
Lecture 19
Priority Queues, Heap, Trie,
Union/Find, Geometric applications
of BST
TDDD86: DALP

Print version of the lecture Data structures, algorithms and programming paradigms
15 november 2016

Jalil Boudjadar, Tommy Färnqvist. IDA, Linköping University

19.1

Content

Innehåll

1 Priority Queues 1
1.1 Heaps . 2
1.2 Application . 3

2 Trie 5

3 Union/Find 6

4 Geometric search 8
4.1 Range search . 8
4.2 Tree structures . 11 19.2

1 Priority Queues

Priority queues
A common occurring situation:

• Waiting list (job management on multi-user computers, simulation of events)
• If a resource becomes available, select an element from the waiting list
• The choice is based on a partial/linear order:

– the job with the highest priority will be served first,

– each event will occur at a specific time; the events will be processed in chronological order.
19.3

ADT priority queues

• Linearly ordered set of keys K
• We store the pairs (k,v) (as in the ADT Dictionary), several pairs with the same key are allowed
• a common operation is to retrieve couples with minimal key
• Operations on a priority queue P:

– makeEmptyPQ()

– isEmpty()

– size()

– min(): find a pair (k,v) that has the minimal k in P; returns (k,v)

– insert(k,v): inserts (k,v) in P

– removeMin(): removes and returns the pair (k,v) having the minimal key k; error if P is empty
19.4

1

Implementation of priority queues

• We can for example use (sorted) linked lists, BST or Skip-lists
• Another idea: use a complete binary tree where the root of each (sub) tree T contains the smallest

element in T .

This is a partially ordered tree, also called "heap"! 19.5

1.1 Heaps

Updating a heap structure

• A heap is a complete binary tree
• With the last leaf we mean the last node in a traversal in level order

• removeMin(PQ) // remove the root

– Replace the root with the last leaf

– Reset the partial order by swapping rows below ”down-heap bubbling”

• insert(PQ,k,v)

– Insert a new node (k,v) after the last leaf

– Reset the partial order by ”up-heap bubbling”
19.6

Updating a heap structure

Remove the root. 19.7

Characteristics

• size(), isEmpty(), min(): O(1)
• insert(), removeMin(): O(logn)

Remember the array representation of BST A complete binary tree. . .

• compact array representation
• ”Bubble-up” and ”bubble-down” have rapid implementations

19.8

2

Example: ”bubble-up” after insert(4,15)

19.9

Heap variants

Different partial orders

• the smallest -minimum- key is in the root (minHeap)
• the biggest key in the root (maxHeap)

Different array representations

• Numbering forward in the level orders (starting from 0 or 1)
• numbering backwards in level order (starting with 0 or 1)

19.10

1.2 Application

Greedy algorithms
Algorithms that solve a piece of the problem at a time. Each step done gives the best return and costs

the least.

• The greedy method is a general paradigm for the design of algorithms based on the following:

– configurations: different choices, collections or values to find

– goal function: configurations are assigned a score that we will maximize or minimize

• It works well for problems with greedy-choice property:

– a globally optimal solution can always be found by a series of local improvements from an
initial configuration

For many problems, greedy algorithms do not provide optimal solutions but maybe decent approximate
solutions. 19.11

Text compression

• Given a string X , encode X in a shorter string Y

– Save memory/bandwidth

• A good way to do it: Huffman coding

– Calculate the frequency f (c) for each character c

– Use short codes for characters with high frequency

– No code word is the prefix of another code word

– Use optimal coding tree to determine the code words
19.12

3

Example of coding tree

• A code maps each character in an alphabet to a binary code word
• A prefix code is a binary code such that no code word is a prefix of another code word
• A coding tree represents a prefix code

– Each external node stores a character

– The code word for a character is given by the path from the root to the external node storing
that character (0 for a left child and one for a right child)

a

b c

d e

00 010 011 10 11

a b c d e

19.13

Optimization of the coding tree

• Given a text string X , we want to find a prefix code for a character in X which gives a short coding of
X

– Common characters receive short code words

– Unusual characters should get long code words

Example: X = abrakadabra

• T1 encodes X in 29 bits
• T2 encodes X in 24 bits

a b k d r
5 2 1 1 2

k

a r

d b a

k d

b r

T1 T2

19.14

Huffman’s algorithm

• Given a string X , Huffman algorithm constructs a prefix code that minimizes the size of the encoding
of X

