 dimensions

- Find recursively all the keys in the NE-quadrant (some may be in the range)
- Find recursively all the keys in the NW-quadrant (some may be in the range)
- Find recursively all the keys in the SE-quadrant (some may be in the range)
- Find recursively all the keys in the SW-quadrant (some may be in the range)

- Typical execution time: $R+\log N$

Dimensionality problem

- Range search in k dimensions
- Main application: Multi-dimensional databases
- 3d: Octree: recursively split up the 3D space in 8 oktanter
- 100d: Centree: split up recuresively a 100 d -space into 2^{100} ?

2d-tree

Split up recursively the plane in 2 half-planes

2d-tree

- Data structure: BST, but uses x - and y-coordinates as key
- Search provides a rectangle containing point
- Insertion under sub-parts further

2d-tree: Range search in 2 dimensions
Find all the points of the rectangle in question (in line with the coordinate axes)

- Check the points in node located in the given rectangle
- Search recursively in the left/upper subdivision (a few points can be found in the rectangle)
- Search recursively in the right/lower subdivision (a few points can be found in the rectangle)

- Typical execution time: $R+\log N$
- Worst case (assuming the tree is balanced): $R+\sqrt{N}$

2d-tree: Search for nearest neighbor

Find the point closest to a given point

- Check the distance from the point in a node to the point in question
- Search recursively in the left/upper subdivision (that can contain nearer points)
- Search recursively in the right/lower subdivision (that can contain nearer points)
- Organize a recursive method so that it begins by searching for the query point

- Typical execution time: $\log N$
- Worst case (even if the tree is balanced): N

Kd-tree

- Kd-tree: Partition recuresively the k-dimensional space into two half spaces
- Implementation: BST, but the cycling dimensions like 2d-trees

- Efficient, simple data structure to treat k-dimensional data
- wide use
- Adapts well to higher dimensional clustering and data
- Discovered by a student (Jon Bentley) in an algorithm course!