• The algorithm runs in O(n+d logd) time, where n is the size of X and d is the number of distingu-
ished characters in X

• A heap-based priority queue is used as an additional data structure

function HUFFMANENCODING(X , |X |= n)
C← DISTINCTCHARACTERS(X)
COMPUTEFREQUENCIES(C,X)
Q← new empty heap
for all c ∈C do

T ← a new tree node that stores c
Q.INSERT(GETFREQUENCY(C),1)

while Q.SIZE()> 1 do
f1← Q.MIN()

4

T1← Q.REMOVEMIN()
f2← Q.MIN()
T2← Q.REMOVEMIN()
T ← JOIN(T1,T2)
Q.INSERT(f1 + f2,T)

return Q.REMOVEMIN()
19.15

Example

19.16

2 Trie

Trie (prefix-tree)

• trie: An ordered tree used to store a variety of data, usually strings, optimized to perform prefix search

– Example: Starting a few words in the set with the prefix mart?

– Dictionary-class in lab5 uses such a data structure

– Idea: instead of a binary tree, use a “26-descendenttree

∗ Each node has 26 children: one for each letter A to Z
∗ add the word in a trie by following the appropriate child pointer

19.17

Trie-node

struct TrieNode {
bool word;
TrieNode* children[26];

TrieNode() {
this->word = false;
for (int i = 0; i < 26; i++) {

this->children[i] = nullptr;
}

}
};

5

19.18

Trie with data

• After inserting “am”, “ate”, “me”, “mud”, “my”, “one”, “out”:

19.19

3 Union/Find

Partition Rings with Union/Find-operations
Partition rings represent a sorted list of virtual nodes, where virtual nodes are just hashes based on the

actual node. Usually the sorted list just contains the hashes themselves, and a companion map is used to
translate from the virtual node hash back to its actual node.

• makeSet(x): Create a set that contains only element x and returns the position that stores x.
• union(A,B): Returns the set A∪B, destroy the old A and B.
• find(p): Returns the set that contains the element in position p.

19.20

Example: Dynamic connectivity

Question: is there a path between p and q?

• Pixels in a digital photo
• Computers on a network
• Friends on a social network
• Transistors in a computer chip
• Elements of a mathematical set
• Variable names in a computer program
• Metallic parts of a composite system

19.21

6

List-based implementation

• Each set is stored as a sequence represented by a linked list
• Each node stores an object containing an element and a reference to the set name

19.22

Analysis of list-based representation

• When the union is carried out, always move elements from the smaller set to the larger set

– Each time an element is moved, it comes to a set (the new one) which is at least twice as large
as the old set.

– Thus, an element can be moved up to O(logn) times

• Total time to perform n union- and find-operations is O(n logn)
19.23

Tree-based implementation

• Each element is stored in a node that contains a pointer to a set name
• A node v whose the pointer points to node v is also a set name
• Each set is a tree rooted in a node with self-referenced set name pointer
• E.g. the sets ”1”, ”2” and ”5”:

19.24

Operations

• To perform the union, just let the root of a tree point to the root of the second.

• To perform find, follow the set name pointers from the start node to a self-referenced node!

2

63

5

108

12

11

9

7

2

63

5

108

12

11

9
19.25

A heuristic

• Union via size:

– When the union is carried out, the root of the smaller tree points to the root of the larger one

• O(n logn) time to perform n union- and find-operations:

– Every time we follow a pointer, we come to a subtree that is at least twice as large as the
previous subtree

– Thus, we end up by following at most O(logn) pointers for any find.

2

63

5

108

12

11
9

19.26

Again, a heuristic

• Path compression:

– After find"is done, compress all the pointers on the path just traversed so that they all point to
the root

2

63

5

108

12

11

9

2

63

5

108

12

11

9

• O(n log∗ n) time to perform n union- and find-operations.
19.27

4 Geometric search

4.1 Range search

Range search in a dimension

• Extension of ordered symbol tables

– Insert key-value pair

8

– Search key k

– Range search: find all keys between k1 and k2

– Range size: the number of keys between k1 and k2

• Application:

– Database questions

• Geometric interpretation:

– The keys are points on a line

– Find/count points on a given range

19.28

Range search in a dimension with BST

• Find all keys between k1 and k2

– Find recursively all the keys in the left subtree (some may be in the range)

– Check the key in the current node

– Find recursively all the keys in the right subtree (some may be in the range)

Driving time is proportional to R+ logN 19.29

Range search in 2 dimensions

• Extension of ordered symbol table to 2d keys

– Insert a 2d-key

– Search the 2d-key

– Range search: find all keys in a 2d-range

– Range size: the number of keys in a 2d-range

• Applications:

– Network, circuit design, databases

• Geometric interpretation:

– The keys are points in the plane (2d)

9

– Find/count points in a given rectangle

19.30

Range search in two dimensions with grid

• Divide up the plane in M×M-grid of squares
• Create list of points in each square
• Use 2d-array to directly index the relevant squares
• Interval search: check only the squares that overlap the issue

19.31

Clustering

• Grid implementation:

– Fast, easy solution for well-distributed point sets

• Problem: Clustering a well-known problematic phenomenon of geometric data

– The lists are too long, even though the average length is short

– Need data structure that adapts to data

19.32

Clustering

• Grid implementation:

– Fast, easy solution for well-distributed point sets

• Problem: Clustering a well-known problematic phenomenon of geometric data

– For example, map data

10

19.33

4.2 Tree structures

Tree structures
Use a tree to recursively split the (2d-surface) plane

• Grid: Divide the plane uniformly in squares
• Quadtree: Divide the plane recursively into four quadrants
• 2d-tree: Divide the plane recursively into 2 half-plane
• BSP-tree: Divide the plane recursively into 2 regions

19.34

Applications

• Ray-tracing
• Range search in 2 dimensions
• flight simulators
• collision detection
• Astronomical databases
• Search for the nearest neighbors
• Adaptive grid generation
• Accelerate rendering of Doom
• Remove hidden surfaces and shading

19.35

Quadtree

• Idea: Divide the plane recursively into four quadrants
• Implementation: 4-way tree (actually a trie)

11

• Advantage: Good performance for clustering data
• Disadvantage: Arbitrary deep!

19.36

Quadtree: Range search in 2 dimensions

• Find recursively all the keys in the NE-quadrant (some may be in the range)
• Find recursively all the keys in the NW-quadrant (some may be in the range)
• Find recursively all the keys in the SE-quadrant (some may be in the range)
• Find recursively all the keys in the SW-quadrant (some may be in the range)

• Typical execution time: R+ logN
19.37

Dimensionality problem

• Range search in k dimensions

– Main application: Multi-dimensional databases

– 3d: Octree: recursively split up the 3D space in 8 oktanter

– 100d: Centree: split up recuresively a 100d-space into 2100?

19.38

12

2d-tree
Split up recursively the plane in 2 half-planes

19.39

2d-tree

• Data structure: BST, but uses x- and y-coordinates as key

– Search provides a rectangle containing point

– Insertion under sub-parts further

19.40

2d-tree: Range search in 2 dimensions
Find all the points of the rectangle in question (in line with the coordinate axes)

• Check the points in node located in the given rectangle
• Search recursively in the left/upper subdivision (a few points can be found in the rectangle)
• Search recursively in the right/lower subdivision (a few points can be found in the rectangle)

• Typical execution time: R+ logN
• Worst case (assuming the tree is balanced): R+

√
N

19.41

13

2d-tree: Search for nearest neighbor
Find the point closest to a given point

• Check the distance from the point in a node to the point in question
• Search recursively in the left/upper subdivision (that can contain nearer points)
• Search recursively in the right/lower subdivision (that can contain nearer points)
• Organize a recursive method so that it begins by searching for the query point

• Typical execution time: logN
• Worst case (even if the tree is balanced): N

19.42

Kd-tree

• Kd-tree: Partition recuresively the k-dimensional space into two half spaces

– Implementation: BST, but the cycling dimensions like 2d-trees

• Efficient, simple data structure to treat k-dimensional data

– wide use

– Adapts well to higher dimensional clustering and data

– Discovered by a student (Jon Bentley) in an algorithm course!
19.43

14

	Priority Queues
	Heaps
	Application

	Trie
	Union/Find
	Geometric search
	Range search
	Tree structures

